Answer:
a. 2.30
b. decreases with increasing velocity.
c. 0.179 kg/s.
Explanation:
Without mincing let's dive straight into the solution to the question above.
[a].
The improvement in cooling rate that can be achieved using the slotted nozzle arrangement in lieu of turbulated air at 10 m/s and 15°C in parallel flow over the plate can be determined by calculating turbulent flow:
The turbulent flow over the plate= 10 × 0.5/ 20.92 × 10⁻6 = 2.39 × 10⁵.
While the turbulent flow correlation = 0.037( 2.39 × 10⁵)^[tex]\frac{4}{5}[/tex] (0.7)^[tex]\frac{1}{3}[/tex] = 659.6.
Array of slot noozle = [10 × (2 × 0.004)]/ 20.92 × 10^-6] = 3824.
where A = 4/56 =0.714.
And Ar = [ 60 + 4 (40/2 × 4) - 2 ]^2 ]-1/2 = 0.1021.
N = 2/3 (0.1021)^3/4 [ 2 × 3824/ ( 0.0714 / 0.1021) + (.1021/0.0714)] (0.700)^0.42 =24.3.
h = 24.3 × 0.030/0.004 = 91.1 W/m^2k.
Therefore; 659.6 × 0.030/0.5 = 39.0 W/m²k.
The turbulent flow = 0.5 × 39.6 × 0.5( 140 -15) = 1237.5 W.
The slot noozle = 91.1 × 0.5 × 0.5 [ 140 -15] = 2846.87W.
The improvement in cooling rate = 2846.87/ 1237.5 = 2.30.
[b].
2.3 [ (2^2/3)/ 2^4/5] = 2.1
Thus, it decreases with increasing velocity
[c].
The air mass rate requirement for the slotted nozzle arrangement = 9 × 0.995 (0.5 × 0.004)10 = 0.179 kg/s.
Where do greywater pipes generally feed into?
-Vent stack
-Water heater
-Waste stack
-Main supply
Answer:
c Waste stack
Explanation:
Leland wants to work in a Production career operating heavy machinery. Which type of education or training should Leland seek?
a bachelor’s degree then a master’s degree
vocational school certificate or master’s degree
on-the-job training or vocational school certificate
associate’s degree then a bachelor’s degree
Answer:
it is indeed C
Explanation:
Answer:
c
Explanation:
A 5-m-long, 4-m-high tank contains 2.5-m-deep water when not in motion and is open to the atmosphere through a vent in the middle. The tank is now accelerated to the right on a level surface at 2 m/s2. Determine the maximum gage pressure in the tank. Mark that point at the interior bottom of the tank. Draw the free surface at this acceleration.
Answer: hello your question lacks the required diagram attached below is the diagram
answer : 29528.1 N/m^2
Explanation:
Given data :
dimensions of tank :
Length = 5-m
Width = 4-m
Depth = 2.5-m
acceleration of tank = 2m/s^2
Determine the maximum gage pressure in the tank
Pa ( pressure at point A ) = s*g*h1
= 10^3 * 9.81 * 3.01
= 29528.1 N/m^2
attached below is the remaining part of the solution