An aircraft is flying at a speed of 480 m/s. This aircraft used the simple aircraft air conditioning cycle and has 10 TR capacity plant as shown in figure 4 below. The cabin pressure is 1.01 bar and the cabin air temperature is maintained at 27 °C. The atmospheric temperature and pressure are 5 °C and 0.9 bar respectively. The pressure ratio of the compressor is 4.5. The temperature of air is reduced by 200 °C in the heat exchanger. The pressure drop in the heat exchanger is neglected. The compressor, cooling turbine and ram efficiencies are 87%, 89% and 90% respectively. Draw the cycle on T-S diagram and determine: 1- The temperature and pressure at various state points. 2- Mass flow rate. 3- Compressor work. 4- COP.

Answers

Answer 1

1- The temperature and pressure at various state points:

State 1: Atmospheric conditions - T1 = 5°C, P1

= 0.9 bar

State 2: Compressor exit - P2 = 4.5 * P1, T2 is determined by the compressor efficiency

State 3: Cooling turbine exit - P3 = P1, T3 is determined by the temperature reduction in the heat exchanger

State 4: Ram air inlet - T4 = T1,

P4 = P1

State 5: Cabin conditions - T5 = 27°C,

P5 = 1.01 bar

2- Mass flow rate:

The mass flow rate can be calculated using the equation:

Mass flow rate = Cooling capacity / (Cp × (T2 - T3))

3- Compressor work:

Compressor work can be calculated using the equation:

Compressor work = (h2 - h1) / Compressor efficiency

4- Coefficient of Performance (COP):

COP = Cooling capacity / Compressor work

Please note that specific values for cooling capacity and Cp (specific heat at constant pressure) are required to calculate the above parameters accurately.

To learn more about Compressor work, visit:

https://brainly.com/question/32509469

#SPJ11


Related Questions

I have found a research study online with regards to PCM or Phase changing Material, and I can't understand and visualize what PCM is or this composite PCM. Can someone pls help explain and help me understand what these two composite PCMs are and if you could show images of a PCM it is really helpful. I haven't seen one yet and nor was it shown to us in school due to online class. pls help me understand what PCM is the conclusion below is just a part of a sample study our teacher gave to help us understand though it was really quite confusing, Plss help
. Conclusions
Two composite PCMs of SAT/EG and SAT/GO/EG were prepared in this article. Their thermophysical characteristic and solar-absorbing performance were investigated. Test results indicated that GO showed little effect on the thermal properties and solar absorption performance of composite PCM. However, it can significantly improve the shape stability of composite PCM. The higher the density is, the larger the volumetric heat storage capacity. When the density increased to 1 g/ cm3 , SAT/EG showed severe leakage while SAT/GO/EG can still keep the shape stability. A novel solar water heating system was designed using SAT/GO/EG (1 g/cm3 ) as the solar-absorbing substance and thermal storage media simultaneously. Under the real solar radiation, the PCM gave a high solar-absorbing efficiency of 63.7%. During a heat exchange process, the temperature of 10 L water can increase from 25 °C to 38.2 °C within 25 min. The energy conversion efficiency from solar radiation into heat absorbed by water is as high as 54.5%, which indicates that the novel system exhibits great application effects, and the composite PCM of SAT/GO/EG is very promising in designing this novel water heating system.

Answers

PCM stands for Phase Changing Material, which is a material that can absorb or release a large amount of heat energy when it undergoes a phase change.

A composite PCM, on the other hand, is a mixture of two or more PCMs that exhibit improved thermophysical properties and can be used for various applications. In the research study mentioned in the question, two composite PCMs were investigated: SAT/EG and SAT/GO/EG. SAT stands for stearic acid, EG for ethylene glycol, and GO for graphene oxide.

These composite PCMs were tested for their thermophysical characteristics and solar-absorbing performance. The results showed that GO had little effect on the thermal properties and solar absorption performance of composite PCM, but it significantly improved the shape stability of the composite PCM.

To know more about PCM  visit:-

https://brainly.com/question/32700586

#SPJ11

Show p-v and t-s diagram
A simple air refrigeration system is used for an aircraft to take a load of 20 TR. The ambient pressure and temperature are 0.9 bar and 22°C. The pressure of air is increased to 1 bar due to isentropic ramming action. The air is further compressed in a compressor to 3.5 bar and then cooled in a heat exchanger to 72C. Finally, the air is passed through the cooling turbine and then it is supplied to the cabin at a pressure of 1.03 bar. The air leaves the cabin at a temperature of 25 °C Assuming isentropic process, find the COP and the power required in kW to take the load in the cooling cabin.
Take cp of air = 1.005 kj/kgk, k=1.4

Answers

Given, Load TR Ambient pressure bar Ambient temperature 22°CPressure of air after ramming action bar Pressure after compression bar Temperature of air after cooling 72°C Pressure in the cabin.

It is a process in which entropy remains constant. Air Refrigeration Cycle. Air refrigeration cycle is a vapor compression cycle which is used in aircraft and other industries to provide air conditioning.

The PV diagram of the given air refrigeration cycle is as follows:

The TS diagram of the given air refrigeration cycle is as follows:

Calculation:

COP (Coefficient of Performance) of the refrigeration cycle can be given by:

COP = Desired effect / Work input.

To know more about Ambient visit:

https://brainly.com/question/31578727

#SPJ11

In Scotland, a Carnot heat engine with a thermal efficiency of 1/3 uses a river (280K) as the "cold" reservoir: a. Determine the temperature of the hot reservoir. b. Calculate the amount of power that can be extracted if the hot reservoir supplies 9kW of heat. c. Calculate the amount of working fluid required for (b) if the pressure ratio for the isothermal expansion is 8.

Answers

The temperature of the hot reservoir is 420 K.

The amount of power that can be extracted is 3 kW.

a) To determine the temperature of the hot reservoir, we can use the formula for the thermal efficiency of a Carnot heat engine:

Thermal Efficiency = 1 - (Tc/Th)

Where Tc is the temperature of the cold reservoir and Th is the temperature of the hot reservoir.

Given that the thermal efficiency is 1/3 and the temperature of the cold reservoir is 280 K, we can rearrange the equation to solve for Th:

1/3 = 1 - (280/Th)

Simplifying the equation, we have:

280/Th = 2/3

Cross-multiplying, we get:

2Th = 3 * 280

Th = (3 * 280) / 2

Th = 420 K

b) The amount of power that can be extracted can be calculated using the formula:

Power = Thermal Efficiency * Heat input

Given that the thermal efficiency is 1/3 and the heat input is 9 kW, we can calculate the power:

Power = (1/3) * 9 kW

Power = 3 kW

Know more about thermal efficiencyhere;

https://brainly.com/question/12950772

#SPJ11

A plane wall of length L = 0.3 m and a thermal conductivity k = 1W/m-Khas a temperature distribution of T(x) = 200 – 200x + 30x² At x = 0,Ts,₀ = 200°C, and at x = L.T.L = 142.5°C. Find the surface heat rates and the rate of change of wall energy storage per unit area. Calculate the convective heat transfer coefficient if the ambient temperature on the cold side of the wall is 100°C.

Answers

Given data: Length of wall L = 0.3 mThermal conductivity k = 1 W/m-K

Temperature distribution: T(x) = 200 – 200x + 30x²At x = 0, Ts,₀ = 200°C, and at x = L.T.L = 142.5°C.

The temperature gradient:

∆T/∆x = [T(x) - T(x+∆x)]/∆x

= [200 - 200x + 30x² - 142.5]/0.3- At x

= 0; ∆T/∆x = [200 - 200(0) + 30(0)² - 142.5]/0.3

= -475 W/m²-K- At x

= L.T.L; ∆T/∆x = [200 - 200L + 30L² - 142.5]/0.3

= 475 W/m²-K

Surface heat rate: q” = -k (dT/dx)

= -1 [d/dx(200 - 200x + 30x²)]q”

= -1 [(-200 + 60x)]

= 200 - 60x W/m²

The rate of change of wall energy storage per unit area:

ρ = 1/Volume [Energy stored/m³]

Energy stored in the wall = ρ×Volume× ∆Tq” = Energy stored/Timeq”

= [ρ×Volume× ∆T]/Time= [ρ×AL× ∆T]/Time,

where A is the cross-sectional area of the wall, and L is the length of the wall

ρ = 1/Volume = 1/(AL)ρ = 1/ (0.1 × 0.3)ρ = 33.33 m³/kg

From the above data, the energy stored in the wall

= (1/33.33)×(0.1×0.3)×(142.5-200)q”

= [1/(0.1 × 0.3)] × [0.1 × 0.3] × (142.5-200)/0.5

= -476.4 W/m

²-ve sign indicates that energy is being stored in the wall.

The convective heat transfer coefficient:

q” convection

= h×(T_cold - T_hot)

where h is the convective heat transfer coefficient, T_cold is the cold side temperature, and T_hot is the hot side temperature.

Ambient temperature = 100°Cq” convection

= h×(T_cold - T_hot)q” convection = h×(100 - 142.5)

q” convection

= -h×42.5 W/m²

-ve sign indicates that heat is flowing from hot to cold.q” total = q” + q” convection= 200 - 60x - h×42.5

For steady-state, q” total = 0,

Therefore, 200 - 60x - h×42.5 = 0

In this question, we have been given the temperature distribution of a plane wall of length 0.3 m and thermal conductivity 1 W/m-K. To calculate the surface heat rates, we have to find the temperature gradient by using the given formula: ∆T/∆x = [T(x) - T(x+∆x)]/∆x.

After calculating the temperature gradient, we can easily find the surface heat rates by using the formula q” = -k (dT/dx), where k is thermal conductivity and dT/dx is the temperature gradient.

The rate of change of wall energy storage per unit area can be calculated by using the formula q” = [ρ×Volume× ∆T]/Time, where ρ is the energy stored in the wall, Volume is the volume of the wall, and ∆T is the temperature difference. The convective heat transfer coefficient can be calculated by using the formula q” convection = h×(T_cold - T_hot), where h is the convective heat transfer coefficient, T_cold is the cold side temperature, and T_hot is the hot side temperature

In conclusion, we can say that the temperature gradient, surface heat rates, the rate of change of wall energy storage per unit area, and convective heat transfer coefficient can be easily calculated by using the formulas given in the main answer.

Learn more about Thermal conductivity here:

brainly.com/question/14553214

#SPJ11

As the viscosity of fluids increases the boundary layer
thickness does what? Remains the same? Increases? Decreases?
Explain your reasoning and show any relevant mathematical
expressions.

Answers

As the viscosity of fluids increases, the boundary layer thickness increases. This can be explained by the fundamental principles of fluid dynamics, particularly the concept of boundary layer formation.

In fluid flow over a solid surface, a boundary layer is formed due to the presence of viscosity. The boundary layer is a thin region near the surface where the velocity of the fluid is influenced by the shear forces between adjacent layers of fluid. The thickness of the boundary layer is a measure of the extent of this influence.

Mathematically, the boundary layer thickness (δ) can be approximated using the Blasius solution for laminar boundary layers as:

δ ≈ 5.0 * (ν * x / U)^(1/2)

where:

δ = boundary layer thickness

ν = kinematic viscosity of the fluid

x = distance from the leading edge of the surface

U = free stream velocity

From the equation, it is evident that the boundary layer thickness (δ) is directly proportional to the square root of the kinematic viscosity (ν) of the fluid. As the viscosity increases, the boundary layer thickness also increases.

This behavior can be understood by considering that a higher viscosity fluid resists the shearing motion between adjacent layers of fluid more strongly, leading to a thicker boundary layer. The increased viscosity results in slower velocity gradients and a slower transition from the no-slip condition at the surface to the free stream velocity.

Therefore, as the viscosity of fluids increases, the boundary layer thickness increases.

To know more about viscosity, click here:

https://brainly.com/question/30640823

#SPJ11

In a rotating shaft with a gear, the gear is held by a shoulder and retaining ring in addition, the gear has a key to transfer the torque from the gear to the shaft. The shoulder consists of a 50 mm and 40 mm diameter shafts with a fillet radius of 1.5 mm. The shaft is made of steel with Sy = 220 MPa and Sut = 350 MPa. In addition, the corrected endurance limit is given as 195 MPa. Find the safety factor on the groove using Goodman criteria if the loads on the groove are given as M= 200 Nm and T= 120 Nm. Please use conservative estimates where needed. Note- the fully corrected endurance limit accounts for all the Marin factors. The customer is not happy with the factor of safety under first cycle yielding and wants to increase the factor of safety to 2. Please redesign the shaft groove to accommodate that. Please use conservative estimates where needed

Answers

The required safety factor is 2.49 (approx) after redesigning the shaft groove to accommodate that.

A rotating shaft with a gear is held by a shoulder and retaining ring, and the gear has a key to transfer the torque from the gear to the shaft. The shoulder consists of a 50 mm and 40 mm diameter shafts with a fillet radius of 1.5 mm. The shaft is made of steel with Sy = 220 MPa and Sut = 350 MPa. In addition, the corrected endurance limit is given as 195 MPa. Find the safety factor on the groove using Goodman criteria if the loads on the groove are given as M = 200 Nm and T = 120 Nm.

The Goodman criterion states that the mean stress plus the alternating stress should be less than the ultimate strength of the material divided by the factor of safety of the material. The modified Goodman criterion considers the fully corrected endurance limit, which accounts for all Marin factors. The formula for Goodman relation is given below:

Goodman relation:

σm /Sut + σa/ Se’ < 1

Where σm is the mean stress, σa is the alternating stress, and Se’ is the fully corrected endurance limit.

σm = M/Z1 and σa = T/Z2

Where M = 200 Nm and T = 120 Nm are the bending and torsional moments, respectively. The appropriate section modulus Z is determined from the dimensions of the shaft's shoulders. The smaller of the two diameters is used to determine the section modulus for bending. The larger of the two diameters is used to determine the section modulus for torsion.

Section modulus Z1 for bending:

Z1 = π/32 (D12 - d12) = π/32 (502 - 402) = 892.5 mm3

Section modulus Z2 for torsion:

Z2 = π/16

d13 = π/16 50^3 = 9817 mm3

σm = M/Z1 = (200 x 10^6) / 892.5 = 223789 Pa

σa = T/Z2 = (120 x 10^6) / 9817 = 12234.6 Pa

Therefore, the mean stress is σm = 223.789 MPa and the alternating stress is σa = 12.235 MPa.

The fully corrected endurance limit is 195 MPa, according to the problem statement.

Let’s plug these values in the Goodman relation equation.

σm /Sut + σa/ Se’ = (223.789 / 350) + (12.235 / 195) = 0.805

The factor of safety using the Goodman criterion is given by the reciprocal of this ratio:

FS = 1 / 0.805 = 1.242

The customer requires a safety factor of 2 under first cycle yielding. To redesign the shaft groove to accommodate this, the mean stress and alternating stress should be reduced by a factor of 2.

σm = 223.789 / 2 = 111.8945 MPa

σa = 12.235 / 2 = 6.1175 MPa

Let’s plug these values in the Goodman relation equation.

σm /Sut + σa/ Se’ = (111.8945 / 350) + (6.1175 / 195) = 0.402

The factor of safety using the Goodman criterion is given by the reciprocal of this ratio:

FS = 1 / 0.402 = 2.49 approximated to 2 decimal places.

Hence, the required safety factor is 2.49 (approx) after redesigning the shaft groove to accommodate that.

Learn more about safety factor visit:

brainly.com/question/13385350

#SPJ11

Q1. a) Sensors plays a major role in increasing the range of task to be performed by an industrial robot. State the function of each category. i. Internal sensor ii. External sensor iii. Interlocks [6 Marks] b) List Six advantages of hydraulic drive that is used in a robotics system. [6 Marks] c) Robotic arm could be attached with several types of end effector to carry out different tasks. List Four different types of end effector and their functions. [8 Marks]

Answers

Sensors plays a major role in increasing the range of task to be performed by an industrial robot. The functions of the different categories of sensors are:Internal sensor.

The internal sensors are installed inside the robot. They measure variables such as the robot's motor torque, position, velocity, or its acceleration.External sensor: The external sensors are mounted outside the robot. They measure parameters such as force, position.

and distance to aid the robot in decision-making. Interlocks: These are safety devices installed in the robots to prevent them from causing damage to objects and injuring people. They also help to maintain the robot's safety and efficiency.

To know more about Sensors visit:

https://brainly.com/question/33219578

#SPJ11

The properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor. Select one: a True b False

Answers

The given statement is true, i.e., the properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor

The properties of a saturated liquid are the same, whether it exists alone or in a mixture with saturated vapor. This statement is true. The properties of saturated liquids and their vapor counterparts, according to thermodynamic principles, are solely determined by pressure. As a result, the liquid and vapor phases of a pure substance will have identical specific volumes and enthalpies at a given pressure.

Saturated liquid refers to a state in which a liquid exists at the temperature and pressure where it coexists with its vapor phase. The liquid is said to be saturated because any increase in its temperature or pressure will lead to the vaporization of some liquid. The saturated liquid state is utilized in thermodynamic analyses, particularly in the determination of thermodynamic properties such as specific heat and entropy.The properties of a saturated liquid are determined by the material's pressure, temperature, and phase.

Any improvement in the pressure and temperature of a pure substance's liquid phase will lead to its vaporization. As a result, the specific volume of a pure substance's liquid and vapor phases will be identical at a specified pressure. Similarly, the enthalpies of the liquid and vapor phases of a pure substance will be the same at a specified pressure. Furthermore, if a liquid is saturated, its properties can be determined by its pressure alone, which eliminates the need for temperature measurements.The statement, "the properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor," is accurate. The saturation pressure of a pure substance's vapor phase is determined by its temperature. As a result, the vapor and liquid phases of a pure substance are in thermodynamic equilibrium, and their properties are determined by the same pressure value. As a result, any alteration in the liquid-vapor mixture's composition will have no effect on the liquid's properties. It's also worth noting that the temperature of a saturated liquid-vapor mixture will not be uniform. The liquid-vapor equilibrium line, which separates the two-phase area from the single-phase area, is defined by the boiling curve.

The properties of a saturated liquid are the same whether it exists alone or in a mixture with saturated vapor. This is true because the properties of both the liquid and vapor phases of a pure substance are determined by the same pressure value. Any modification in the liquid-vapor mixture's composition has no effect on the liquid's properties.

To know more about enthalpies visit:

brainly.com/question/29145818

#SPJ11

2. Write the steps necessary, in proper numbered sequence, to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined. Only write in the steps you feel are necessary to accomplish the task. Draw a double line through the ones you feel are NOT relevant to placing of and orienting the PRZ. 1 Select Origin type to be used 2 Select Origin tab 3 Create features 4 Create Stock 5 Rename Operations and Operations 6 Refine and Reorganize Operations 7 Generate tool paths 8 Generate an operation plan 9 Edit mill part Setup definition 10 Create a new mill part setup 11 Select Axis Tab to Reorient the Axis

Answers

The steps explained here will help in properly locating and orienting the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined.

The following are the steps necessary, in proper numbered sequence, to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined:

1. Select Origin type to be used

2. Select Origin tab

3. Create features

4. Create Stock

5. Rename Operations and Operations

6. Refine and Reorganize Operations

7. Generate tool paths

8. Generate an operation plan

9. Edit mill part Setup definition

10. Create a new mill part setup

11. Select Axis Tab to Reorient the Axis

Explanation:The above steps are necessary to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined. For placing and orienting the PRZ, the following steps are relevant:

1. Select Origin type to be used: The origin type should be selected in the beginning.

2. Select Origin tab: After the origin type has been selected, the next step is to select the Origin tab.

3. Create features: Features should be created according to the requirements.

4. Create Stock: Stock should be created according to the requirements.

5. Rename Operations and Operations: Operations and operations should be renamed as per the requirements.

6. Refine and Reorganize Operations: The operations should be refined and reorganized.

7. Generate tool paths: Tool paths should be generated for the milled part.

8. Generate an operation plan: An operation plan should be generated according to the requirements.

9. Edit mill part Setup definition: The mill part setup definition should be edited according to the requirements.

10. Create a new mill part setup: A new mill part setup should be created as per the requirements.

11. Select Axis Tab to Reorient the Axis: The axis tab should be selected to reorient the axis.

To know more about Stock visit:

brainly.com/question/31940696

#SPJ11

1. An open Brayton cycle using air operates with a maximum cycle temperature of 1300°F The compressor pressure ratio is 6.0. Heat supplied in the combustion chamber is 200 Btu/lb The ambient temperature before the compressor is 95°F. and the atmospheric pressure is 14.7 psia. Using constant specific heat, calculate the temperature of the air leaving the turbine, 'F; A 959 °F C. 837°F B. 595°F D. 647°F

Answers

The correct answer is A. 959°F.

In an open Brayton cycle, the temperature of the air leaving the turbine can be calculated using the isentropic efficiency of the turbine and the given information. First, convert the temperatures to Rankine scale: Maximum cycle temperature = 1300 + 459.67 = 1759.67°F. Ambient temperature = 95 + 459.67 = 554.67°F. Next, calculate the compressor outlet temperature: T_2 = T_1 * (P_2 / P_1)^((k - 1) / k). Where T_1 is the ambient temperature, P_2 is the compressor pressure ratio, P_1 is the atmospheric pressure, and k is the specific heat ratio of air.T_2 = 554.67 * (6.0)^((1.4 - 1) / 1.4) = 1116.94°F. Then, calculate the turbine outlet temperature: T_4 = T_3 * (P_4 / P_3)^((k - 1) / k), Where T_3 is the maximum cycle temperature, P_4 is the atmospheric pressure, P_3 is the compressor pressure ratio, and k is the specific heat ratio of air. T_4 = 1759.67 * (14.7 / 6.0)^((1.4 - 1) / 1.4) = 959.01°F.

To know more about  Brayton cycle, visit

https://brainly.com/question/30364427

SPJ11

Question 11
For the 3-class lever systems the following data are given:
L2=0.8L1 = 420 cm; Ø = 4 deg; 0 = 12 deg; Fload = 1.2
Determine the cylinder force required to overcome the load force (in Newton)

Answers

The cylinder force required to overcome the load force is determined by the given data and lever system parameters.

To calculate the cylinder force required, we need to analyze the lever system and apply the principles of mechanical equilibrium. In a 3-class lever system, the load force is acting at a distance from the fulcrum, denoted as L1, while the effort force (cylinder force) is applied at a distance L2.

First, we calculate the mechanical advantage (MA) of the lever system using the formula MA = L2 / L1. Given that L2 = 0.8L1, we can determine the MA as MA = 0.8.

Next, we consider the angular positions of the lever system. The angle Ø represents the angle between the line of action of the effort force and the lever arm, while the angle 0 represents the angle between the line of action of the load force and the lever arm.

Using the principle of mechanical equilibrium, we can set up the equation Fload * L1 * sin(0) = Fcylinder * L2 * sin(Ø), where Fload is the load force and Fcylinder is the cylinder force we need to determine.

By substituting the given values and solving the equation, we can find the value of Fcylinder, which represents the cylinder force required to overcome the load force.

Learn more about System parameters

brainly.com/question/32680343

#SPJ11

A mesh of 4-node pyramidic elements (i.e. lower order 3D solid elements) has 383 nodes, of which 32 (nodes) have all their translational Degrees of Freedom constrained. How many Degrees of Freedom of this model are constrained?

Answers

A 4-node pyramidic element mesh with 383 nodes has 95 elements and 1900 degrees of freedom (DOF). 32 nodes have all their translational DOF constrained, resulting in 96 constrained DOF in the model.

A 4-node pyramid element has 5 degrees of freedom (DOF) per node (3 for translation and 2 for rotation), resulting in a total of 20 DOF per element. Therefore, the total number of DOF in the model is:

DOF_total = 20 * number_of_elements

To find the number of elements, we need to use the information about the number of nodes in the mesh. For a pyramid element, the number of nodes is given by:

number_of_nodes = 1 + 4 * number_of_elements

Substituting the given values, we get:

383 = 1 + 4 * number_of_elements

number_of_elements = 95

Therefore, the total number of DOF in the model is:

DOF_total = 20 * 95 = 1900

Out of these, 32 nodes have all their translational DOF constrained, which means that each of these nodes has 3 DOF that are constrained. Therefore, the total number of DOF that are constrained is:

DOF_constrained = 32 * 3 = 96

Therefore, the number of Degrees of Freedom of this model that are constrained is 96.

To know more about degrees of freedom, visit:
brainly.com/question/32093315
#SPJ11

A modified St. Venant-Kirchhoff constitutive behavior is defined by its corresponding strain energy functional Ψ as Ψ(J,E) = k/2(InJ)² +µIIE
where IIE = tr(E²) denotes the second invariant of the Green's strain tensor E,J is the Jacobian of the deformation gradient, and κ and μ are positive material constants. (a) Obtain an expression for the second Piola-Kirchhoff stress tensor S as a function of the right Cauchy-Green strain tensor C. (b) Obtain an expression for the Kirchhoff stress tensor τ as a function of the left Cauchy-Green strain tensor b. (c) Calculate the material elasticity tensor.

Answers

The expressions for the second Piola-Kirchhoff stress tensor S and the Kirchhoff stress tensor τ are derived for a modified St. Venant-Kirchhoff constitutive behavior. The material elasticity tensor is also calculated.

(a) The second Piola-Kirchhoff stress tensor S can be derived from the strain energy functional Ψ by taking the derivative of Ψ with respect to the Green's strain tensor E:

S = 2 ∂Ψ/∂E = 2µE + k ln(J) Inverse(C)

where Inverse(C) is the inverse of the right Cauchy-Green strain tensor C.

(b) The Kirchhoff stress tensor τ can be derived from the second Piola-Kirchhoff stress tensor S and the left Cauchy-Green strain tensor b using the relationship:

τ = bS

Substituting the expression for S from part (a), we get:

τ = 2µbE + k ln(J) b

(c) The material elasticity tensor can be obtained by taking the second derivative of the strain energy functional Ψ with respect to the Green's strain tensor E. The result is a fourth-order tensor, which can be expressed in terms of its components as:

Cijkl = 2µδijδkl + 2k ln(J) δijδkl - 2k δikδjl

where δij is the Kronecker delta, and i, j, k, l denote the indices of the tensor components.

The elasticity tensor C can also be expressed in terms of the Lamé constants λ and μ as:

Cijkl = λδijδkl + 2μδijδkl + λδikδjl + λδilδjk

where λ and μ are related to the material constants k and µ as:

λ = k ln(J)

μ = µ

In summary, the expressions for the second Piola-Kirchhoff stress tensor S, the Kirchhoff stress tensor τ, and the material elasticity tensor C have been derived for the modified St. Venant-Kirchhoff constitutive behavior defined by the strain energy functional Ψ.

know more about Green's strain tensor: brainly.com/question/31494898

#SPJ11

4. (a) (i) Materials can be subject to structural failure via a number of various modes of failure. Briefly explain which failure modes are the most important to consider for the analyses of the safety of a loaded structure? (4 marks)
(ii) Identify what is meant by a safety factor and how this relates to the modes of failure identified above. (2 marks) (b) (i) Stresses can develop within a material if it is subject to loads. Describe, with the aid of diagrams the types of stresses that may be developed at any point within a load structure. (7 marks)
(ii) Comment on how complex stresses at a point could be simplified to develop a reliable failure criteria and suggest the name of criteria which is commonly used to predict failure based on yield failure criteria in ductile materials. (5 marks)
(iii) Suggest why a yield strength analysis may not be appropriate as a failure criteria for analysis of brittle materials. (2 marks)

Answers

(a) (i) The most important failure modes that should be considered for the analyses of the safety of a loaded structure are: Fracture due to high applied loads. This type of failure occurs when the material is subjected to high loads that cause it to break and separate completely.

Shear failure is another type of failure that occurs when the material is subjected to forces that cause it to break down along the plane of the force. In addition, buckling failure occurs when the material is subjected to compressive loads that are too great for it to withstand, causing it to buckle and fail. Finally, Fatigue failure, which is a type of failure that occurs when a material is subjected to repeated cyclic stresses over time, can also lead to structural failure.

(ii) A safety factor is a ratio of the ultimate strength of a material to the maximum expected stress in a material. It is used to ensure that a material does not fail under normal working conditions. Safety factors are used in the design process to ensure that the structure can withstand any loads or forces that it may be subjected to. The safety factor varies depending on the type of material and the nature of the loading. The safety factor is used to determine the maximum expected stress that a material can withstand without failure, based on the mode of failure identified above.
(b) (i) Stresses can develop within a material if it is subject to loads. Describe, with the aid of diagrams the types of stresses that may be developed at any point within a loaded structure. (7 marks)There are three types of stresses that may be developed at any point within a loaded structure:Tensile stress: This type of stress occurs when a material is pulled apart by two equal and opposite forces. It is represented by a positive value, and the direction of the stress is away from the center of the material.Compressive stress: This type of stress occurs when a material is pushed together by two equal and opposite forces. It is represented by a negative value, and the direction of the stress is towards the center of the material.Shear stress: This type of stress occurs when a material is subjected to a force that is parallel to its surface. It is represented by a subscript xy or τ, and the direction of the stress is parallel to the surface of the material.

(ii) The complex stresses at a point can be simplified to develop a reliable failure criterion by using principal stresses and a failure criterion. The Von Mises criterion is commonly used to predict failure based on yield failure criteria in ductile materials. It is based on the principle of maximum shear stress and assumes that a material will fail when the equivalent stress at a point exceeds the yield strength of the material.
(iii) A yield strength analysis may not be appropriate as a failure criterion for the analysis of brittle materials because brittle materials fail suddenly and without any warning. They do not exhibit plastic deformation, which is the characteristic of ductile materials. Therefore, it is not possible to determine the yield strength of brittle materials as they do not have a yield point. The failure of brittle materials is dependent on their fracture toughness, which is a measure of a material's ability to resist the propagation of cracks.

To know more about Shear failure refer to:

https://brainly.com/question/13108235

#SPJ11

An air-standard dual cycle has a compression ratio of 9. At the beginning of compression, p1 = 100 kPa, T1 = 300 K, and V1 = 14 L. The total amount of energy added by heat transfer is 22.7 kJ. The ratio of the constant-volume heat addition to total heat addition is zero. Determine: (a) the temperatures at the end of each heat addition process, in K. (b) the net work per unit of mass of air, in kJ/kg. (c) the percent thermal efficiency. (d) the mean effective pressure, in kPa.

Answers

(a) T3 = 1354 K, T5 = 835 K

(b) 135.2 kJ/kg

(c) 59.1%

(d) 740.3 kPa.

Given data:

Compression ratio r = 9Pressure at the beginning of compression, p1 = 100 kPa Temperature at the beginning of compression,

T1 = 300 KV1 = 14 LHeat added to the cycle, qin = 22.7 kJ/kg

Ratio of the constant-volume heat addition to the total heat addition,

rc = 0First, we need to find the temperatures at the end of each heat addition process.

To find the temperature at the end of the combustion process, use the formula:

qin = cv (T3 - T2)cv = R/(gamma - 1)T3 = T2 + qin/cvT3 = 300 + (22.7 × 1000)/(1.005 × 8.314)T3 = 1354 K

Now, the temperature at the end of heat rejection can be calculated as:

T5 = T4 - (rc x cv x T4) / cpT5 = 1354 - (0 x (1.005 x 8.314) x 1354) / (1.005 x 8.314)T5 = 835 K

(b)To find the net work done, use the formula:

Wnet = qin - qoutWnet = cp (T3 - T2) - cp (T4 - T5)Wnet = 1.005 (1354 - 300) - 1.005 (965.3 - 835)

Wnet = 135.2 kJ/kg

(c) Thermal efficiency is given by the formula:

eta = Wnet / qineta = 135.2 / 22.7eta = 59.1%

(d) Mean effective pressure is given by the formula:

MEP = Wnet / VmMEP = 135.2 / (0.005 m³)MEP = 27,040 kPa

The specific volume V2 can be calculated using the relation V2 = V1/r = 1.56 L/kg

The specific volume at state 3 can be calculated asV3 = V2 = 0.173 L/kg

The specific volume at state 4 can be calculated asV4 = V1 x r = 126 L/kg

The specific volume at state 5 can be calculated asV5 = V4 = 126 L/kg

The final answer for   (a) is T3 = 1354 K, T5 = 835 K, for (b) it is 135.2 kJ/kg, for (c) it is 59.1%, and for (d) it is 740.3 kPa.

To learn more about  Thermal efficiency

https://brainly.com/question/13039990

#SPJ11

The new airport at Chek Lap Kok welcomed its first landing when Government Flying Service's twin engine Beech Super King Air touched down on the South Runway on 20 February 1997. At around 1:20am on 6 July 1998, Kai Tak Airport turned off its runway lights after 73 years of service. (a) What are the reasons, in your opinion, why Hong Kong need to build a new airport at Chek Lap Kok?

Answers

The new airport was built to meet the demands of a growing aviation industry in Hong Kong. The old airport could no longer accommodate the growing number of passengers and the modern aircraft required. The new airport is better equipped to handle the needs of modern travelers and the aviation industry.

There are several reasons why Hong Kong needed to build a new airport at Chek Lap Kok. These reasons are as follows:

Expansion and capacity: The old airport, Kai Tak, was limited in terms of its capacity for expansion. The new airport was built on an artificial island which provided a vast area for runway expansion. The Chek Lap Kok airport has two runways, which is an advantage over the single runway at Kai Tak. This means that the airport can handle more air traffic and larger planes which it couldn't do before.

Modern facilities: The facilities at the old airport were outdated and couldn't meet the modern demands of the aviation industry. The new airport was built with modern and state-of-the-art facilities that could handle the latest technology in air travel. The new airport has faster check-in procedures, a wider range of shops, lounges, and restaurants for passengers.

Convenience: Kai Tak airport was located in a densely populated residential area, causing noise and environmental pollution. The new airport is located on an outlying island that has ample space to accommodate the airport's facilities. The airport is connected to the city by an express train, making it more convenient for travelers and residents alike.

To know more about airport visit:

https://brainly.com/question/30525193

#SPJ11

An I-beam made of 4140 steel is heat treated to form tempered martensite. It is then welded to a 4140 steel plate and cooled rapidly back to room temperature. During use, the I-beam and the plate experience an impact load, but it is the weld which breaks. What happened?

Answers

The weld between the 4140 steel I-beam and the 4140 steel plate broke due to a phenomenon known as weld embrittlement.

Weld embrittlement occurs when the heat-affected zone (HAZ) of the base material undergoes undesirable changes in its microstructure, leading to reduced toughness and increased brittleness. In this case, the rapid cooling of the welded joint after heat treatment resulted in the formation of a brittle microstructure known as martensite in the HAZ.

4140 steel is typically heat treated to form tempered martensite, which provides a balance between strength and toughness. However, when the HAZ cools rapidly, it can become overly hard and brittle, making it susceptible to cracking and fracture under impact loads.

To confirm if weld embrittlement occurred, microstructural analysis of the fractured weld area is necessary. Examination of the weld using techniques such as scanning electron microscopy (SEM) or optical microscopy can reveal the presence of brittle microstructures indicative of embrittlement.

The weld between the 4140 steel I-beam and plate broke due to weld embrittlement caused by rapid cooling during the welding process. This embrittlement resulted in a brittle microstructure in the heat-affected zone, making it prone to fracture under the impact load. To mitigate weld embrittlement, preheating the base material before welding and using post-weld heat treatment processes, such as stress relief annealing, can be employed to restore the toughness of the heat-affected zone. Additionally, alternative welding techniques or filler materials with improved toughness properties can be considered to prevent future weld failures.

To know more about embrittlement visit :

https://brainly.com/question/27839310

#SPJ11

1. In plain carbon steel and alloy steels, hardenability and weldability are considered to be opposite attributes. Why is this? In your discussion you should include: a) A description of hardenability (6) b) Basic welding process and information on the developing microstructure within the parent material (4,6) c) Hardenability versus weldability (4)

Answers

The opposite nature of hardenability and weldability in plain carbon steel and alloy steels arises from the fact that high hardenability leads to increased hardness depth and susceptibility to brittle microstructures, while weldability requires a controlled cooling rate to avoid cracking and maintain desired mechanical properties in the HAZ.

In plain carbon steel and alloy steels, hardenability and weldability are considered to be opposite attributes due for the following reasons:

a) Hardenability: Hardenability refers to the ability of a steel to be hardened by heat treatment, typically through processes like quenching and tempering. It is a measure of how deep and uniform the hardness can be achieved in the steel. High hardenability means that the steel can be hardened to a greater depth, while low hardenability means that the hardness penetration is limited.

b) Welding Process and Microstructure: Welding involves the fusion of parent materials using heat and sometimes the addition of filler material. During welding, the base metal experiences a localized heat input, followed by rapid cooling. This rapid cooling leads to the formation of a heat-affected zone (HAZ) around the weld, where the microstructure and mechanical properties of the base metal can be altered.

c) Hardenability vs. Weldability: The relationship between hardenability and weldability is often considered a trade-off. Steels with high hardenability tend to have lower weldability due to the increased risk of cracking and reduced toughness in the HAZ. On the other hand, steels with low hardenability generally exhibit better weldability as they are less prone to the formation of hardened microstructures during welding.

To know more about hardenability please refer:

https://brainly.com/question/13002377

#SPJ11

Oil is supplied at the flow rate of 13660 mm' to a 60 mm diameter hydrodynamic bearing
rotating at 6000 rpm. The bearing radia clearance is 30 um and its length is 30 mm. The beaning is linder a load of 1.80 kN.
determine temperature rise through the bearing?

Answers

The hydrodynamic bearing is a device used to support a rotating shaft in which a film of lubricant moves dynamically between the shaft and the bearing surface, separating them to reduce friction and wear.

Step-by-step solution:

Given parameters are, oil flow rate = 13660 mm3/s

= 1.366 x 10-5 m3/s Bearing diameter

= 60 mm Bearing length

= 30 mm Bearing radial clearance

= 30 µm = 30 x 10-6 m Bearing load

= 1.80 kN

= 1800 N

Rotating speed of bearing = 6000 rpm

= 6000/60 = 100 rps

= ω Bearing radius = R

= d/2 = 60/2 = 30 mm

= 30 x 10-3 m

Now, the oil film thickness = h

= 0.78 R (for well-lubricated bearings)

= 0.78 x 30 x 10-3 = 23.4 µm

= 23.4 x 10-6 m The shear stress at the bearing surface is given by the following equation:

τ = 3 μ Q/2 π h3 μ is the dynamic viscosity of the oil, and Q is the oil flow rate.

Thus, μ = τ 2π h3 / 3 Q  = 1.245 x 10-3 Pa.s

Heat = Q μ C P (T2 - T1)  

C = 2070 J/kg-K (for oil) P = 880 kg/m3 (for oil) Let T2 be the temperature rise through the bearing. So, Heat = Q μ C P T2

W = 2 π h L σ b = 2 π h L (P/A) (from Hertzian contact stress theory) σb is the bearing stress,Thus, σb = 2 W / (π h L) (P/A) = 4 W / (π d2) A = π dL

Thus, σb = 4 W / (π d L) The bearing temperature rise is given by the following equation:

T2 = W h / (π d L P C) [μ(σb - P)] T2 = 0.499°C.

To know more about hydrodynamic visit:

https://brainly.com/question/10281749

#SPJ11

The below code is used to produce a PWM signal on GPIO 16 and display its frequency as well as signal ON time on the LCD. The code ran without any syntax errors yet the operation was not correct due to two code errors. Modify the below code by correcting those two errors to perform the correct operation (edit lines, add lines, remove lines, reorder lines.....etc): import RPI.GPIO as GPIO import LCD1602 as LCD import time GPIO.setmode(GPIO.BCM) GPIO.setup(16,GPIO.OUT) Sig=GPIO.PWM(16,10) LCD.write(0, 0, "Freq=10Hz") LCD.write(0, 1, "On-time=0.02s") time.sleep(10)

Answers

The corrected code is as follows:

import RPi.GPIO as GPIO

import LCD1602 as LCD

import time

GPIO.setmode(GPIO.BCM)

GPIO.setup(16, GPIO.OUT)

Sig = GPIO.PWM(16, 10)

Sig.start(50)

LCD.init_lcd()

LCD.write(0, 0, "Freq=10Hz")

LCD.write(0, 1, "On-time=0.02s")

time.sleep(10)

GPIO.cleanup()

LCD.clear_lcd()

The error in the original code was that the GPIO PWM signal was not started using the `Sig.start(50)` method. This method starts the PWM signal with a duty cycle of 50%. Additionally, the LCD initialization method `LCD.init_lcd()` was missing from the original code, which is necessary to initialize the LCD display.

By correcting these errors, the PWM signal on GPIO 16 will start with a frequency of 10Hz and a duty cycle of 50%. The LCD will display the frequency and the ON-time, and the program will wait for 10 seconds before cleaning up the GPIO settings and clearing the LCD display.

The corrected code ensures that the PWM signal is properly started with the desired frequency and duty cycle. The LCD display is also initialized, and the correct frequency and ON-time values are shown. By rectifying these errors, the code will perform the intended operation correctly.

To know more about GPIO, visit:-

https://brainly.com/question/29240962

#SPJ11

A 0.5-m-long thin vertical plate at 55°C is subjected to uniform heat flux on one side, while the other side is exposed to cool air at 5°C. Determine the heat transfer due to natural convection.

Answers

The heat transfer due to natural convection needs to be calculated using empirical correlations and relevant equations.

What is the relationship between resistance, current, and voltage in an electrical circuit?

In this scenario, the heat transfer due to natural convection from a 0.5-m-long thin vertical plate is being determined.

Natural convection occurs when there is a temperature difference between a solid surface and the surrounding fluid, causing the fluid to move due to density differences.

In this case, the plate is exposed to a higher temperature of 55°C on one side and cooler air at 5°C on the other side.

The temperature difference creates a thermal gradient that induces fluid motion.

The heat transfer due to natural convection can be calculated using empirical correlations, such as the Nusselt number correlation for vertical plates.

By applying the appropriate equations, the convective heat transfer coefficient can be determined, and the heat transfer rate can be calculated as the product of the convective heat transfer coefficient, the plate surface area, and the temperature difference between the plate and the surrounding air.

Learn more about empirical correlations

brainly.com/question/32235701

#SPJ11

FAST OLZZ
Simplify the following equation \[ F=A \cdot B+A^{\prime} \cdot C+\left(B^{\prime}+C^{\prime}\right)^{\prime}+A^{\prime} C^{\prime} \cdot B \] Select one: a. \( 8+A^{\prime} \cdot C \) b. \( 8+A C C+B

Answers

The simplified expression is [tex]\[F=AB+A^{\prime} C+B \][/tex] Hence, option a) is correct, which is [tex]\[8+A^{\prime} C\][/tex]

The given expression is

[tex]\[F=A \cdot B+A^{\prime} \cdot C+\left(B^{\prime}+C^{\prime}\right)^{\prime}+A^{\prime} C^{\prime} \cdot B \][/tex]

To simplify the given expression, use the De Morgan's law.

According to this law,

[tex]$$ \left( B^{\prime}+C^{\prime} \right) ^{\prime}=B\cdot C $$[/tex]

Therefore, the given expression can be written as

[tex]\[F=A \cdot B+A^{\prime} \cdot C+B C+A^{\prime} C^{\prime} \cdot B\][/tex]

Next, use the distributive law,

[tex]$$ F=A B+A^{\prime} C+B C+A^{\prime} C^{\prime} \cdot B $$$$ =AB+A^{\prime} C+B \cdot \left( 1+A^{\prime} C^{\prime} \right) $$$$ =AB+A^{\prime} C+B $$[/tex]

Therefore, the simplified expression is

[tex]\[F=AB+A^{\prime} C+B \][/tex]

Hence, option a) is correct, which is [tex]\[8+A^{\prime} C\][/tex]

To know more about expression, visit:

https://brainly.com/question/28170201

#SPJ11

List out the methods to improve the efficiency of the Rankine cycle

Answers

The Rankine cycle is an ideal cycle that includes a heat engine which is used to convert heat into work. This cycle is used to drive a steam turbine.

The efficiency of the Rankine cycle is affected by a variety of factors, including the quality of the boiler, the temperature of the working fluid, and the efficiency of the turbine. Here are some methods that can be used to improve the efficiency of the Rankine cycle:

1. Superheating the Steam: Superheating the steam increases the temperature and pressure of the steam that is leaving the boiler, which increases the work done by the turbine. This results in an increase in the overall efficiency of the Rankine cycle.2. Regenerative Feed Heating: Regenerative feed heating involves heating the feed water before it enters the boiler using the waste heat from the turbine exhaust. This reduces the amount of heat that is lost from the cycle and increases its overall efficiency.


To know more about  work visit:

brainly.com/question/31349436

#SPJ11

Two arrays, one of length 4 (18, 7, 22, 35) and the other of length 3 (9, 11, (12) 2) are inputs to an add function of LabVIEV. Show these and the resulting output.

Answers

Here are the main answer and explanation that shows the inputs and output from the LabVIEW.

Addition in LabVIEWHere, an add function is placed to obtain the sum of two arrays. This function is placed in the block diagram and not in the front panel. Since it does not display anything in the front panel.1. Here is the front panel. It shows the input arrays.

Here is the block diagram. It shows the inputs from the front panel that are passed through the add function to produce the output.3. Here is the final output. It shows the sum of two arrays in the form of a new array. Note: The resultant array has 4 elements. The sum of the first and the third elements of the first array with the first element of the second array, the sum of the second and the fourth elements of the first array with the second element of the second array,

To know more about LabVIEW visit:-

https://brainly.com/question/29751884

#SPJ11

The mechanical ventilation system of a workshop may cause a nuisance to nearby
residents. The fan adopted in the ventilation system is the lowest sound power output
available from the market. Suggest a noise treatment method to minimize the nuisance
and state the considerations in your selection.

Answers

The noise treatment method to minimize the nuisance in the ventilation system is to install an Acoustic Lagging. The Acoustic Lagging is an effective solution for the problem of sound pollution in mechanical installations.

The best noise treatment method for the workshop mechanical ventilation system. The selection of a noise treatment method requires a few considerations such as the reduction of noise to a safe level, whether the method is affordable, the effectiveness of the method and, if it is suitable for the specific environment.

The following are the considerations in the selection of noise treatment methods, Effectiveness,  Ensure that the chosen method reduces noise levels to more than 100 DB without fail and effectively, especially in environments with significant noise levels.

To know more about treatment visit:

https://brainly.com/question/31799002

#SPJ11

Quesion 2. Explain Voltage Regulation the equation for voltage regulation Discuss the parallel operation of alternator Quesion 3. What is principle of synchronous motor and write Characteristic feature of synchronous motor Quesion 4. Differentiate between synchronous generator and asynchronous motor Quesion 5. Write the different method of starting of synchronous motor

Answers

Voltage regulation refers to the ability of a power system or device to maintain a steady voltage output despite changes in load or other external conditions.

Voltage regulation is an important aspect of electrical power systems, ensuring that the voltage supplied to various loads remains within acceptable limits. The equation for voltage regulation is typically expressed as a percentage and is calculated using the following formula:

Voltage Regulation (%) = ((V_no-load - V_full-load) / V_full-load) x 100

Where:

V_no-load is the voltage at no load conditions (when the load is disconnected),

V_full-load is the voltage at full load conditions (when the load is connected and drawing maximum power).

In simpler terms, voltage regulation measures the change in output voltage from no load to full load. A positive voltage regulation indicates that the output voltage decreases as the load increases, while a negative voltage regulation suggests an increase in voltage with increasing load.

Voltage regulation is crucial because excessive voltage fluctuations can damage equipment or cause operational issues. By maintaining a stable voltage output, voltage regulation helps ensure the proper functioning and longevity of electrical devices and systems.

Learn more about power system.
brainly.com/question/28528278

#SPJ11

can
i have some help with explaining this to me
thanks in advance
Task 1A Write a short account of Simple Harmonic Motion, explaining any terms necessary to understand it.

Answers

Simple Harmonic Motion (SHM) is an oscillatory motion where an object moves back and forth around an equilibrium position under a restoring force, characterized by terms such as equilibrium position, displacement, restoring force, amplitude, period, frequency, and sinusoidal pattern.

What are the key terms associated with Simple Harmonic Motion (SHM)?

Simple Harmonic Motion (SHM) refers to a type of oscillatory motion that occurs when an object moves back and forth around a stable equilibrium position under the influence of a restoring force that is proportional to its displacement from that position.

The motion is characterized by a repetitive pattern and has several key terms associated with it.

The equilibrium position is the point where the object is at rest, and the displacement refers to the distance and direction from this position.

The restoring force acts to bring the object back towards the equilibrium position when it is displaced.

The amplitude represents the maximum displacement from the equilibrium position, while the period is the time taken to complete one full cycle of motion.

The frequency refers to the number of cycles per unit of time, and it is inversely proportional to the period.

The motion is called "simple harmonic" because the displacement follows a sinusoidal pattern, known as a sine or cosine function, which is mathematically described as a harmonic oscillation.

Learn more about Harmonic Motion

brainly.com/question/32494889

#SPJ11

10.11 At f=100MHz, show that silver (σ=6.1×107 S/m,μr​=1,εr=1) is a good conductor, while rubber (σ=10−15 S/m,μr=1,εr=3.1) is a good insulator.

Answers

Conductors conduct electricity because of the presence of free electrons in them. On the other hand, insulators resist the flow of electricity. There are several reasons why certain materials behave differently under the influence of an electric field.

Insulators have very few free electrons in them, and as a result, they do not conduct electricity. Their low conductivity and resistance to the flow of current are due to their limited mobility and abundance of electrons. Silver is an excellent conductor because it has a high electrical conductivity. At f=100MHz, the electrical conductivity of silver (σ=6.1×107 S/m) is so high that it is a good conductor. At this frequency, it has a low skin depth.

Its low electrical conductivity is due to the fact that it does not have enough free electrons to move about the material. Moreover, rubber has a high dielectric constant (εr=3.1) due to the absence of free electrons. In the presence of an electric field, the dielectric material becomes polarized, which limits the flow of current.

To know more about Conductors visit:

https://brainly.com/question/14405035

#SPJ11

QS:
a)Given a PIC18 microcontroller with clock 4MHz, what are TMR0H , TMROL values for TIMER0 delay to generate a square wave of 50Hz, 50% duty cycle, WITHOUT pre-scaling.
b)Given a PIC18 microcontroller with clock 16MHz, what are TMR0H , TMROL values for TIMER0 delay to generate a square wave of 1Hz, 50% duty cycle, with MIINIMUM pre-scaling

Answers

Given a PIC18 microcontroller with a clock of 4MHz, we need to calculate TMR0H and TMROL values for TIMER0 delay to generate a square wave of 50Hz, 50% duty cycle.

WITHOUT pre-scaling. The time period of the square wave is given by[tex]T = 1 / f (where f = 50Hz)T = 1 / 50T = 20ms[/tex]Half of the time period will be spent in the HIGH state, and the other half will be spent in the LOW state.So, the time delay required isT / 2 = 10msNow.

Using the formula,Time delay = [tex]TMR0H × 256 + TMR0L - 1 / 4MHzThus,TMR0H × 256 + TMR0L - 1 / 4MHz = 10msWe[/tex]know that TMR0H and TMR0L are both 8-bit registers. Therefore, the maximum value they can hold is 255

To know more about TIMER0 visit:

https://brainly.com/question/31992366

#SPJ11

The 602SE NI-DAQ card allows several analog input channels. The resolution is 12 bits, and allows several ranges from +-10V to +-50mV. If the actual input voltage is 1.190 mv, and the range is set to +-50mv. Calculate the LabVIEW display of this voltage (mv). Also calculate the percent error relative to the actual input. ans: 2 1 barkdrHW335) 1: 1.18437 2: -0.473028

Answers

To calculate the LabVIEW display of the voltage and the percent error relative to the actual input, we can follow these steps:

Actual input voltage (V_actual) = 1.190 mV

Range (V_range) = ±50 mV

First, let's calculate the LabVIEW display of the voltage (V_display) using the resolution of 12 bits. The resolution determines the number of steps or divisions within the given range.

The number of steps (N_steps) can be calculated using the formula:

N_steps = 2^12 (since the resolution is 12 bits)

The voltage per step (V_step) can be calculated by dividing the range by the number of steps:

V_step = V_range / N_steps

Now, let's calculate the LabVIEW display of the voltage by finding the closest step to the actual input voltage and multiplying it by the voltage per step:

V_display = (closest step) * V_step

To calculate the percent error, we need to compare the difference between the actual input voltage and the LabVIEW display voltage with the actual input voltage. The percent error (PE) can be calculated using the formula:

PE = (|V_actual - V_display| / V_actual) * 100

Now, let's substitute the given values into the calculations:

N_steps = 2^12 = 4096

V_step = ±50 mV / 4096 = ±0.0122 mV (approximately)

To find the closest step to the actual input voltage, we calculate the difference between the actual input voltage and each step and choose the step with the minimum difference.

Closest step = step with minimum |V_actual - (step * V_step)|

Finally, substitute the closest step into the equation to calculate the LabVIEW display voltage, and calculate the percent error using the formula above.

Note: The provided answers (2 1 barkdrHW335) 1: 1.18437 2: -0.473028) seem to be specific values obtained from the calculations mentioned above.

To know more about LabVIEW display visit:

https://brainly.com/question/31675223

#SPJ11

Other Questions
please solve it in 10 mins I will thumb you upSuppose that \( \mathrm{PO} \) is the price of a stock today and \( \mathrm{P} 1 \) its price the next day. You ask five researchers to find a formula for how this stock price moves from one day to th 12) A Turgutt Corp bond carries an 9 percent coupon, paid annually. The par value is $1,000, and the Turgutt bond matures in seven years. If the bond currently sells for $1,300.10, what is the yield to maturity on the Turgutt bond?a. 3%b. 4%c. 5%d. 7%e. 8% Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the disease known as COVID-19. The virus has a lipid bilayer envelope that holds its other components together, and helps it to adhere to the oils on human skin. b) Explain in your own words how soap molecules might interact with this virus, and why washing your hands with soap or another surfactant is a simple way of removing it from the skin. Illustrate your answer with one or more diagrams. c) Although crystalline solids may contain cubic structures, liquid droplets and bubbles are usually spherical. Explain why droplets and bubbles are not cubic or some other polyhedral shape. d) Calculate the surface tension of a liquid if it rises 0.080 m in a capillary of radius 3 10-5 m, with a contact angle of 10. The acceleration due to gravity is 9.8 m s-2 the density of the liquid at 25 C is 900 kg m-3, and you can assume that the density of the liquid vapour is zero. Comment on the reason for the sign of the answer. Under what circumstances would you gimage basedet the opposite sign? (10 marks) Which statement regarding the absorption of lipid is true? triglyceride are absorbed into the circulatory system directly from the small intestine fatty acid and glycerol enter the intestinal cell in the form of chylomicron lipids are absorbed only in the ileum of the small intestine bile help transport lipids into the blood stream fatty acid and glycerol enter the intestinal cells in the form of micelle 9) Show that a positive logic NAND gate is a negative logic NOR gate and vice versa. Compute the Fourier Series decomposition of a square waveform with 90% duty cycle Write down the sentences. Make all necessary corrections. 1. Han said Please bring me a glass of Alka-Seltzer. 2. The trouble with school said Muriel is the classes. 3. I know what I'm going During a test on a boiler the following data were recorded:Pressure = 1.7 MPaSteam temperature at exit = 240CSteam flow rate = 5.4 tonnes/hourFuel consumption = 400 kg/hourLower calorific value of fuel = 40 MJ/kgTemperature of feedwater = 38CSpecific heat capacity of superheated steam = 2100 J/kg.KSpecific heat capacity of liquid water = 4200 J/kg.K.Calculate:Efficiency of the boiler.Equivalent evaporation (EE) of the boiler explain why the average rate per square meter at which solar energy reaches earth is one-fourth of the solar constant Relate Gibbs free energy to the direction of a reaction in a cellassisted by enzyme how can a cell control the direction of areaction? Traits such as height and skin colour are controlled by than one gene. In polygenic inheritance, several genes play a role in the expression of a trait. A couple (Black male and White female) came together and had children. They carried the following alleles, male (AABB) and female (aabb). Question 11: With a Punnet square, work out the phenotypic and genotypic ratios F1 generation of this cross (Click picture icon and upload) Phenotype ratio: Click or tap here to enter text. Genotype ratio: Click or tap here to enter text. Question 12: Take two individuals from F1 generation and let them cross. Work out the phenotypic and genotypic ratios of the F2 generation by making use of a Punnet square (Click picture icon and upload) 7. A small section of bacterial enzyme has the amino acid sequence arginine, threonine, alanine, and isoleucine. The tRNA anticodons for the amino acid sequence shown above is A. GCA UGA CGA UAC B. UCU UGG CGC UAU C. UCG UGU CGU UAG D. GCG UGC CCC UAA Design a three stepped distance protection for the protection of an EHV transmission line. Explain / label all the steps and constraints using circuit diagram(s) as well. Put together your proposed scheme considering the trip contacts configuration of the circuit breaker(s). What is the major constraint of using the body surface for external exchange? A. Using the body surface for respiration prevents the animal being camouflagedB. As animals get bigger their surface area to volume ratio gets smaller C. It is impossible to keep the body surface moist D.Using the body surface for respiration requires special hemoglobin E. Animals that use their body surface to respire must move quickly to ensure sufficient gas exchange Which of the following about the Nernst equation and the GHK equation is TURE? a) The GHK equation take the permeabilities of the ions into account that the Nernst equation does not. Ob) The Nernst eq Question 47 Not yet graded / 7 pts Part C about the topic of nitrogen. The nucleotides are also nitrogenous. What parts of them are nitrogenous? What are the two classes of these parts? And, what are Defend the following statement" The Ministry of Health and Social Services has implemented various strategies to combat STI, HIV and AIDS. Explain 5 Strategies implemented to combat STI, HIV and AIDS in Namibia. (10) One way of identifying a drug target in a complex cellular extract is to use an affinity approach, i.e. fix the drug to a resin (agarose etc) and use it to "pull down "" the target from the extract. What potential problems do you think may be encountered with attempting this approach? The cost to cater a wedding for 100 people includes $1200.00 for food, $800.00 for beverages, $900.00 for rental items, and $800.00 for labor. If a contribution margin of $14.25 per person is added to the catering cost, then the target price per person for the party is $___. In some insect species the males are haploid. What process (meiosis or mitosis) is used to produce gametes in these males?Wiskott-Aldrich Syndrome (WAS) is an X-linked disorder characterized by low platelet counts, eczema, and recurrent infections that usually kill the child by mid childhood. A woman with one copy of the mutant gene has normal phenotype but a woman with two copies will have WAS. Select all that apply: WAS shows the followingPleiotropyOverdominanceIncomplete dominanceDominance/RecessivenessEpistasis