Answer:
- 1.19 lb/ft^3
Explanation:
You are given the following information;
Radius r = 20 ft
Speed V = 100 ft/s
You should use Bernoulli equation pertaining to streamline. That is, normal to streamline.
The pressure gradient = dp/dn
Where air density rho = 0.00238 slugs per cubic foot.
Please find the attached files for the solution and diagram.
If the resistance reading on a DMM'S meter face is to 22.5 ohms in the range selector switch is set to R X 100 range, what is the actual measure resistance of the circuit?
Answer:
The answer is 2.25 kΩ
Explanation:
Solution
Given that:
The resistance reading on a DMM'S meter face = 22.5 ohms
The range selector switch = R * 100 range,
We now have to find the actual measure resistance of the circuit which is given below:
The actual measured resistance of the circuit is=R * 100
= 22.5 * 100
=2.25 kΩ
Hence the measured resistance of the circuit is 2.25 kΩ
13- Convert the following numbers to the indicated bases. List all intermediate steps.
a- (36459080)10 to octal
b- (20960032010 to hexadecimal
c- (2423233303003040)s to base
25 36459080/8= 4557385 0/8 209600320/16=13100020 + 0/16 (2423233303003040)5 (36459080)10 =( 18 (209600320)10=( 1)16 (2423233303003040)5=( )125
Answer:
Following are the conversion to this question:
Explanation:
In point (a):
[tex]\to \frac{36459080}{8} = 4557385 + \ \ \ \ \ \ \ \ \ \frac{0}{8}\\\\\to \frac{4557385}{8} = 569673 + \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\\to \frac{569673}{8} = 71209+ \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\\to \frac{71209}{8}=8901+\ \ \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\\to \frac{8901}{8}=1112+ \ \ \ \ \ \ \ \ \ \ \ \ \frac{5}{8}\\\\\to \frac{1112}{8}=139+ \ \ \ \ \ \ \ \ \ \ \frac{0}{8}\\\\\to \frac{139}{8}=17+ \ \ \ \ \ \ \ \ \ \ \frac{3}{8}\\\\\to \frac{17}{8}=2+ \ \ \ \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\[/tex]
[tex]\to \frac{2}{8}=0+ \ \ \ \ \ \ \ \ \ \frac{2}{8}\\\\ \bold{(36459080)_{10}=(213051110)_8}[/tex]
In point (b):
[tex]\to \frac{20960032010}{16} = 13100020+ \ \ \ \ \ \ \ \ \ \frac{0}{16}\\\\\to \frac{13100020}{16} = 818751+ \ \ \ \ \ \ \ \ \ \frac{4}{16}\\\\\to \frac{818751}{16} = 51171+ \ \ \ \ \ \ \ \ \ \frac{15}{16}\\\\\to \frac{51171}{16}=3198+\ \ \ \ \ \ \ \ \ \ \ \frac{3}{16}\\\\\to \frac{3198}{16}=199+ \ \ \ \ \ \ \ \ \ \ \ \ \frac{14}{1}\\\\\to \frac{199}{16}=12+ \ \ \ \ \ \ \ \ \ \ \frac{7}{16}\\\\\to \frac{12}{16}=0+ \ \ \ \ \ \ \ \ \ \ \frac{12}{16}\\\\ \bold{(20960032010)_{10}=(C7E3F40)_{16}}[/tex]
In point (c):
[tex]\to (2423233303003040)_s=(88757078520)_{10}\\\\\to \frac{88757078520}{25}= 3550283140+ \ \ \ \ \ \ \ \ \ \frac{20}{25}\\\\ \to \frac{3550283140}{25}= 142011325+ \ \ \ \ \ \ \ \ \ \frac{15}{25}\\\\\to \frac{142011325}{25}= 5680453+ \ \ \ \ \ \ \ \ \ \frac{0}{25}\\\\\to \frac{5680453}{25}= 227218+ \ \ \ \ \ \ \ \ \ \frac{3}{25}\\\\\to \frac{227218}{25}= 9088+ \ \ \ \ \ \ \ \ \ \frac{18}{25}\\\\\to \frac{9088}{25}= 363+ \ \ \ \ \ \ \ \ \ \frac{13}{25}\\\\[/tex]
[tex]\to \frac{363}{25}= 14+ \ \ \ \ \ \ \ \ \ \frac{13}{25}\\\\\to \frac{14}{25}= 0+ \ \ \ \ \ \ \ \ \ \frac{14}{25}\\\\\bold{(2423233303003040)_s=(EDDI30FK)_{25}}[/tex]
Symbols of Base 25 are as follows:
[tex]0, 1, 2, 3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,I,J,K,L,M,N, \ and \ O[/tex]
A ball bearing has been selected with the bore size specified in the catalog as 35.000 mm to 35.020 mm. Specify appropriate minimum and maximum shaft diameters to provide a locational interference fit.
Answer:
A ball bearing has been selected with the bore size specified in the catalog as 35.000 mm to 35.020 mm. Specify.... ... has been selected with the bore size specified in the catalog as 35.000 mm to 35.020 mm. Specify appropriate minimum and maximum shaft diameters to provide a locational interference fit.
Explanation:
In the fully developed region of flow in a circular pipe, does the velocity profile change in the flow direction?
Answer:
No, the velocity profile does not change in the flow direction.
Explanation:
In a fluid flow in a circular pipe, the boundary layer thickness increases in the direction of flow, until it reaches the center of the pipe, and fill the whole pipe. If the density, and other properties of the fluid does not change either by heating or cooling of the pipe, then the velocity profile downstream becomes fully developed, and constant, and does not change in the direction of flow.
A gold vault has 3 locks with a key for each lock. Key A is owned by the
manager whilst Key B and C are in the custody of the senior bank teller
and the trainee bank teller respectively. In order to open the vault door at
least two people must insert their keys into the assigned locks at the same
time. The trainee bank teller can only open the vault when the bank
manager is present in the opening.
i) Determine the truth table for such a digital locking system (4 marks)
ii) Derive and minimize the SOP expression for the digital locking system
Answer:
i) Truth Table:
A | B | C | O
0 | 0 | 0 | 0
0 | 0 | 1 | 0
0 | 1 | 0 | 0
0 | 1 | 1 | 0 (condition 2 not satisfied)
1 | 0 | 0 | 0
1 | 0 | 1 | 1 (both conditions satisfied)
1 | 1 | 0 | 1 (both conditions satisfied)
1 | 1 | 1 | 1 (both conditions satisfied)
ii) The minimized sum of products (SOP) expression is
O = AC + AB
Explanation:
We have three inputs A, B and C
Let O is the output.
We are given two conditions to open the vault door:
1. At least two people must insert their keys into the assigned locks at the same time.
2. The trainee bank teller (C) can only open the vault when the bank manager (A) is present in the opening.
i) Construct the Truth Table
A | B | C | O
0 | 0 | 0 | 0
0 | 0 | 1 | 0
0 | 1 | 0 | 0
0 | 1 | 1 | 0 (condition 2 not satisfied)
1 | 0 | 0 | 0
1 | 0 | 1 | 1 (both conditions satisfied)
1 | 1 | 0 | 1 (both conditions satisfied)
1 | 1 | 1 | 1 (both conditions satisfied)
ii) SOP Expression using Karnaugh-Map:
A 3 variable Karnaugh-map is attached.
The minimized sum of products (SOP) expression is
O = AC + AB
The orange pair corresponds to "AC" and the purple pair corresponds to "AB"
Bonus:
The above expression may be realized by using two AND gates and one OR gate.
Please refer to the attached logic circuit diagram.
Question 44
What should you do if you encounter a fishing boat while out in your vessel?
A
Make a large wake nearby.
B
Avoid making a large wake.
с
Pass on the side with the fishing lines.
D
Pass by close to the anglers.
Submit Answer
Answer:
The answer is B. Avoid making a large wake.
Explanation:
When passing a fishing boat it is important to maintain a minimal wake due to the dangers a large wake could pose to the fishing boat you are passing, it is part of maintaining safety on the water.
You can not pass on the sides with the fishing lines also, and you are supposed to communicate to the fishing boat before taking the appropriate action.
When checking the resistance of a dual voltage wye motor, there should be ____ resistance readings. 1) twelve 2) six 3) three
Answer:
1) twelve
Explanation:
The dual voltage motors are used in day to day operations. The wye is connected with 9 lead motors. Maximum resistance can be obtained if the resistance are connected in series. To check resistance of dual voltage wye motor there must be twelve resistance readings of 1 ohm each.
At steady state, a refrigerator whose coefficient of performance is 3 removes energy by heat transfer from a freezer compartment at 0 degrees C at the rate of 6000 kJ/hr and discharges energy by heat transfer to the surroundings, which are at 20 degrees C. a) Determine the power input to the refrigerator and compare with the power input required by a reversible refrigeration cycle operating between reservoirs at these two temperatures. b) If electricity costs 8 cents per kW-hr, determine the actual and minimum theoretical operating costs, each in $/day
Answer:
(A)0.122 kW (B) Actual cost = 1.056 $/day, Theoretical cost = 0.234 $/day
Explanation:
Solution
Given that:
The coefficient of performance is =3
Heat transfer = 6000kJ/hr
Temperature = 20°C
Cost of electricity = 8 cents per kW-hr
Now
The next step is to find the power input to the refrigerator and compare with the power input considered by a reversed refrigeration cycle operating between reservoirs at the two temperatures.
Thus
(A)The coefficient of performance is given below:
COP = Heat transfer from freezer/Power input
3 =6000/P
P =6000/3
P= 2000
P = 2000 kJ/hr = 2000/(60*60) kW
= 2000 (3600)kW
= 0.55 kW
Thus
The ideal coefficient of performance = T_low/(T_high - T_low)
= (0+273)/(20-0)
= 13.65
So,
P ideal = 6000/13.65 = 439.6 kJ/hr
= 439.6/(60*60) kW
= 0.122 kW
(B)For the actual cost we have the following:
Actual cost = 0.55 kW* 0.08 $/kW-hr = $ 0.044 per hour
= 0.044*24 $/day
= 1.056 $/day
For the theoretical cost we have the following:
Theoretical cost = 0.122 kW* 0.08 $/kW-hr = $ 0.00976 per hour
= 0.00976*24 $/day
= 0.234 $/day
how does a TV'S screen work
Answer:
A TVS screen works when the pixels are switched on electronically using liquid crystals to rotate polarized light.
Explanation:
For the following peak or rms values of some important sine waves, calculate the corresponding other value:
(a) 117 V rms, a household-power voltage in North America
(b) 33.9 V peak, a somewhat common peak voltage in rectifier circuits
(c) 220 V rms, a household-power voltage in parts of Europe
(d) 220 kV rms, a high-voltage transmission-line voltage in North America
Answer:
A) V_peak ≈ 165 V
B) V_rms ≈ 24 V
C) V_peak ≈ 311 V
D) V_peak ≈ 311 KV
Explanation:
Formula for RMS value is given as;
V_rms = V_peak/√2
Formula for peak value is given as;
V_peak = V_rms x √2
A) At RMS value of 117 V, peak value would be;
V_peak = 117 x √2
V_peak = 165.46 V
V_peak ≈ 165 V
B) At peak value of 33.9 V, RMS value would be;
V_rms = 33.9/√2
V_rms = 23.97 V
V_rms ≈ 24 V
C) At RMS value of 220 V, peak value is;
V_peak = 220 × √2
V_peak = 311.13 V
V_peak ≈ 311 V
D) At RMS value of 220 KV, peak value is;
V_peak = 220 × √2
V_peak = 311.13 KV
V_peak ≈ 311 KV
Suppose a student carrying a flu virus returns to an isolated college campus of 9000 students. Determine a differential equation governing the number of students x(t) who have contracted the flu if the rate at which the disease spreads is proportional to the number of interactions between students with the flu and students who have not yet contracted it. (Usek > 0for the constant of proportionality and x forx(t).)
Answer:
dx/dt = kx(9000-x) where k > 0
Explanation:
Number of students in the campus, n = 9000
Number of students who have contracted the flu = x(t) = x
Number of students who have bot yet contracted the flu = 9000 - x
Number of Interactions between those that have contracted the flu and those that are yet to contract it = x(9000 - x)
The rate of spread of the disease = dx/dt
Note: the rate at which the disease spread is proportional to the number of interactions between those that have contracted the flu and those that have not contracted it.
[tex]\frac{dx}{dt} \alpha [x(9000 -x)]\\[/tex]
Introducing a constant of proportionality, k:
dx/dt = kx(9000-x) where k > 0