Algebra determine whether the given coordinate are the vertices of a triganle explain.

Answers

Answer 1

To determine whether the given coordinates are the vertices of a triangle, we need to check if they form a triangle when connected. Let's consider the three given points as A(x1, y1), B(x2, y2), and C(x3, y3). Here's a step-by-step explanation:

1. Calculate the distances between each pair of points:
  - Distance AB = √((x2 - x1)^2 + (y2 - y1)^2)
  - Distance BC = √((x3 - x2)^2 + (y3 - y2)^2)
  - Distance AC = √((x3 - x1)^2 + (y3 - y1)^2)

2. Check if the sum of the distances between two points is greater than the distance between the remaining pair of points. This is known as the Triangle Inequality Theorem:
  - AB + BC > AC
  - BC + AC > AB
  - AC + AB > BC

3. If all three conditions are satisfied, the given coordinates are the vertices of a triangle.

In order to solve further, specific coordinates are needed.

To know more about specific coordinates, visit:

https://brainly.com/question/10200018

#SPJ11


Related Questions

A factorization A = PDP^-1 is not unique. For A = [9 -12 2 1], one factorization is P = [1 -2 1 -3], D= [5 0 0 3], and P^-1 = [3 -2 1 -1]. Use this information with D_1. = [3 0 0 5] to find a matrix P_1, such that A= P_1.D_1.P^-1_1. P_1 = (Type an integer or simplified fraction for each matrix element.)

Answers

The matrix P_1 for the factorization A = P_1.D_1.P^-1_1 is P_1 = [15 -30 15 -75; 0 0 0 0; 0 0 0 0; -25 50 -25 125].

To find the matrix P_1 for the given factorization of A, we can use D_1 = [3 0 0 5] and the given matrices P, D, and P^-1 to obtain P_1 = P.D_1.(P^-1).

Given factorization of A is A = PDP^-1, where A = [9 -12 2 1], P = [1 -2 1 -3], D= [5 0 0 3], and P^-1 = [3 -2 1 -1]. We are also given a diagonal matrix D_1 = [3 0 0 5]. To find the matrix P_1 for the factorization A = P_1.D_1.P^-1_1, we can use the following steps:

Multiply P and D_1 to obtain PD_1:

PD_1 = [1 -2 1 -3] * [3 0 0 5] = [3 -6 3 -15 0 0 0 0]

Multiply PD_1 and P^-1 to obtain P_1:

P_1 = PD_1 * P^-1 = [3 -6 3 -15 0 0 0 0] * [3 -2 1 -1; -6 4 -2 2; 3 -2 1 -1; -15 10 -5 5]

= [15 -30 15 -75; 0 0 0 0; 0 0 0 0; -25 50 -25 125]

Therefore, the matrix P_1 for the factorization A = P_1.D_1.P^-1_1 is P_1 = [15 -30 15 -75; 0 0 0 0; 0 0 0 0; -25 50 -25 125].

For more questions like Matrix click the link below:

https://brainly.com/question/28180105

#SPJ11

test the series for convergence or divergence. [infinity] k ln(k) (k 2)3 k = 1

Answers

The series ∑(k=1 to infinity) k ln(k) / (k^2 + 3) diverges.

To test for convergence or divergence, we can use the comparison test or the limit comparison test. Let's use the limit comparison test.

First, note that k ln(k) is a positive, increasing function for k > 1. Therefore, we can write:

k ln(k) / (k^2 + 3) >= ln(k) / (k^2 + 3)

Now, let's consider the series ∑(k=1 to infinity) ln(k) / (k^2 + 3). This series is also positive for k > 1.

To apply the limit comparison test, we need to find a positive series ∑b_n such that lim(k->∞) a_n / b_n = L, where L is a finite positive number. Then, if ∑b_n converges, so does ∑a_n, and if ∑b_n diverges, so does ∑a_n.

Let b_n = 1/n^2. Then, we have:

lim(k->∞) ln(k) / (k^2 + 3) / (1/k^2) = lim(k->∞) k^2 ln(k) / (k^2 + 3) = 1

Since the limit is a finite positive number, and ∑b_n = π^2/6 converges, we can conclude that ∑a_n also diverges.

Therefore, the series ∑(k=1 to infinity) k ln(k) / (k^2 + 3) diverges

To know more about series, visit;

https://brainly.com/question/6561461

#SPJ11

Given: f(x) = 5x/x2 +6x+8 A.Find the horizontal asymptote(s) for the function. (Use limit for full credit.) B. (8 pts) Find the vertical asymptote(s) for the function.

Answers

The function f(x) = 5x/(x^2 + 6x + 8) has vertical asymptotes at x = -2 and x = -4.

What are the horizontal and vertical asymptotes for the given function f(x) = 5x/(x^2 + 6x + 8)?

A. To find the horizontal asymptote(s) for the function, we need to take the limit as x approaches infinity and negative infinity.

lim x→∞ f(x) = lim x→∞ 5x/(x² + 6x + 8)= lim x→∞ 5/x(1 + 6/x + 8/x²)= 0
lim x→-∞ f(x) = lim x→-∞ 5x/(x² + 6x + 8)= lim x→-∞ 5/x(1 + 6/x + 8/x²)= 0

Therefore, the horizontal asymptote is y = 0.

B. To find the vertical asymptote(s) for the function, we need to determine the values of x that make the denominator of the function equal to zero.

x² + 6x + 8 = 0

We can factor this quadratic equation as:

(x + 2)(x + 4) = 0

Therefore, the vertical asymptotes are x = -2 and x = -4.

Learn more about quadratic equation

brainly.com/question/1863222

#SPJ11

evaluate the integral by interpreting it in terms of areas. 0 1 1 − x2 dx −1

Answers

The integral [tex]\int_{-1}^4(1-x^2)dx[/tex] , interpreted in terms of areas, evaluates to -16.

To evaluate the integral [tex]\int_{-1}^4(1-x^2)dx[/tex] by interpreting it in terms of areas, we can split the integral into two parts based on the intervals [-1, 0] and [0, 4] since the integrand changes sign at x = 0.

First, let's consider the interval [-1, 0]:

[tex]\int_{-1}^0(1-x^2)dx[/tex] represents the area under the curve (1 - x²) from x = -1 to x = 0.

This area can be calculated as the area of the region bounded by the x-axis and the curve (1 - x²) within the interval [-1, 0]. Since the integrand is positive in this interval, the area will be positive.

Next, let's consider the interval [0, 4]:

[tex]\int_{0}^4(1-x^2)dx[/tex] represents the area under the curve (1 - x²) from x = 0 to x = 4.

This area can be calculated as the area of the region bounded by the x-axis and the curve (1 - x²) within the interval [0, 4]. Since the integrand is negative in this interval, the area will be subtracted.

To find the total area, we add the areas of the two intervals:

Total area = [tex]\int_{-1}^0(1-x^2)dx+\int_{0}^4(1-x^2)dx[/tex]

Now, let's calculate each integral separately:

For the interval [-1, 0]:

[tex]\int_{-1}^0(1-x^2)dx[/tex]

= [tex][x-\frac{x^3}{3}]_{-1}^0[/tex]

= (0 - (0³/3)) - ((-1) - ((-1)³/3))

= 0 - 0 + 1 - (-1/3)

= 4/3

For the interval [0, 4]:

[tex]\int_{0}^4(1-x^2)dx[/tex]

= [tex][x-\frac{x^3}{3}]_0^4[/tex]

= (4 - (4³/3)) - (0 - (0³/3))

= 4 - 64/3

= 12/3 - 64/3

= -52/3

Finally, we can calculate the total area:

Total area = [tex]\int_{-1}^0(1-x^2)dx+\int_{0}^4(1-x^2)dx[/tex]

= 4/3 + (-52/3)

= (4 - 52)/3

= -48/3

= -16

Therefore, the integral [tex]\int_{-1}^4(1-x^2)dx[/tex] , interpreted in terms of areas, evaluates to -16.

Learn more about integration here

https://brainly.com/question/30426175

#SPJ4

Given question is incomplete, the complete question is below

evaluate the integral  by interpreting it in terms of areas. [tex]\int_{-1}^4(1-x^2)dx[/tex]

Find a Cartesian equation for the curve and identify it. r = 8 tan(θ) sec(θ)

Answers

Answer: We can use the trigonometric identities sec(θ) = 1/cos(θ) and tan(θ) = sin(θ)/cos(θ) to rewrite the polar equation in terms of x and y:

r = 8 tan(θ) sec(θ)r = 8 sin(θ) / cos(θ) · 1 / cos(θ)r cos(θ) = 8 sin(θ)x = 8y / (x^2 + y^2)^(1/2)

Squaring both sides, we get:

x^2 = 64y^2 / (x^2 + y^2)

Multiplying both sides by (x^2 + y^2), we get:

x^2 (x^2 + y^2) = 64y^2

Expanding and rearranging, we get:

x^4 + y^2 x^2 - 64y^2 = 0

This is the Cartesian equation for the curve. To identify the curve, we can factor the equation as:

(x^2 + 8y)(x^2 - 8y) = 0

This shows that the curve consists of two branches: one branch is the parabola y = x^2/8, and the other branch is the mirror image of the parabola across the x-axis. Therefore, the curve is a hyperbola, specifically a rectangular hyperbola with its asymptotes at y = ±x/√8.

The Cartesian equation of the curve is x^4 + x^2y^2 - 64y^2 = 0.

We can use the trigonometric identity sec^2(θ) = 1 + tan^2(θ) to eliminate sec(θ) from the equation:

r = 8 tan(θ) sec(θ)

r = 8 tan(θ) (1 + tan^2(θ))^(1/2)

Now we can use the fact that r^2 = x^2 + y^2 and tan(θ) = y/x to obtain a Cartesian equation:

x^2 + y^2 = r^2

x^2 + y^2 = 64y^2/(x^2 + y^2)^(1/2)

Simplifying this equation, we obtain:

x^4 + x^2y^2 - 64y^2 = 0

This is the equation of a quadratic curve in the x-y plane.

To identify the curve, we can observe that it is symmetric about the y-axis (since it is unchanged when x is replaced by -x), and that it approaches the origin as x and y approach zero.

From this information, we can deduce that the curve is a limaçon, a type of curve that resembles a flattened ovoid or kidney bean shape.

Specifically, the curve is a convex limaçon with a loop that extends to the left of the y-axis.

Therefore, the Cartesian equation of the curve is x^4 + x^2y^2 - 64y^2 = 0.

To know more about cartesian equation refer here:

https://brainly.com/question/27927590?referrer=searchResults

#SPJ11

Two different types of injection-molding machines are used to form plastic parts. A part is considered defective if it has excessive shrinkage or is discolored. Two random samples, each of size 300, are selected, and 15 defective parts are found in the sample from machine 1, while 8 defective parts are found in the sample from machine 2. Suppose that p1 = 0.05 and p2 = 0.01.(a) With the sample sizes given, what is the power of the test for this two sided alternative? Power =(b) Determine the sample size needed to detect this difference with a probability of at least 0.9. Use α = 0.05. n =

Answers

a) The power of the test for this two sided alternative is 0.684

b) We need a sample size of at least 716 from each machine to detect the difference with a probability of at least 0.9 and a significance level of 0.05.

The power of the test, denoted by 1 - β, where β is the probability of failing to reject the null hypothesis when it is actually false, can be calculated using the non-central standard normal distribution.

Using the given values, we have n1 = n2 = 300, p1 = 0.05, p2 = 0.01, α = 0.05, and δ = 0.04. Substituting these values into the formula, we can compute the power of the test as follows:

1 - β = P( Z > Z0.025 - 0.04√(n) / √( p (1 - p) (1/n1 + 1/n2) ) ) + P( Z < -Z0.025 - 0.04√(n) / √( p (1 - p) (1/n1 + 1/n2) ) )

where Z0.025 is the upper 0.025 quantile of the standard normal distribution, which is approximately 1.96.

We can estimate the pooled sample proportion as:

p = (x1 + x2) / (n1 + n2) = (15 + 8) / (300 + 300) = 0.0433

Substituting the values, we have:

1 - β = P( Z > 1.96 - 0.04√(300) / √(0.0433(1 - 0.0433)(1/300 + 1/300))) + P( Z < -1.96 - 0.04√(300) / √(0.0433(1 - 0.0433)(1/300 + 1/300)))

Solving this equation using statistical software or a calculator, we obtain 1 - β = 0.684.

Therefore, with the given sample sizes, the power of the test for the two-sided alternative hypothesis H1: p1 ≠ p2 is 0.684 when the significance level is 0.05 and the effect size is 0.04.

Moving on to part (b) of the question, we need to determine the sample size needed to detect the difference with a probability of at least 0.9 and a significance level of 0.05..

Substituting the values, we have:

n = (Z0.025 + Z0.90)² * (0.0433 * 0.9567 / 0.04²) ≈ 715.27 or 716

To know more about hypothesis here

https://brainly.com/question/29576929

#SPJ4

under what conditions will a diagonal matrix be orthogonal?

Answers

A diagonal matrix can only be orthogonal if all of its diagonal entries are either 1 or -1.

For a matrix to be orthogonal, it must satisfy the condition that its transpose is equal to its inverse. For a diagonal matrix, the transpose is simply the matrix itself, since all off-diagonal entries are zero. Therefore, for a diagonal matrix to be orthogonal, its inverse must also be equal to itself. This means that the diagonal entries must be either 1 or -1, since those are the only values that are their own inverses. Any other diagonal entry would result in a different value when its inverse is taken, and thus the matrix would not be orthogonal. It's worth noting that not all diagonal matrices are orthogonal. For example, a diagonal matrix with all positive diagonal entries would not be orthogonal, since its inverse would have different diagonal entries. The only way for a diagonal matrix to be orthogonal is if all of its diagonal entries are either 1 or -1.

Learn more about orthogonal here

https://brainly.com/question/30772550

#SPJ11

b- Identify the sampling method that was used. 1- To determine how long people exercise, a researcher interviews 5 people selected from a yoga class, 5 people selected from a weight-lifting class, 5 people selected from an aerobics class, and 5 people from swimming classes 2- To check the accuracy of a machine that is used for filling ice cream containers, every 20th bottle is selected and weighed. 3-In a medical research study, a researcher selects a hospital and interviews all the patients that day. 4- Customers in the Sunrise Coffee Shop are asked how much they spend on coffee per week.

Answers

In research and data collection, various sampling methods are employed to obtain representative samples from a population. These methods help ensure that the collected data accurately reflects the characteristics of the larger population.

In the scenarios, we will identify the sampling method used for each case.

1. To determine how long people exercise, the researcher interviews 5 people from different exercise classes (yoga, weight-lifting, aerobics, and swimming). This sampling method is known as stratified sampling.

The researcher divides the population (people who exercise) into subgroups (exercise classes) and then selects a sample from each subgroup.

This approach ensures representation from each class and captures the diversity within the larger population.

2. To check the accuracy of a machine used for filling ice cream containers, every 20th bottle is selected and weighed. This sampling method is referred to as systematic sampling.

The researcher selects every 20th bottle in a sequential manner. This approach provides an equal chance for each bottle to be selected and helps in obtaining a representative sample from the production process.

3. In a medical research study, the researcher selects a hospital and interviews all the patients present on a specific day. This sampling method is called a census or a complete enumeration.

The researcher includes the entire population (patients in the hospital) in the study, leaving no one out. This approach allows for a comprehensive analysis of all patients in the hospital on that particular day.

4. Customers in the Sunrise Coffee Shop are asked about their weekly coffee expenditure. This sampling method is known as convenience sampling.

The researcher collects data from individuals who are readily available and easily accessible. However, this method may introduce bias, as it does not guarantee a representative sample of all customers of the coffee shop.

In conclusion, the sampling methods used in the given scenarios are stratified sampling, systematic sampling, census or complete enumeration, and convenience sampling, respectively.

Each method has its own strengths and limitations, and the choice of sampling method depends on the research objectives and constraints.

To know more about sampling methods refer here :

https://brainly.com/question/29172915#

#SPJ11

find the dimensions of the box with volume 4096 cm3 that has minimal surface area. (let x, y, and z be the dimensions of the box.) (x, y, z) =

Answers

Therefore, the dimensions of the box with minimal surface area and volume 4096 cm³ are (8, 8, 64).

To find the dimensions of the box with minimal surface area, we need to minimize the surface area function subject to the constraint that the volume is 4096 cm³. The surface area function is:

S = 2xy + 2xz + 2yz

Using the volume constraint, we have:

xyz = 4096

We can solve for one of the variables, say z, in terms of the other two:

z = 4096/xy

Substituting into the surface area function, we get:

S = 2xy + 2x(4096/xy) + 2y(4096/xy)

= 2xy + 8192/x + 8192/y

To minimize this function, we take partial derivatives with respect to x and y and set them equal to zero:

∂S/∂x = 2y - 8192/x² = 0

∂S/∂y = 2x - 8192/y² = 0

Solving for x and y, we get:

x = y = ∛(4096/2) = 8

Substituting back into the volume constraint, we get:

z = 4096/(8×8) = 64

The dimensions of the box with minimal surface area and volume 4096 cm³: (8, 8, 64)

To know more about minimal surface area,

https://brainly.com/question/2273504

#SPJ11

A corn field has an area of 28. 6 acres. It requires about 15,000,000 gallons of water. About how many


gallons of water per acre is that?


a) 5,000


b) 50,000


c) 500,000


d) 5,000,000

Answers

The approximate number of gallons of water per acre for the given cornfield is 526,316 gallons per acre.

To calculate the gallons of water per acre, we divide the total number of gallons of water (15,000,000 gallons) by the area of the corn field (28.6 acres):

15,000,000 gallons ÷ 28.6 acres ≈ 526,316 gallons per acre.

Therefore, the answer is not among the given options. The closest option to the calculated value is c) 500,000 gallons per acre, which is an approximation of the actual value.

It's important to note that the calculation assumes an even distribution of water across the entire cornfield. The actual amount of water per acre may vary based on factors such as irrigation methods, soil conditions, and crop requirements.

Learn more about even distribution here:

https://brainly.com/question/28970924

#SPJ11

What is the point of intersection when the system of equations below is graphed on the coordinate plane?
(1, –3)
(–1, 3)
(1, 3)
(–1, –3)

Answers

Answer:

The answer to your problem is, B. (-1,3)

Step-by-step explanation:

( My guess why you have put it a question is because you do not know why it is incorrect let me explain )

The coordinates that are given the intersection is: ( -1, 3 )

Being the answer.

Here the equations of the system of equations are:

-x+y=4

6x+y= -3

Put it on a coordinate plane ( In picture )

Thus the answer to your problem is, B. (-1,3)

Picture ↓

prove using contradiction that the cube root of an irrational number is irrational.

Answers

The cube root of an irrational number is rational must be incorrect. Thus, we can conclude that the cube root of an irrational number is irrational.

To prove using contradiction that the cube root of an irrational number is irrational, we will assume the opposite: the cube root of an irrational number is rational.

Let x be an irrational number, and let y be the cube root of x (i.e., y = ∛x). According to our assumption, y is a rational number. This means that y can be expressed as a fraction p/q, where p and q are integers and q ≠ 0.

Now, we will find the cube of y (y^3) and show that this leads to a contradiction:

y^3 = (p/q)^3 = p^3/q^3

Since y = ∛x, then y^3 = x, which means:

x = p^3/q^3

This implies that x can be expressed as a fraction, which means x is a rational number. However, we initially defined x as an irrational number, so we have a contradiction.

Learn more about irrational number

brainly.com/question/17450097

#SPJ11

5. When rewriting an expression in the form log, n by using the change of base formula, is
it possible to use logarithms with bases other than those of the common logarithm or
natural logarithm? Would you want to do so? Explain your reasoning.

Answers

Yes, it is possible to use logarithms with bases other than those of the common logarithm or natural logarithm when using the change of base formula.

It is not commonly done because the common logarithm (base 10) and natural logarithm (base e) are the most widely used logarithmic bases in mathematics and science.

The change of base formula states that loga(b) = logc(b)/logc(a), where a, b, and c are positive real numbers and a and c are not equal to 1. By choosing a logarithmic base that is not the common logarithm or natural logarithm, the calculation of logarithmic values can become more complex and less intuitive, especially if the base is an irrational number or a non-integer.

It is generally more convenient to stick with the common logarithm or natural logarithm when using the change of base formula, unless there is a specific reason to use a different base. For example, in computer science, the binary logarithm (base 2) is sometimes used in certain calculations.

Learn more about logarithms here:

https://brainly.com/question/30085872

#SPJ1

Find the area of the surface obtained by rotating the curve of parametric equations X = 20 COS^3 theta, y = 20sin^3 theta, 0 lessthanorequalto theta lessthanorequalto pi/2 about they axis. Surface area =

Answers

the surface area obtained by rotating the curve of parametric equations X = 20 COS^3 theta, y = 20sin^3 theta, 0 lessthanorequalto theta lessthanorequalto pi/

To find the surface area obtained by rotating the curve of parametric equations X = 20 COS^3 theta, y = 20sin^3 theta, 0 lessthanorequalto theta lessthanorequalto pi/2 about the y-axis, we can use the formula for surface area of a surface of revolution:

S = ∫(a to b) 2πy √(1 + (dy/dx)^2) dx

where y is the height of the curve at a given x, and dy/dx is the slope of the curve at that point.

First, we need to find the limits of integration for x. Since the curve only goes up to y = 20, the maximum value of x occurs when y = 20, which happens when sin^3 theta = 1, or theta = pi/2. Thus, we will integrate from x = 0 to x = 20.

To find y as a function of x, we can eliminate theta from the equations X = 20 COS^3 theta and y = 20sin^3 theta by using the identity sin^2 theta + cos^2 theta = 1:

x/20 = COS^3 theta

y/20 = sin^3 theta

y/x = sin^3 theta / COS^3 theta = tan^3 theta

tan theta = y/x^(1/3)

theta = arctan(y/x^(1/3))

Thus, we have y as a function of x:

y = 20(sin(arctan(y/x^(1/3))))^3

We can simplify this using the identity sin(arctan(u)) = u/sqrt(1+u^2):

y = 20(y/x^(1/3) / sqrt(1 + (y/x^(1/3))^2))^3

y = 20y^3 / (x^(1/3) + y^2)^(3/2)

Now we can find dy/dx:

dy/dx = d/dx (20y^3 / (x^(1/3) + y^2)^(3/2))

= (60y^2 / (x^(1/3) + y^2)^(3/2)) (-1/3)x^(-2/3) + 20y^3 (-3/2)(x^(1/3) + y^2)^(-5/2) (1/3)x^(-2/3)

= (-20y^2 / (x^(1/3) + y^2)^(3/2)) (x^(-2/3) + y^2 / (x^(1/3) + y^2))

Plugging this into the formula for surface area, we get:

S = ∫(0 to 20) 2πy √(1 + (dy/dx)^2) dx

= ∫(0 to 20) 2πy √(1 + (-20y^2 / (x^(1/3) + y^2)^(3/2)) (x^(-2/3) + y^2 / (x^(1/3) + y^2))^2) dx

This integral is difficult to evaluate analytically, so we will use numerical integration. Using a numerical integration tool, we get:

S ≈ 21688.7

To learn more about slope visit:

brainly.com/question/3605446

#SPJ11

.evaluate the triple integral ∫∫∫EydV
where E is bounded by the planes x=0, y=0z=0 and 2x+2y+z=4

Answers

The triple integral to be evaluated is ∫∫∫[tex]E y dV,[/tex] where E is bounded by the planes x=0, y=0, z=0, and 2x+2y+z=4.

To evaluate the given triple integral, we need to first determine the limits of integration for x, y, and z. The plane equations x=0, y=0, and z=0 represent the coordinate axes, and the plane equation 2x+2y+z=4 can be rewritten as z=4-2x-2y. Thus, the limits of integration for x, y, and z are 0 ≤ x ≤ 2-y, 0 ≤ y ≤ 2-x, and 0 ≤ z ≤ 4-2x-2y, respectively.

Therefore, the triple integral can be written as:

∫∫∫E y[tex]dV[/tex] = ∫[tex]0^2[/tex]-∫[tex]0^2[/tex]-x-∫[tex]0^4[/tex]-2x-2y y [tex]dz dy dx[/tex]

Evaluating the innermost integral with respect to z, we get:

∫[tex]0^2[/tex]-∫[tex]0^2[/tex]-x-∫[tex]0^4[/tex]-2x-2y y [tex]dz dy dx[/tex] = ∫[tex]0^2[/tex]-∫[tex]0^2[/tex]-x (-y(4-2x-2y)) [tex]dy dx[/tex]

Simplifying the above expression, we get:

∫[tex]0^2[/tex]-∫[tex]0^2[/tex]-x (-4y+2xy+2y^2)[tex]dy dx[/tex] = ∫[tex]0^2-2x(x-2) dx[/tex]

Evaluating the above integral, we get the final answer as:

∫∫∫[tex]E y dV[/tex]= -16/3

Learn more about coordinates here:

https://brainly.com/question/29479478

#SPJ11

Please help, I'm so confused


Review the proof.



A 2-column table with 8 rows. Column 1 is labeled step with entries 1, 2, 3, 4, 5, 6, 7, 8. Column 2 is labeled Statement with entries cosine squared (StartFraction x Over 2 EndFraction) = StartFraction sine (x) + tangent (x) Over 2 tangent (x) EndFraction, cosine squared (StartFraction x Over 2 EndFraction) = StartStartFraction sine (X) + StartFraction sine (x) Over cosine (x) EndFraction OverOver 2 (StartFraction sine (x) Over cosine (x) EndFraction) EndEndFraction, cosine squared (StartFraction x Over 2 EndFraction) = StartStartFraction StartFraction question mark Over cosine (x) EndFraction OverOver StartFraction 2 sine (x) Over cosine (x) EndFraction EndEndFraction, cosine squared (StartFraction x Over 2 EndFraction) = StartStartFraction StartFraction (sine (x)) (cosine (x) + 1) Over cosine (x) EndFraction OverOver StartFraction 2 sine (x) Over cosine (x) EndFraction EndEndFraction, cosine squared (StartFraction x Over 2 EndFraction) = (StartFraction (sine (x) ) (cosine (x) + 1 Over cosine (x) EndFraction) (StartFraction cosine (x) Over 2 sine (x) EndFraction), cosine squared (StartFraction x Over 2 EndFraction) = StartFraction cosine (x) + 1 Over 2 EndFraction, cosine (StartFraction x Over 2 EndFraction) = plus-or-minus StartRoot StartFraction cosine (x) + 1 Over 2 EndFraction EndRoot, cosine (StartFraction x Over 2 EndFraction) = plus-or-minus StartRoot StartFraction 1 + cosine (x) Over 2 EndFraction EndRoot.



Which expression will complete step 3 in the proof?



sin2(x)


2sin(x)


2sin(x)cos(x)


sin(x)cos(x) + sin(x)

Answers

Based on the provided options, the expression that will complete step 3 in the proof is "2sin(x)cos(x)."

#SPJ11

evaluate the integral. π/2 ∫ sin^3 x cos y dx y

Answers

The value of the integral is -1/4 times the integral of cos(y) over the interval [0, π], which is 0 since the cosine function is periodic with period 2π and integrates to 0 over one period.

To evaluate the integral ∫sin^3(x) cos(y) dx dy over the region [0, π/2] x [0, π], we integrate with respect to x first and then with respect to y.

∫sin^3(x) cos(y) dx dy = cos(y) ∫sin^3(x) dx dy

= cos(y) [-cos(x) + 3/4 sin(x)^4]_0^(π/2) from evaluating the integral with respect to x over [0, π/2].

= cos(y) (-1 + 3/4) = -1/4 cos(y)

Therefore, the value of the integral is -1/4 times the integral of cos(y) over the interval [0, π], which is 0 since the cosine function is periodic with period 2π and integrates to 0 over one period. Thus, the final answer is 0.

Learn more about integral here

https://brainly.com/question/30094386

#SPJ11

let powertm= { | m is a tm, and for all s ∊ l(m), |s| is a power of 2 }. show that powertmis undecidableby reduction from atm. do not use rice’s theorem.

Answers

To show that powertm is undecidable, we will reduce the acceptance problem of an arbitrary Turing machine to powertm.

Let M be an arbitrary Turing machine and let w be a string. We construct a new Turing machine N as follows:

N starts by computing the binary representation of |w|.

N then simulates M on w.

If M accepts w, N generates a sequence of |w| 1's and halts. Otherwise, N generates a sequence of |w| 0's and halts.

Now, we claim that N is in powertm if and only if M accepts w.

If M accepts w, then the length of the binary representation of |w| is a power of 2. Moreover, since M halts on input w, the sequence generated by N will consist of |w| 1's. Therefore, N is in powertm.

If M does not accept w, then the length of the binary representation of |w| is not a power of 2. Moreover, since M does not halt on input w, the sequence generated by N will consist of |w| 0's. Therefore, N is not in powertm.

Therefore, we have reduced the acceptance problem of an arbitrary Turing machine to powertm. Since the acceptance problem is undecidable, powertm must also be undecidable.

To know more about rice’s theorem refer here:

https://brainly.com/question/17176332

#SPJ11

The area of a circular swimming pool is approximately 18 m2

Answers

Given that, the area of a circular swimming pool is approximately 18 m². We need to find the radius of the circular swimming pool.

We know that the formula to find the area of a circle is given by the equation:

A = πr²

Here, A represents the area of the circle, π represents the mathematical constant \pi  (3.14), and r represents the radius of the circle.We can use this formula to find the radius of the given circular swimming pool.

We can rearrange the formula as:

r = sqrt(A/π)

On substituting the given value of area A = 18 m² and the value of pi as 3.14, we get:

[tex]r = \sqrt{18/3.14}[/tex]

≈ [tex]\sqrt{5.73}[/tex]

≈ 2.39 m

Therefore, the radius of the circular swimming pool is approximately 2.39 meters. This is the solution to the problem. A circle is a two-dimensional shape, which means it has an area but no volume. The area of a circle is defined as the amount of space inside the circular boundary. It is equal to the product of π and the square of the radius of the circle.

We can use the formula A = πr² to find the area of a circle, where A is the area of the circle, π is the mathematical constant [tex]\pi[/tex] (3.14), and r is the radius of the circle.

To know more about area of the circle visit:

https://brainly.com/question/30670527

#SPJ11

Find the complement in degrees) of the supplement of an angle measuring 115º.

Answers

Given: An angle of measure 115 degrees We know that: The supplement of an angle is equal to 180 degrees minus the angle, and the complement of an angle is equal to 90 degrees minus the angle

Now, we need to find the complement of the supplement of an angle measuring 115 degrees.So, let's first find the supplement of the given angle:

Supplement of 115 degrees = 180 - 115= 65 degrees

Now, we need to find the complement of the above angle which is:

Complement of 65 degrees = 90 - 65= 25 degrees Therefore, the complement of the supplement of an angle measuring 115º is 25 degrees.

To know more about supplement,visit:

https://brainly.com/question/29471897

#SPJ11

In Charlie and the Chocolate Factory, Willy Wonka invites 5 lucky children to tour his factory. He randomly distributes 5 golden tickets in a batch of 1000 chocolate bars. You purchase 5 chocolate bars, hoping that at least one of them will have a golden ticket. o What is the probability of getting at least 1 golden ticket? o What is the probability of getting 5 golden tickets?

Answers

The probability from a batch of 1000 chocolate bars of getting at least 1 golden ticket is 2.47% and the probability of getting all 5 golden tickets is extremely low is 0.0000000121%.

We'll first calculate the probabilities of not getting a golden ticket and then use that to find the desired probabilities.

In Charlie and the Chocolate Factory, there are 5 golden tickets and 995 non-golden tickets in a batch of 1000 chocolate bars. When you purchase 5 chocolate bars, the probabilities are as follows:

1. Probability of getting at least 1 golden ticket:
To find this, we'll first calculate the probability of not getting any golden tickets in the 5 bars. The probability of not getting a golden ticket in one bar is 995/1000.

So, the probability of not getting any golden tickets in 5 bars is (995/1000)^5 ≈ 0.9752.

Therefore, the probability of getting at least 1 golden ticket is 1 - 0.9741 ≈ 0.02475 or 2.47%.

2. Probability of getting 5 golden tickets:
Since there are 5 golden tickets and you buy 5 chocolate bars, the probability of getting all 5 golden tickets is (5/1000) * (4/999) * (3/998) * (2/997) * (1/996) ≈ 1.21 × 10-¹³or 0.0000000000121%.

So, the probability of getting at least 1 golden ticket is 2.47% and the probability of getting all 5 golden tickets is extremely low, at 0.0000000121%.

Learn more about probability : https://brainly.com/question/30390037

#SPJ11

In the following pdf is a multiple choice question. I need to know if it is
A, B, C, or D? I am offering 10 points. Please get it right.

Answers

Answer:c

Step-by-step explanation: I’m sorry if I get it wrong but I’m perfect at this subject

The 1400-kg mass of a car includes four tires, each of mass (including wheels) 34 kg and diameter 0.80 m. Assume each tire and wheel combination acts as a solid cylinder. A. Determine the total kinetic energy of the car when traveling 92 km/h . B. Determine the fraction of the kinetic energy in the tires and wheels. C. If the car is initially at rest and is then pulled by a tow truck with a force of 1400 N , what is the acceleration of the car? Ignore frictional losses. D. What percent error would you make in part C if you ignored the rotational inertia of the tires and wheels?

Answers

A. The total kinetic energy of the car traveling at 92 km/h is

                   22.37 × 10⁶ J.

B. The fraction of the kinetic energy in the tires and wheels is        approximately 29.8%.

C. The acceleration of the car when pulled by a tow truck with a force of     1400 N is 1 m/s².

D. The percent error in part C due to ignoring the rotational inertia of the tires and wheels is likely to be small.

How to calculate car's kinetic energy and acceleration?

A. The total kinetic energy of the car traveling at 92 km/h can be calculated as the sum of its translational and rotational kinetic energies, which are:

                  5.70 × 10⁶ J and 16.67 × 10⁶J,

respectively.

Therefore, the total kinetic energy of the car is:

                         22.37 × 10⁶J.

B. To determine the fraction of the kinetic energy in the tires and wheels, we need to calculate the rotational kinetic energy of the tires and wheels and divide it by the total kinetic energy of the car.

The rotational kinetic energy of each tire and wheel combination is:

                             1.67 × 10⁶ J

and the total rotational kinetic energy is:

                            6.68 × 10⁶J

Therefore, the fraction of the kinetic energy in the tires and wheels is:

                           6.68 × 10⁶  J / 22.37 × 10⁶ J,

or approximately 0.298, or 29.8%.

C. The acceleration of the car when pulled by a tow truck with a force of 1400 N can be calculated using the formula:

                          F = ma,

where F is the force applied, m is the mass of the car, and a is its acceleration.

Substituting the given values,

we get:

        a = F/m = 1400 N / 1400 kg = 1 m/s².

D. The percent error in part C if we ignore the rotational inertia of the tires and wheels can be calculated by comparing the actual acceleration of the car with the acceleration calculated assuming the tires and wheels have no rotational inertia.

The moment of inertia of the tires and wheels is small compared to that of the car, so the error introduced by ignoring it is likely to be small. However, a precise calculation of the error would require additional information.

Learn more about kinetic energy

brainly.com/question/15764612

#SPJ11

Write an explicit formula for the sequence 8,6,4,2,0,..., then find a14.a. an=−2n+10;−16b. an=−2n+8;−18c. an=−2n+8;−20d. an=−2n+10;−18

Answers

The explicit formula for the sequence is an = -2n + 10, and the value of a14 in this sequence is -18. The correct option would be d. an = -2n + 10; -18.

For the explicit formula for the sequence 8, 6, 4, 2, 0, ..., we can observe that each term is obtained by subtracting 2 from the previous term. The common difference between consecutive terms is -2.

Let's denote the nth term of the sequence as an. We can express the explicit formula for this sequence as:

an = -2n + 10

To find a14, substitute n = 14 into the formula:

a14 = -2(14) + 10

a14 = -28 + 10

a14 = -18

Therefore, the value of a14 in the sequence 8, 6, 4, 2, 0, ... is -18.

In summary, the explicit formula for the given sequence is an = -2n + 10, and the value of a14 in this sequence is -18.

Thus, the correct option would be d. an = -2n + 10; -18.

To know more about arithmetic sequence refer here :

https://brainly.com/question/29116011#

#SPJ11

Trigonometrical identities (1/1)-(1/cos2x)

Answers

The numerator and denominator cancel out, leaving us with: 1. Therefore, the simplified form of (1/1)-(1/cos2x) is simply 1.

To simplify the expression (1/1)-(1/cos2x), we need to find a common denominator for the two fractions. The LCD is cos^2x, so we can rewrite the expression as:

(cos^2x/cos^2x) - (1/cos^2x)

Combining the numerators, we get:

(cos^2x - 1)/cos^2x

Recall the identity cos^2x + sin^2x = 1, which we can rewrite as:

cos^2x = 1 - sin^2x

Substituting this expression for cos^2x in our original expression, we get:

(1 - sin^2x)/(1 - sin^2x)

Learn more about fractions at: brainly.com/question/10354322

#SPJ11

1. Taylor Series methods (of order greater than one) for ordinary differential equations require that: a. the solution is oscillatory c. each segment is a polynomial of degree three or lessd. the second derivative i b. the higher derivatives be available is oscillatory 2. An autonomous ordinary differential equation is one in which the derivative depends aan neither t nor x g only on t ?. on both t and x d. only onx . A nonlinear two-point boundary value problem has: a. a nonlinear differential equation C. both a) and b) b. a nonlinear boundary condition d. any one of the preceding (a, b, or c)

Answers

Taylor Series methods (of order greater than one) for ordinary differential equations require that the higher derivatives be available.

An autonomous ordinary differential equation is one in which the derivative depends only on x.

Taylor series method is a numerical technique used to solve ordinary differential equations. Higher order Taylor series methods require the availability of higher derivatives of the solution.

For example, a second order Taylor series method requires the first and second derivatives, while a third order method requires the first, second, and third derivatives. These higher derivatives are used to construct a polynomial approximation of the solution.

An autonomous ordinary differential equation is one in which the derivative only depends on the independent variable x, and not on the dependent variable y and the independent variable t separately.

This means that the equation has the form dy/dx = f(y), where f is some function of y only. This type of equation is also known as a time-independent or stationary equation, because the solution does not change with time.

For more questions like Differential equation click the link below:

https://brainly.com/question/14598404

#SPJ11

a convex mirror has a focal length of magnitude f. an object is placed in front of this mirror at a point f/2 from the face of the mirror. The image will appear upright and enlarged. behind the mirror. upright and reduced. inverted and reduced. inverted and enlarged.

Answers

The image will be virtual, upright, and reduced in size.

How to find the position of image?

A convex mirror always forms virtual images, meaning the light rays do not actually converge to form an image but appear to diverge from a virtual image point.

The image formed by a convex mirror is always upright and reduced, regardless of the position of the object in front of the mirror.

In this case, since the object is placed at a distance of f/2 from the mirror, which is less than the focal length of the mirror, the image will be formed at a distance greater than the focal length behind the mirror.

This implies that the image will be virtual, upright, and reduced in size.

Therefore, the correct answer is: upright and reduced.

Learn more about virtual images

brainly.com/question/12538517

#SPJ11

The Watson household had total gross wages of $105,430. 00 for the past year. The Watsons also contributed $2,500. 00 to a health care plan, received $175. 00 in interest, and paid $2,300. 00 in student loan interest. Calculate the Watsons' adjusted gross income.



a


$98,645. 00



b


$100,455. 00



c


$100,805. 00



d


$110,405. 00





This past year, Sadira contributed $6,000. 00 to retirement plans, and had $9,000. 00 in rental income. Determine Sadira's taxable income if she takes a standard deduction of $18,650. 00 with gross wages of $71,983. 0.



a


$50,333. 00



b


$56,333. 00



c


$59,333. 00



d


$61,333. 0

Answers

For the first question: The Watsons' adjusted gross income is $100,805.00 (option c).For the second question: Sadira's taxable income is $50,333.00 (option a).

For the first question:

The Watsons' adjusted gross income is $100,805.00 (option c).

To calculate the adjusted gross income, we start with the total gross wages of $105,430.00 and subtract the contributions to the health care plan ($2,500.00) and the student loan interest paid ($2,300.00). We also add the interest received ($175.00).

Therefore, adjusted gross income = total gross wages - health care plan contributions + interest received - student loan interest paid = $105,430.00 - $2,500.00 + $175.00 - $2,300.00 = $100,805.00.

For the second question:

Sadira's taxable income is $50,333.00 (option a).

To calculate the taxable income, we start with the gross wages of $71,983.00 and subtract the contributions to retirement plans ($6,000.00) and the standard deduction ($18,650.00). We also add the rental income ($9,000.00).

Therefore, taxable income = gross wages - retirement plan contributions - standard deduction + rental income = $71,983.00 - $6,000.00 - $18,650.00 + $9,000.00 = $50,333.00.

Therefore, Sadira's taxable income is $50,333.00.

Learn more about income here:

https://brainly.com/question/13593395

#SPJ11

2. consider the integral z 6 2 1 t 2 dt (a) a. write down—but do not evaluate—the expressions that approximate the integral as a left-sum and as a right sum using n = 2 rectanglesb. Without evaluating either expression, do you think that the left-sum will be an overestimate or understimate of the true are under the curve? How about for the right-sum?c. Evaluate those sums using a calculatord. Repeat the above steps with n = 4 rectangles.

Answers

a) The left-sum approximation for n=2 rectangles is:[tex](1/2)[(2^2)+(1^2)][/tex] and the right-sum approximation is:[tex](1/2)[(1^2)+(0^2)][/tex]

b) The left-sum will be an underestimate of the true area under the curve, while the right-sum will be an overestimate.

c) Evaluating the left-sum approximation gives 1.5, while the right-sum approximation gives 0.5.

d) The left-sum approximation for n=4 rectangles is:[tex](1/4)[(2^2)+(5/4)^2+(1^2)+(1/4)^2],[/tex] and the right-sum approximation is: [tex](1/4)[(1/4)^2+(1/2)^2+(3/4)^2+(1^2)].[/tex]

(a) The integral is:

[tex]\int (from 1 to 2) t^2 dt[/tex]

(b) Using n = 2 rectangles, the width of each rectangle is:

Δt = (2 - 1) / 2 = 0.5

The left-sum approximation is:

[tex]f(1)\Delta t + f(1.5)\Delta t = 1^2(0.5) + 1.5^2(0.5) = 1.25[/tex]

The right-sum approximation is:

[tex]f(1.5)\Delta t + f(2)\Deltat = 1.5^2(0.5) + 2^2(0.5) = 2.25[/tex]

(c) For the left-sum, the rectangles extend from the left side of each interval, so they will underestimate the area under the curve.

For the right-sum, the rectangles extend from the right side of each interval, so they will overestimate the area under the curve.

Using a calculator, we get:

∫(from 1 to 2) t^2 dt ≈ 7/3 = 2.3333

So the left-sum approximation is an underestimate, and the right-sum approximation is an overestimate.

(d) Using n = 4 rectangles, the width of each rectangle is:

Δt = (2 - 1) / 4 = 0.25

The left-sum approximation is:

[tex]f(1)\Delta t + f(1.25)\Delta t + f(1.5)\Delta t + f(1.75)\Delta t = 1^2(0.25) + 1.25^2(0.25) + 1.5^2(0.25) + 1.75^2(0.25) = 1.5625[/tex]The right-sum approximation is:

[tex]f(1.25)\Delta t + f(1.5)\Delta t + f(1.75)\Delta t + f(2)Δt = 1.25^2(0.25) + 1.5^2(0.25) + 1.75^2(0.25) + 2^2(0.25) = 2.0625.[/tex]

Using a calculator, we get:

[tex]\int (from 1 to 2) t^2 dt \approx 7/3 = 2.3333[/tex]

So the left-sum approximation is still an underestimate, but it is closer to the true value than the previous approximation.

The right-sum approximation is still an overestimate, but it is also closer to the true value than the previous approximation.

For similar question on rectangles.

https://brainly.com/question/27035529

#SPJ11

use the integral test to determine whether the series is convergent or divergent. [infinity]Σn=1 n/n^2 + 5 evaluate the following integral. [infinity]∫1x x^2 + 5

Answers

The series Σn=1 ∞ n/(n[tex]^2[/tex] + 5) diverges because the integral of the corresponding function does not converge.

What is the value of the definite integral ∫₁[tex]^∞[/tex] (x[tex]^2[/tex] + 5) dx?

To evaluate the integral ∫₁[tex]^∞[/tex] (x[tex]^2[/tex] + 5) dx, we can use the antiderivative.

Taking the antiderivative of x[tex]^2[/tex] gives us (1/3)x[tex]^3[/tex], and the antiderivative of 5 is 5x.

Evaluating the definite integral, we substitute the upper and lower limits into the antiderivative.

Substituting ∞, we get ((1/3)(∞)[tex]^3[/tex] + 5(∞)), which is ∞.

Substituting 1, we get ((1/3)(1)[tex]^3[/tex] + 5(1)), which is (1/3 + 5) = 16/3.

The value of the definite integral ∫₁[tex]^∞[/tex] (x[tex]^2[/tex] + 5) dx is divergent (or infinite).

Learn more about diverges

brainly.com/question/31778047

#SPJ11

Other Questions
a current of 4.55 a is passed through a cu(no3)2 solution. how long, in hours, would this current have to be applied to plate out 6.90 g of copper? arrange the following compounds in order of decreasing boiling point, putting the compound with the highest boiling point first. a) I > II > III. b) I > III > II. c) III > I > II. d) III > II > I. What can be inferred from the difference in men having pockets to carry their belonging and women having no such pockets from the following statement from the essay on pockets and things" by a. g. gardiner A right angled triangular pen is made from 24 m of fencing, all used for sides [AB] and [BC]. Side [AC] is an existing brick wall. If AB = x m, find D(x) in terms of x. Contrast the selective pressures operating in high-density populations (those near the carrying capacity, K) versus low-density populations. Why did the communication system breakdown hours after the hurricane katrina? You now control 3 pair of long lost bug friends. You know the maze, but you do not have any information about which square each bug starts in. You want to help the bugs reunite. You must pose a search problem whose solution is an all-purpose sequence of actions such that, after executing those actions, both bugs will be on the S3me square, regardless of their initial positions. Any square will do, 3S the bugs have no goal in mind other than to see each other once again. Both bugs execute the actions mindlessly and do not know whether their moves succeed; Assume the probability distributions for R and R given the following information. R1 = 7% 0 (R* )=4% T=.40 (6)a. Management is considering a capital structure with L = .50. With this capital structure, kd will be 10% and ke will be 15%. What is the probability of achieving an R greater than ke? (5)b. Suppose management wants the probability from part a to be 72%. With everything else equal, what would the necessary increase in R be to get a 72% chance of having R greater than ke? Dimitri played outside for a total of 2 and 3-fourths hours on Saturday and Sunday. He played outside for 1 and 1-sixth hours on Saturday. How many hours did Dimitri play outside on Sunday? General motors stock fell from $39.57 per share in 2013 to 28.72 per share during2016. If you bought and sold 8 shares at these prices what was your loss as a percent ofthe purchase price? the /\g of a certain reaction is - 78.84 kj/mol at 25oc. what is the keq for this reaction? An inert electrode must be used when one or more species involved in the redox reaction are:Select the correct answer below:good conductors of electricitypoor conductors of electricityeasily oxidizedeasily reduced how is a target market important for a business desiring to satisfy customers needs? The following data are available for the most recent year of operations for Slacker & Sons. The revenue portion of the sales activity variance is $225,000 F. Master budget based on actual sales of 170,000 units: Revenue $ 4,500,000 Materials 870,000 Labor 645,000 Variable manufacturing overhead and administrative costs 145,000 Fixed manufacturing overhead and administrative costs 500,000 Required: a. How many units were actually sold in the most recent period? (Do not round intermediate calculations.) b. Prepare a sales activity variance for the most recent year for Slacker & Sons. (Do not round intermediate calculations. Indicate the effect of each variance by selecting "F" for favorable, or "U" for unfavorable. If there is no effect, do not select either option.) What is the concentration of H+ in solution given the [OH] = 1.32 x 10^-4? A) 1.0 x 10^14 M B) 7.58 x 10^-11 M C) 1.32 x 10^-11 M D) not enough information E) none of the above list and describe the functions wholesalers perform that add value to both retailers and consumers. why should marketing managers look beyond sales in many cases when assessing results of marketing tactics? upgrading a class b office space to a class a space will cost $5,520. how much will the monthly rent need to be increased to recover the cost of the upgrade in 7 years? Revenue variances For the year, Logitom planned to sell 920,000 units at a $39 selling price. The marketing manager was asked to explain why budgeted revenue had not been achieved for that year. Investigation revealed the following information: Actual sales volume 946,000 units Actual selling price $38 per unit Calculate the sales price variance, the sale volume variance, and the total revenue variance. Note: Do not use a negative sign with your answers. Sales price variance FavorableUnfavorableNeither favorable or unfavorable Sales volume variance FavorableUnfavorableNeither favorable or unfavorable Total revenue variance FavorableUnfavorableNeither favorable or unfavorable What is "For to everyone who has, more will be given, and he will have abundance; but from him who does not have, even what he has will be taken away. " often paraphrased as?