Answer:
Since 1 cm represents 6 km
2 cm will represent 12 km
Hence Adam's house is 12 km away
Answer:
The answer is C. 3
Step-by-step explanation:
If u divide 6 divided by 2 it will get you 3
i also got it right bc i took the quiz.
Let two events A and B be independent. Knowing P(A)=0.8 and P(A+B)=0.93. Calculate the probability P(B).
Answer:
Hello,
P(B)=0.65
Step-by-step explanation:
If P(A+B) means P(A∪B)=0.93 then you may read below.
Let's say x=P(B)
A and B being independent, P(A∩B)=P(A)*P(B)=0.8*x
Since P(A∪B)=P(A)+P(x)-P(A∩B) ,
0.93=0.8+x-0.8*x
0.2*x=0.13
x=0.65
I need help please help me
Answer: 72576m7
Step-by-step explanation:
2m x 8m x 6m x 9m x 7m x 6m x 2m
All together equals my answer 72576m7
Hope this helps!
Which line is parallel to the line 8x + 2y = 12? On a coordinate plane, a line goes through (negative 2, negative 4) and (0, 4). On a coordinate plane, a line goes through (negative 1, 1) and (3, 0). On a coordinate plane, a line goes through (negative 2, 2) and (negative 1, negative 2). On a coordinate plane, a line goes through (negative 3, 2) and (1, 3).
Answer:
C.
On a coordinate plane, a line goes through (negative 2, 2) and (negative 1, negative 2).
The line parallel to the line 8x + 2y = 12 will be a line that goes through (-2, 2) and (-1, -2). The correct option is C.
What is an equation of the line?An equation of the line is defined as a linear equation having a degree of one. The equation of the line contains two variables x and y. And the third parameter is the slope of the line which represents the elevation of the line.
Given that the equation of the line is 8x + 2y =12. First, calculate the slope of the line if the slope of the line is the same as the equation of the given line then the two lines will be parallel.
8x + 2y = 12
2y = -8x + 12
y =-4x + 6
Take points (-2, 2) and (-1, -2) and find the slope of the line.
Slope = ( y₂ - y₁ ) / ( x₂ - x₁ )
Slope = ( -2 - 2 ) / ( -1 + 2 )
Slope = -4
Therefore, the line parallel to the line 8x + 2y = 12 will be a line that goes through (-2, 2) and (-1, -2). The correct option is C.
To know more about an equation of the line follow
brainly.com/question/18831322
#SPJ2
An Uber driver provides service in city A and city B only dropping off passengers and immediately picking up a new one at the same spot. He finds the following Markov dependence. For each trip, if the driver is in city A, the probability that he has to drive passengers to city B is 0.25. If he is in city B, the probability that he has to drive passengers to city A is 0.45. Required:a. What is the 1-step transition matrix? b. Suppose he is in city B, what is the probability he will be in city A after two trips? c. After many trips between the two cities, what is the probability he will be in city B?
Answer:
a. 1-step transition matrix is be expressed as:
[tex]P= \left[\begin{array}{cc}0.75&0.25\\0.45&0.55\\\end{array}\right][/tex]
b. The probability that he will be in City A after two trips given that he is in City B = 0.585
c. After many trips, the probability that he will be in city B = 0.3571
Step-by-step explanation:
Given that:
For each trip, if the driver is in city A, the probability that he has to drive passengers to city B is 0.25
If he is in city B, the probability that he has to drive passengers to city A is 0.45.
The objectives are to calculate the following :
a. What is the 1-step transition matrix?
To determine the 1 -step transition matrix
Let the State ∝ and State β denotes the Uber Driver providing service in City A and City B respectively.
∴ The transition probability from state ∝ to state β is 0.25.
The transition probability from state ∝ to state ∝ is 1- 0.25 = 0.75
The transition probability from state β to state ∝ is 0.45. The transition probability from state β to state β is 1 - 0.45 = 0.55
Hence; 1-step transition matrix is be expressed as:
[tex]P= \left[\begin{array}{cc}0.75&0.25\\0.45&0.55\\\end{array}\right][/tex]
b. Suppose he is in city B, what is the probability he will be in city A after two trips?
Consider [tex]Y_n[/tex] = ∝ or β to represent the Uber driver is in City A or City B respectively.
∴ The probability that he will be in City A after two trips given that he is in City B
=[tex]P(Y_0 = 2, Y_2 = 1 , Y_3 = 1) + P(Y_0 = 2, Y_2 = 2 , Y_3 = 1)[/tex]
= 0.45 × 0.75 + 0.55 × 0.45
= 0.3375 + 0.2475
= 0.585
c. After many trips between the two cities, what is the probability he will be in city B?
Assuming that Ф = [ p q ] to represent the long run proportion of time that Uber driver is in City A or City B respectively.
Then, ФP = Ф , also p+q = 1 , q = 1 - p and p = 1 - q
∴
[tex][ p\ \ \ q ] = \left[\begin{array}{cc}0.75&0.25\\0.45&0.55\\\end{array}\right] [ p\ \ \ q ][/tex]
0.75p + 0.45q = q
-0.25p + 0.45q = 0
since p = 1- q
-0.25(1 - q) + 0.45q = 0
-0.25 + 0.25 q + 0.45q = 0
0.7q = 0.25
q = [tex]\dfrac{0.25} {0.7 }[/tex]
q = 0.3571
After many trips, the probability that he will be in city B = 0.3571
Find the value of x.
Answer:
[tex]x=129[/tex] °
Step-by-step explanation:
A secant is a line that intersects a circle in two places. The secants interior angle theorem states that when two secants intersect a circle inside a circle, the measure of any one of the angles formed is equal to half of the sum of the two intersecting arcs. Therefore, one can apply this theorem here:
[tex]x=\frac{204+54}{2}[/tex]
Simplify,
[tex]x=\frac{204+54}{2}[/tex]
[tex]x=\frac{258}{2}[/tex]
[tex]x=129[/tex]
Answer gets BRAINLIEST If q varies inversely as r, and g = 10 when r = 2.5, find the equation that connects a
and r.
Answer:
D.
Step-by-step explanation:
In direct variations, we would have:
[tex]q=kr[/tex]
Where k is some constant.
Since this is indirect variation, instead of that, we would have:
[tex]q=\frac{k}{r}[/tex]
To determine the equation, find k by putting in the values for q and r:
[tex]10=\frac{k}{2.5}\\k=2.5(10)=25[/tex]
Now plug this back into the variation:
[tex]q=\frac{25}{r}[/tex]
The answer is D.
Evaluate 3x ^ 2 + 3x - 9 , when x = 2
A=-3
B=3
C=9
D=27
Answer:
C. 9
Step-by-step explanation:
Start plugging in the number 2
3(2)^2+3(2)-9
6^2+6-9
12+6-9
18-9
9
I need help solving anyone?
Answer:
A, B
Step-by-step explanation:
Square both sides
5x+1=sqr7 (sqr is square root)
Isolate x
x=sqr7-1/5
Because the square root can also be negative, -sqr7 is also an answer
what percent is equal to 7/25
A father is three times as old as his son. After fifteen years the father will be twice as old as his son's age at that time. Hence the father's present age is
Answer:
Step-by-step explanation:
let present age of father=y
present age of son=x
then y=3x
after 15 years age of father=y+15
and age of son=x+15
∴y+15=2(x+15)
y+15=2x+30
y-2x=30-15
y-2x=15
∴3x-2x=15
x=15
y=3x=15×3=45
father's present age=45 years
Which equation will solve the following word problem? Jared has 13 cases of soda. He has 468 cans of soda. How many cans of soda are in each case? 13(468) = c 468c = 13 468/13 = c 13 = c/468
Answer:
c = 468 / 13
Step-by-step explanation:
If c is the number of cans of soda in each case, we know that the number of cans in 13 cases is 13 * c = 13c, and since the number of cans in 13 cases is 468 and we know that "is" denotes that we need to use the "=" sign, the equation is 13c = 468. To get rid of the 13, we need to divide both sides of the equation by 13 because division is the opposite of multiplication, therefore the answer is c = 468 / 13.
Answer:
468/13 = c
Step-by-step explanation: Further explanation :
[tex]13 \:cases = 468\:cans\\1 \:case\:\:\:\:= c\: cans\\Cross\:Multiply \\\\13x = 468\\\\\frac{13x}{13} = \frac{468}{13} \\\\c = 36\: cans[/tex]
Daniel and Jack together sell 96 tickets to a raffle. Daniel sold 12 more tickets than his friend. How many raffle tickets each friend sell?
Answer:
Daniel sold 54 and Jack sold 42
Step-by-step explanation:
D = number of tickets that Daniel sold
J = number of tickets that Jack sold
D + J = 96
D = 12+ J
Substitute the second equation into the first equation
12 + J + J = 96
Combine like terms
12 + 2J = 96
Subtract 12 from each side
2J = 84
Divide by 2
J = 42
D = J+12
D = 54
Daniel sold 54 and Jack sold 42
Answer:
Jack sold 42 & Daniel sold 54.
Step-by-step explanation:
96 - 12 = 84
84 / 2 = 42
Jack sold 42.
42 + 12 = 54
Daniel sold 54.
42 + 54 = 96
The times to complete an obstacle course is normally distributed with mean 87 seconds and standard deviation 7 seconds. What is the probability that a randomly selected finishing time is greater than 80 seconds? Use the empirical rule
The probability that a randomly selected finishing time is greater than 80 seconds is 0.84.
How to calculate the probability?Mean = 87
Standard deviation = 7
We convert this to standard normal as
P( X < x) = P( Z < x - Mean / SD)
Since, 80 = 87 - 7
80 is one standard deviation below the mean.
Using the empirical rule, about 68% of data falls between 1 standard deviation of the mean. So, 32% is outside the 1 standard deviation of the mean, and 16% is outside to either side.
We have to calculate P( X > 80) = ?
That is probability of all values excluding lower tail of the distribution.
P(X > 80) = 68% + 16%
= 84%
= 0.84
Learn more about probability on:
https://brainly.com/question/25870256
#SPJ1
Please help! Find the equation of the line (graph provided in attached picture) Use exact numbers. y =_ x+_ ( _ represent blanks in the equation)
Answer:
[tex] y = \frac{3}{4}x - 2 [/tex]
Step-by-step explanation:
Equation of a line is given as [tex] y = mx + b [/tex]
Where,
m = slope of the line = [tex] \frac{y_2 - y_1}{x_2 - x_1} [/tex]
b = y-intercept, which is the value at the point where the line intercepts the y-axis. At this point, x = 0.
Let's find m and b to derive the equation for the line.
[tex] m = \frac{y_2 - y_1}{x_2 - x_1} [/tex]
Use the coordinate pair of any two points on the line. Let's use the following,
[tex] (0, -2) = (x_1, y_1) [/tex] => on the line, when x = 0, y = -2
[tex] (4, 1) = (x_2, y_2) [/tex] => on the line, when x = 4, y = 1
Plug in the values and solve for m
[tex] m = \frac{1 - (-2)}{4 - 0} [/tex]
[tex] m = \frac{1 + 2}{4} [/tex]
[tex] m = \frac{3}{4} [/tex]
b = -2 (the line intercepts the y-axis at this point)
Our equation would be =>
[tex] y = mx + b [/tex]
[tex] y = \frac{3}{4}x + (-2) [/tex]
[tex] y = \frac{3}{4}x - 2 [/tex]
Let x represent the number of times a student visits a gym in a one month period. Assume that the probability distribution of X is as follows:
x 0 1 2 3
p(x) 0.37 0.29 0.22 0.12
Find the mean, of this distribution. Report your answer to two decimal places.
Answer:
1.86
Step-by-step explanation:
Given the following :
X : - - - - 0 - - - - 1 - - - - 2 - - - - - 3 - - - - 4
P(x) - 0.37 - - 0.28 - - 0.22 - - 0.22 - - 0.12
The mean of the distribution can be calculated by evaluated by determining the expected value of the distribution given that the data above is a discrete random variable. The mean value can be deduced multiplying each possible outcome by the probability of it's occurrence.
Summation of [P(x) * X] :
(0.37 * 0) + (0.28 * 1) + (0.22 * 2) + (0.22 * 3) + (0.12 * 4)
= 0 + 0.28 + 0.44 + 0.66 + 0.48
= 1.86
Write the equation of the line that contains the point (2,1) and is parallel to the line 4x−2y=3
Answer:
y=2x-3
Step-by-step explanation:
4x-2y=3
-2y=3-4x
2y=4x-3
y=4x/2-3/2
y=2x-1.5 m1=2 (the number near x)
If the searched line is parallel to the line 4x−2y=3, m1=m2= 2
y=m2x+b - the searched line
1=2*2+b
b=-3
y=2x-3
A number is chosen at random from the set of consecutive natural numbers $\{1, 2, 3, \ldots, 24\}$. What is the probability that the number chosen is a factor of $4!$? Express your answer as a common fraction.
Answer:
[tex]Probability = \frac{1}{3}[/tex]
Step-by-step explanation:
Given
[tex]Set:\ \{1, 2, 3, \ldots, 24\}[/tex]
[tex]n(Set) = 24[/tex]
Required
Determine the probability of selecting a factor of 4!
First, we have to calculate 4!
[tex]4! = 4 * 3 * 2 * 1[/tex]
[tex]4! = 24[/tex]
Then, we list set of all factors of 24
[tex]Factors:\ \{1, 2, 3, 4, 6, 8, 12, 24\}[/tex]
[tex]n(Factors) = 8[/tex]
The probability of selecting a factor if 24 is calculated as:
[tex]Probability = \frac{n(Factor)}{n(Set)}[/tex]
Substitute values for n(Set) and n(Factors)
[tex]Probability = \frac{8}{24}[/tex]
Simplify to lowest term
[tex]Probability = \frac{1}{3}[/tex]
need some help with math:)
From eq(1)
[tex]\\ \sf\longmapsto x=3-3y\dots(3)[/tex]
Putting the value in eq(2)
[tex]\\ \sf\longmapsto 3y-2(3-3y)=12[/tex]
[tex]\\ \sf\longmapsto 3y-6-6y=12[/tex]
[tex]\\ \sf\longmapsto -3y-6=12[/tex]
[tex]\\ \sf\longmapsto -3y=12+6[/tex]
[tex]\\ \sf\longmapsto -3y=18[/tex]
[tex]\\ \sf\longmapsto y=\dfrac{18}{-3}[/tex]
[tex]\\ \sf\longmapsto y=-6[/tex]
Putting value in eq(3)
[tex]\\ \sf\longmapsto x=3-3(-6)[/tex]
[tex]\\ \sf\longmapsto x=3+18[/tex]
[tex]\\ \sf\longmapsto x=21[/tex]
x,y=(21,-18)Answer:
x=-3 & y=2
Step-by-step explanation:
x+3y=3----(i)
3y-2x=12----(ii)
Solving eqn--(i)
x+3y=3
or, x=3-3y---(iii)
Substituting the value of x from eqn --(iii) in eqn (ii) ,we get
3y-2x=12
or, 3y-2(3-3y)=12
or, 3y-6+6y=12
or,9y=18
y=18/9=2
Substituting the value of x in eqn--(iii),
x=3-3y=3-3*2=3-6=-3
Drag the ruler over each side of the triangle to find its length. The length of AB is . The length of BC is . ASAP Drag the protractor over each angle to find its measure. The measure of angle C is . The measure of angle B is .
Answer:
Drag the ruler over each side of the triangle to find its length.
The length of AB is
✔ 5
.
The length of BC is
✔ 4
.
Drag the protractor over each angle to find its measure.
The measure of angle C is
✔ 90°
.
The measure of angle B is
✔ 36.9°
.
Step-by-step explanation:
The length of sides AB and BC of the triangle will be 5 units and 4 units. And the measure of angle C and angle B of the triangle will be 90° and 37°.
What is a right-angle triangle?It's a form of a triangle with one 90-degree angle that follows Pythagoras' theorem and can be solved using the trigonometry function.
Drag the ruler over each side of the triangle to find its length.
The length of side AB of the triangle is 5 units.
The length of side BC of the triangle is 4 units.
Drag the protractor over each angle to find its measure.
The measure of angle C of the triangle is 90°.
The measure of angle B of the triangle is 37°.
The length of sides AB and BC of the triangle will be 5 units and 4 units.
And the measure of angle C and angle B of the triangle will be 90° and 37°.
More about the right-angle triangle link is given below.
https://brainly.com/question/3770177
#SPJ2
3,4,6,5,2,9,8,2,3,1 adalah satu set data. Apakah median data tersebut?
Answer:
32 DAT yang tersembunyi do 3 Dan 2 semoga membatu
in the factory 25 men working 26 hour can produce 1300 radios . how manny hours must the same group of men work to produce 450 radios
Answer:
9 hours
Step-by-step explanation:
Since the group of men remains the same, number of hours is proportional to number of radios.
1300/26 = 450/h
h = 26 * 450 / 1300 = 9 hours
1. A tank is 3/5 full of water. After 330 litres of water is drawn out, it becomes 2/7 full. Find the capacity of the tank in litres.
Answer:
1050
Step-by-step explanation:
Let x = full capacity
[tex]\frac{3}{5} x=\frac{2}{7} x+330[/tex]
Move the variable to the left side by subtracting both sides by [tex]\frac{2}{7} x[/tex]
[tex]\frac{3}{5} x-\frac{2}{7}x=\frac{2}{7} x+330 -\frac{2}{7}x[/tex]
[tex]\frac{3}{5} x-\frac{2}{7} x=330[/tex]
Combine the like terms (don't forget about common denominator)
[tex]\frac{21}{35} x-\frac{10}{35} x=330[/tex]
[tex]\frac{11}{35} x=330[/tex]
Multiply both sides by [tex]\frac{35}{11}[/tex] to isolate the x
[tex](\frac{35}{11})\frac{11}{35} x=330(\frac{35}{11})[/tex]
[tex]x = 1050[/tex]
Charlie needs a $275,000 mortgage and he'd like to pay it off in 30 years. He is considering two banks. Bank A: 3.5% with monthly payments of $1234.87 Bank B: 4% with monthly payments of $1312.89 Charlie doesn't think a 0.5% difference is that much. What is the difference between these two bank loans with total interest paid over the life of the loan?
Answer:
Difference in interest= $41,250
Step-by-step explanation:
To calculate the interest paid on each bank loan we use the following formula
Interest = Principal * Rate * Time
For Bank A
Interest = 275,000 * 0.035 * 30
Interest = $288,750
For Bank B
Interest = 275,000 * 0.04 * 30
Interest = $330,000
Therefore
Difference in interest= 330,000 - 288,750
Difference in interest= $41,250
Therefore if the mortgage is taken from Bank B he will pay an extra $41,250 on the loan.
The 0.5% difference in rates has a large impact over the 30 year term loan
Find the value of x.
Answer:
5
Step-by-step explanation:
This shape is formed by two right triangles.
Let's start by the little one.
Let y be the third side.
Using the Pythagorian theorem we get:
y^2 = 6^2 + 3^2
y^2 = 36 + 9
y^2 = 45
y = 3√(5)
●●●●●●●●●●●●●●●●●●●●●●●●
Now let's focus on the second triangle. Let z be the third side.
The Pythagorian theorem:
6^2 + x^2 = z^2
Using the Pythagorian theorem on the big triangle :
[3√(5)]^2 + z^2 = (3+x)^2
45 + z^2 = 3x^2 + 6x + 9
36 +z^2 = 3x^2 +6x
So we have a system of equations.
36+ x^2 = z^2
36 +z^2 = 3x^2 +6x
We want to khow the value of x so we will eliminate z .
Add (36+x^2 -z^2 =0) to the second one.
36 + x^2-z^2+36+z^2 = 3x^2+6x
72 + x^2 = 3x^2 +6x
72 - 2x^2 -6x = 0
Multipy it by -1 to reduce the number of - signs
2x^2 + 6x -72 = 0
This is a quadratic equation
Let A be the discriminant
● a = 2
● b = 6
● c = -72
A = b^2-4ac
A = 36 -4*2*(-72) = 36 + 8*72 =612
So this equation has two solutions
The root square of 612 is approximatively 25.
● (-6-25)/4 = -31/4 = -7.75
● (-6+25)/4 = 19/4 = 4.75 wich is approximatively 5
A distance cannot be negative so x = 5
Evaluate the polynomial when x = 3 and y = - 8
x2 + y2 + xy
Work Shown:
Replace x with 3, replace y with -8. Use order of operations PEMDAS to simplify.
x^2 + y^2 + x*y
3^2 + (-8)^2 + 3*(-8)
9 + 64 - 24
73 - 24
49
Answer:
49
Step-by-step explanation:
We are given the polynomial:
[tex]x^2+y^2+xy[/tex]
We want to evaluate when x=3 and y= -8. Therefore, we must substitute 3 for each x and -8 for each y.
[tex](3)^2+(-8)^2+(3*-8)[/tex]
Solve according to PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition, Subtraction
Solve the parentheses first. Multiply 3 and -9.
3*-8=-24
[tex](3)^2+(-8)^2 + -24[/tex]
[tex](3)^2+(-8)^2-24[/tex]
Now, solve the exponents.
3^2= 3*3 =9
[tex]9+ (-8)^2 -24[/tex]
-8^2= -8*-8= 64
[tex]9+64-24[/tex]
Add 9 and 64
[tex]73-24[/tex]
Subtract 24 from 73
[tex]49[/tex]
The polynomial evaluated for x=3 and y= -8 is 49.
micah drove 4 1/4 miles on Monday and 2 2/3 miles on Tuesday. On Wednesday, he drove 1 1/3 fewer miles than he had driven on Monday. How many miles did they drive in total
Answer:
9.5
Step-by-step explanation:
Monday: [tex]4\frac{1}{4}[/tex]
Tuesday: [tex]2\frac{2}{3}[/tex]
Wednesday: [tex]4\frac{1}{4} - 1\frac{1}{3}[/tex]
Total: [tex]4\frac{1}{4} + 2\frac{2}{3} + (4\frac{1}{4} - 1\frac{1}{3})[/tex]
Start by subtracting [tex]4\frac{1}{4} and[/tex] [tex]1\frac{1}{3}:[/tex] [tex]\frac{35}{12}[/tex]
Now, add them all up: [tex]4\frac{1}{4} + 2\frac{2}{3} + \frac{35}{12} = 9.5[/tex]
Therefore, Micah drove 9.5 miles in total.
Reduce the following fraction to lowest terms: 8/14
Answer:
4/7
Step-by-step explanation:
divide both by two for its simplest form
Answer:4/7
Step-by-step explanation
Divide both the numerator and denominator by 2
The result for the numerator is 8/2=4
that of the denominator is 14/2=7
Therefore the resultant answer is 4/7
16% of 242 = ?
Please help me solve this
Answer:
16% of 242 = 38.72
Step-by-step explanation:
16% = 16/100 = 0.16
242 * 0.16 = 38.72
Answer:
38.72
Step-by-step explanation:
242 * .16 = 38.72
What are the coordinates of point S"?
Answer:
point s: (-2,6)
-2 is the x coordinate
6 is the y coordinate
In ΔDEF, the measure of ∠F=90°, DF = 24, FE = 7, and ED = 25. What ratio represents the sine of ∠E?
Answer:
24/25
Step-by-step explanation:
In this triangle DF and FE are legs (because they form the right angle) , ED is the hypotenuse (it is the largest side, it is opposite to the right angle).
son of E is the ratio of the leg opposite to the angle E (DF) to the hypotenuse
it is 24/25