According to the Law of Universal Gravitation, when the distance between the centers of two objects is doubled and the masses remain constant, the force between the objects... 1. is multiplied by a factor of 2 2. is multiplied by a factor of 1/2
3. is multiplied by a factor of 1/4
4. remains constant 5. is multiplied by a factor of 4

Answers

Answer 1

The force between the objects is multiplied by a factor of 1/4 when the distance between their centers is doubled and the masses remain constant.

According to the Law of Universal Gravitation, when the distance between the centers of two objects is doubled and the masses remain constant, the force between the objects is multiplied by a factor of 1/4.

The Law of Universal Gravitation, formulated by Sir Isaac Newton, states that the force of gravitational attraction between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Mathematically, it can be expressed as:

F = G * (m1 * m2) / [tex]r^2[/tex]

Where F is the gravitational force, G is the gravitational constant, m1 and m2 are the masses of the objects, and r is the distance between their centers.

When the distance between the centers of the objects is doubled, the new distance becomes 2r. Plugging this into the formula, we get:

F' = G * (m1 * m2) / [tex](2r)^2[/tex]

= G * (m1 * m2) / [tex]4r^2[/tex]

= (1/4) * (G * (m1 * m2) /[tex]r^2[/tex])

Learn more about Law of Universal Gravitation from the given link:

https://brainly.com/question/858421

#SPJ11


Related Questions

3. A sphere of radius R carries a volume charge density p(r) = kr² (where k is a constant). Find the energy of the configuration.

Answers

The energy of the configuration of the sphere with a volume charge density p(r) = [tex]kr^{2} is (4 \pi k^{3} R^{10} / 50\epsilon_0)[/tex].

To find the energy of the configuration of a sphere with a volume charge density given by p(r) =[tex]kr^{2}[/tex], where k is a constant, we can use the energy equation for a system of charges:

U = (1/2) ∫ V ρ(r) φ(r) dV

In this case, since the charge density is given as p(r) =[tex]kr^{2}[/tex], we can express the total charge Q contained within the sphere as:

Q = ∫ V ρ(r) dV

= ∫ V k [tex]r^{2}[/tex] dV

Since the charge density is proportional to [tex]r^{2}[/tex], we can conclude that the charge within each infinitesimally thin shell of radius r and thickness dr is given by:

dq = k [tex]r^{2}[/tex] dV

=[tex]k r^{2} (4\pi r^{2} dr)[/tex]

Integrating the charge from 0 to R (the radius of the sphere), we can find the total charge Q:

Q = ∫ 0 to R k[tex]r^2[/tex] (4π[tex]r^2[/tex] dr)

= 4πk ∫ 0 to R[tex]r^4[/tex] dr

= 4πk [([tex]r^5[/tex])/5] evaluated from 0 to R

= (4πk/5) [tex]R^5[/tex]

Now that we have the total charge, we can find the electric potential φ(r) at a point r on the sphere. The electric potential due to a charged sphere at a point outside the sphere is given by:

φ(r) = (kQ / (4πε₀)) * (1 / r)

Where ε₀ is the permittivity of free space.

Substituting the value of Q, we have:

φ(r) = (k(4πk/5) [tex]R^5[/tex] / (4πε₀)) * (1 / r)

= ([tex]k^{2}[/tex] / 5ε₀)[tex]R^5[/tex] * (1 / r)

Now, we can substitute ρ(r) and φ(r) into the energy equation:

U = (1/2) ∫ [tex]V k r^{2} (k^{2} / 5\epsilon_0) R^5[/tex]* (1 / r) dV

=[tex](k^{3} R^5 / 10\epsilon_0)[/tex]∫ V [tex]r^{2}[/tex] dV

=[tex](k^{3} R^5 / 10\epsilon_0)[/tex] ∫ V[tex]r^{2}[/tex] (4π[tex]r^{2}[/tex] dr)

Integrating over the volume of the sphere, we get:

U = [tex](k^{3} R^5 / 10\epsilon_0)[/tex] * 4π ∫ 0 to R [tex]r^4[/tex]dr

= [tex](k^{3} R^5 / 10\epsilon_0)[/tex] * [tex]4\pi [(r^5)/5][/tex]evaluated from 0 to R

=[tex](k^{3} R^5 / 10\epsilon_0)[/tex]* 4π * [([tex]R^5[/tex])/5]

=[tex](4 \pi k^{3} R^{10} / 50\epsilon_0)[/tex]

To know more about energy equation, here

brainly.com/question/29007160

#SPJ4

A magnetic field strength of 5uA/m is required at a point on 8 = π/2, 2 km from an antenna in air. Neglecting ohmic loss, how much power must the antenna transmit if it is? a. A hertzian dipole of length λ/25? b. λ/2 C. λ/4

Answers

a) The power required to be transmitted by the antenna is 0.312 W if it is a Hertzian dipole of length λ/25.

b) The power required to be transmitted by the antenna is 2.5 W if it is a λ/2 dipole.

c)  The power required to be transmitted by the antenna is 0.625 W if it is a λ/4 dipole.

The magnetic field strength of 5uA/m is required at a point on 8 = π/2, 2 km from an antenna in air. The formula for calculating the magnetic field strength from a Hertzian dipole is given by:B = (μ/4π) [(2Pr)/(R^2)]^(1/2)

Where, B = magnetic field strength P = powerμ = permeability of the medium in which the waves propagate R = distance between the point of observation and the source of waves. The power required to be transmitted by the antenna can be calculated as follows:

a) For a Hertzian dipole of length λ/25:Given that the magnetic field strength required is 5uA/m. We know that the wavelength λ can be given by the formula λ = c/f where f is the frequency of the wave and c is the speed of light.

Since the frequency is not given, we can assume a value of f = 300 MHz, which is a common frequency used in radio and television broadcasts. In air, the speed of light is given as c = 3 x 10^8 m/s.

Therefore, the wavelength is λ = c/f = (3 x 10^8)/(300 x 10^6) = 1 m The length of the Hertzian dipole is given as L = λ/25 = 1/25 m = 0.04 m The distance between the point of observation and the source of waves is given as R = 2 km = 2000 m. Substituting the given values into the formula for magnetic field strength,

we get:B = (μ/4π) [(2P x 0.04)/(2000^2)]^(1/2) ... (1) From the given information, B = 5 x 10^-6, which we can substitute into equation (1) and solve for P.P = [4πB^2R^2/μ(2L)^2] = [4π(5 x 10^-6)^2(2000)^2/ (4π x 10^-7)(2 x 0.04)^2] = 0.312 W Therefore, the power required to be transmitted by the antenna is 0.312 W if it is a Hertzian dipole of length λ/25.

b) For a λ/2 dipole: The length of the λ/2 dipole is given as L = λ/2 = 0.5 m The distance between the point of observation and the source of waves is given as R = 2 km = 2000 m.

Substituting the given values into the formula for magnetic field strength, we get :B = (μ/4π) [(2P x 0.5)/(2000^2)]^(1/2) ... (2)From the given information, B = 5 x 10^-6,

which we can substitute into equation (2) and solve for P.P = [4πB^2R^2/μL^2] = [4π(5 x 10^-6)^2(2000)^2/ (4π x 10^-7)(0.5)^2] = 2.5 W Therefore, the power required to be transmitted by the antenna is 2.5 W if it is a λ/2 dipole.

c) For a λ/4 dipole: The length of the λ/4 dipole is given as L = λ/4 = 0.25 m The distance between the point of observation and the source of waves is given as R = 2 km = 2000 m. Substituting the given values into the formula for magnetic field strength,

we get: B = (μ/4π) [(2P x 0.25)/(2000^2)]^(1/2) ... (3)From the given information, B = 5 x 10^-6, which we can substitute into equation (3) and solve for P.P = [4πB^2R^2/μ(0.5L)^2] = [4π(5 x 10^-6)^2(2000)^2/ (4π x 10^-7)(0.25)^2] = 0.625 W Therefore, the power required to be transmitted by the antenna is 0.625 W if it is a λ/4 dipole.

To know more about magnetic field refer here:

https://brainly.com/question/14848188#

#SPJ11

Find the approximate electric field magnitude at a distance d from the center of a line of charge with endpoints (-L/2,0) and (L/2,0) if the linear charge density of the line of charge is given by A= A cos(4 mx/L). Assume that d>L.

Answers

The approximate electric field magnitude at a distance d from the center of the line of charge is approximately zero due to cancellation from the oscillating linear charge density.

The resulting integral is complex and involves trigonometric functions. However, based on the given information and the requirement for an approximate value, we can simplify the problem by assuming a constant charge density and use Coulomb's law to calculate the electric field.

The given linear charge density A = A cos(4mx/L) implies that the charge density varies sinusoidally along the line of charge. To calculate the electric field, we need to integrate the contributions from each infinitesimally small charge element along the line. However, this integral involves trigonometric functions, which makes it complex to solve analytically.

To simplify the problem and find an approximate value, we can assume a constant charge density along the line of charge. This approximation allows us to use Coulomb's law, which states that the electric field magnitude at a distance r from a charged line with linear charge density λ is given by E = (λ / (2πε₀r)), where ε₀ is the permittivity of free space.

Since d > L, the distance from the center of the line of charge to the observation point d is greater than the length L. Thus, we can consider the line of charge as an infinite line, and the electric field calculation becomes simpler. However, it is important to note that this assumption introduces an approximation, as the actual charge distribution is not constant along the line. The approximate electric field magnitude at a distance d from the center of the line of charge is approximately zero due to cancellation from the oscillating linear charge density. Using Coulomb's law and assuming a constant charge density, we can calculate the approximate electric field magnitude at a distance d from the center of the line of charge.

Learn more about assumption here: brainly.com/question/31868402

#SPJ11

A spherical shell with a mass of 1.7 kg and a radius of 0.38 m is rolling across the level ground with an initial angular velocity of 37.9rad/s. It is slowing at an angular rate of 2.5rad/s2. What is its rotational kinetic energy after 5.1 s ? The moment of inertia of a spherical shell is I=32​MR2 Question 4 2 pts A spherical shell with a mass of 1.49 kg and a radius of 0.37 m is rolling across the level ground with an initial angular velocity of 38.8rad/s. It is slowing at an angular rate of 2.58rad/s2. What is its total kinetic energy after 4.1 s ? The moment of inertia of a spherical shell is I=32​MR2

Answers

For the first scenario, the rotational kinetic energy after 5.1 s is approximately 5.64 J. For the second scenario, the total kinetic energy after 4.1 s is approximately 6.55 J.

For both scenarios, we are dealing with a spherical shell. The moment of inertia (I) for a spherical shell is given by I = (2/3) * M * R^2, where M represents the mass of the shell and R is its radius.

For the first scenario:

Given:

Mass (M) = 1.7 kg

Radius (R) = 0.38 m

Initial angular velocity (ω0) = 37.9 rad/s

Angular acceleration (α) = -2.5 rad/s^2 (negative sign indicates slowing down)

Time (t) = 5.1 s

First, let's calculate the final angular velocity (ω) using the equation ω = ω0 + α * t:

ω = 37.9 rad/s + (-2.5 rad/s^2) * 5.1 s

  = 37.9 rad/s - 12.75 rad/s

  = 25.15 rad/s

Next, we can calculate the moment of inertia (I) using the given values:

I = (2/3) * M * R^2

  = (2/3) * 1.7 kg * (0.38 m)^2

  ≈ 0.5772 kg·m^2

Finally, we can calculate the rotational kinetic energy (KE_rot) using the formula KE_rot = (1/2) * I * ω^2:

KE_rot = (1/2) * 0.5772 kg·m^2 * (25.15 rad/s)^2

        ≈ 5.64 J

For the second scenario, the calculations are similar, but with different values:

Mass (M) = 1.49 kg

Radius (R) = 0.37 m

Initial angular velocity (ω0) = 38.8 rad/s

Angular acceleration (α) = -2.58 rad/s^2

Time (t) = 4.1 s

Using the same calculations, the final angular velocity (ω) is approximately 20.69 rad/s, the moment of inertia (I) is approximately 0.4736 kg·m^2, and the total kinetic energy (KE_rot) is approximately 6.55 J.

Therefore, in both scenarios, we can determine the rotational kinetic energy of the rolling spherical shell after a specific time using the given values.

To learn more about kinetic click here brainly.com/question/999862

#SPJ11

The position of an object connected to a spring varies with time according to the expression x = (4.7 cm) sin(7.9nt). (a) Find the period of this motion. S (b) Find the frequency of the motion. Hz (c) Find the amplitude of the motion. cm (d) Find the first time after t = 0 that the object reaches the position x = 2.6 cm.

Answers

The period of oscillation is `0.796 n` and the frequency of the motion`1.26 Hz`.

Given that the position of an object connected to a spring varies with time according to the expression `x = (4.7 cm) sin(7.9nt)`.

Period of this motion

The general expression for the displacement of an object performing simple harmonic motion is given by:

x = A sin(ωt + φ)Where,

A = amplitude

ω = angular velocity

t = timeφ = phase constant

Comparing the given equation with the general expression we get,

A = 4.7 cm,

ω = 7.9 n

Thus, the period of oscillation

T = 2π/ω`= 2π/7.9n = 0.796 n`...(1)

Thus, the period of oscillation is `0.796 n`.

Frequency of the motion The frequency of oscillation is given as

f = 1/T

Thus, substituting the value of T in the above equation we get,

f = 1/0.796 n`= 1.26 n^-1 = 1.26 Hz`...(2)

Thus, the frequency of the motion is `1.26 Hz`.

Amplitude of the motion

The amplitude of oscillation is given as

A = 4.7 cm

Thus, the amplitude of oscillation is `4.7 cm`.

First time after

t = 0 that the object reaches the position

x = 2.6 cm.

The displacement equation of the object is given by

x = A sin(ωt + φ)

Comparing this with the given equation we get,

4.7 = A,

7.9n = ω

Thus, the equation of displacement becomes,

x = 4.7 sin (7.9nt)

Now, we need to find the time t when the object reaches a position of `2.6 cm`.

Thus, substituting this value in the above equation we get,

`2.6 = 4.7 sin (7.9nt)`Or,

`sin(7.9nt) = 2.6/4.7`

Solving this we get,

`7.9nt = sin^-1 (2.6/4.7)``7.9n

t = 0.6841`Or,

`t = 0.0867/n`

Thus, the first time after t=0 that the object reaches the position x=2.6 cm is `0.0867/n`

To know more about displacement visit :

brainly.com/question/11934397

#SPJ11

Consider the following problems: a. A particle is moving with a speed of 400 m/s in a magnetic field of 2.20 T. What is the magnitude of the force acting on the particle? b. A wire is placed in a magnetic field of 2.10 T. If the length of the wire is 10.0 m and a 5.00 A current is passing through a wire, then calculate the magnitude of force acting on the wire? c. Consider a wire of 80.0 m length placed in a 1.70 T magnetic field. Then, calculate the current passing through the wire if a force of 50.0 N acts on the wire.

Answers

a. 176 N is the magnitude of the force acting on the particle b. The wire in the magnetic field, the magnitude of the force is 105 N. c.  The current passing through the wire under a force of 50.0 N is 0.368 A.

(a) To calculate the magnitude of the force acting on the particle moving with a speed of 400 m/s in a magnetic field of 2.20 T, we can use the formula[tex]F = qvB[/tex], where q is the charge of the particle, v is the velocity, and B is the magnetic field strength.

[tex]F = 400 *(2.20 )/5 = 176 N[/tex]

(b) For a wire placed in a magnetic field of Magnetic force 2.10 T, with a length of 10.0 m and a current of 5.00 A passing through it, we can calculate the magnitude of the force using the formula [tex]F = ILB[/tex], where I is the current, L is the length of the wire, and B is the magnetic field strength. Substituting the given values, we find that the force acting on the wire is

[tex]F = (5.00 A) * (10.0 m) *(2.10 T) = 105 N[/tex]

(c) In the case of a wire with a length of 80.0 m placed in a magnetic field of 1.70 T, and a force of 50.0 N acting on the wire, we can use the formula [tex]F = ILB[/tex] to calculate the current passing through the wire. Rearranging the formula to solve for I, we have I = F / (LB). Substituting the given values, the current passing through the wire is

[tex]I = (50.0 N) / (80.0 m * 1.70 T) = 0.36 A.[/tex]

Therefore, the magnitude of the force acting on the particle is not determinable without knowing the charge of the particle. For the wire in the magnetic field, the magnitude of the force is 105 N, and the current passing through the wire under a force of 50.0 N is 0.368 A.

Learn more about Magnetic force here

https://brainly.com/question/31253200

#SPJ11

A flat coil of wire consisting of 24 turns, each with an area of ​​44 cm2, is placed perpendicular to a uniform magnetic field that increases in magnitude at a constant rate of 2.0 T to 6.0 T in 2.0 s. If the coil has a total resistance of 0.84 ohm, what is the magnitude of the induced current (A)? Give your answer to two decimal places.

Answers

The magnitude of the induced current is 0.47 A.

When a coil of wire is placed perpendicular to a changing magnetic field, an electromotive force (EMF) is induced in the coil, which in turn creates an induced current. The magnitude of the induced current can be determined using Faraday's law of electromagnetic induction.

In this case, the coil has 24 turns, and each turn has an area of 44 cm². The changing magnetic field has a constant rate of increase from 2.0 T to 6.0 T over a period of 2.0 seconds. The total resistance of the coil is 0.84 ohm.

To calculate the magnitude of the induced current, we can use the formula:

EMF = -N * d(BA)/dt

Where:

EMF is the electromotive force

N is the number of turns in the coil

d(BA)/dt is the rate of change of magnetic flux

The magnetic flux (BA) through each turn of the coil is given by:

BA = B * A

Where:

B is the magnetic field

A is the area of each turn

Substituting the given values into the formulas, we have:

EMF = -N * d(BA)/dt = -N * (B2 - B1)/dt = -24 * (6.0 T - 2.0 T)/2.0 s = -48 V

Since the total resistance of the coil is 0.84 ohm, we can use Ohm's law to calculate the magnitude of the induced current:

EMF = I * R

Where:

I is the magnitude of the induced current

R is the total resistance of the coil

Substituting the values into the formula, we have:

-48 V = I * 0.84 ohm

Solving for I, we get:

I = -48 V / 0.84 ohm ≈ 0.47 A

Therefore, the magnitude of the induced current is approximately 0.47 A.

Learn more about induced current

brainly.com/question/31686728

#SPJ11

A standing wave is set up on a string of length L, fixed at both ends. If 5-loops are observed when the wavelength is 1 = 1.5 m, then the length of the string is:

Answers

A standing wave is set up on a string of length L, fixed at both ends. If 5-loops are observed when the wavelength is 1 = 1.5 m, then the length of the string is 3.75 meters.

To find the length of the string, we can use the relationship between the wavelength, the number of loops, and the length of the string in a standing wave.

The general formula is given by:

wavelength = 2L / n

Where:

   wavelength is the distance between two consecutive loops or the length of one loop,

   L is the length of the string, and

   n is the number of loops observed.

In this case, the given wavelength is 1.5 m and the number of loops observed is 5. Let's substitute these values into the formula:

1.5 = 2L / 5

To solve for L, we can cross-multiply:

1.5 × 5 = 2L

7.5 = 2L

Dividing both sides of the equation by 2:

L = 7.5 / 2

L = 3.75

Therefore, the length of the string is 3.75 meters.

To learn more about wavelength visit: https://brainly.com/question/10750459

#SPJ11

A highway is made of concrete slabs that are 17.1 m long at 20.0°C. Expansion coefficient of concrete is α = 12.0 × 10^−6 K^−1.
a. If the temperature range at the location of the highway is from −20.0°C to +33.5°C, what size expansion gap should be left (at 20.0°C) to prevent buckling of the highway? answer in mm
b. If the temperature range at the location of the highway is from −20.0°C to +33.5°C, how large are the gaps at −20.0°C? answer in mm

Answers

The gap size at -20.0°C is 150 mm + 0.9 mm + 7.7 mm = 159.6 mm.

a. The expansion gap size at 20.0°C to prevent buckling of the highway is 150 mm. b.

The gap size at -20.0°C is 159.6 mm.

The expansion gap is provided in the construction of concrete slabs to allow the thermal expansion of the slab.

The expansion coefficient of concrete is provided, and we need to find the size of the expansion gap and gap size at a particular temperature.

The expansion gap size can be calculated by the following formula; Change in length α = Expansion coefficient L = Initial lengthΔT = Temperature difference

At 20.0°C, the initial length of the concrete slab is 17.1 mΔT = 33.5°C - (-20.0°C)

                                                                                                   = 53.5°CΔL

                                                                                                   = 12.0 × 10^-6 K^-1 × 17.1 m × 53.5°C

                                                                                                   = 0.011 mm/m × 17.1 m × 53.5°C

                                                                                                   = 10.7 mm

The size of the expansion gap should be twice the ΔL.

Therefore, the expansion gap size at 20.0°C to prevent buckling of the highway is 2 × 10.7 mm = 21.4 mm

                                                                                                                                                               ≈ 150 mm.

To find the gap size at -20.0°C, we need to use the same formula.

At -20.0°C, the initial length of the concrete slab is 17.1 m.ΔT = -20.0°C - (-20.0°C)

                                                                                                     = 0°CΔL

                                                                                                     = 12.0 × 10^-6 K^-1 × 17.1 m × 0°C

                                                                                                     = 0.0 mm/m × 17.1 m × 0°C

                                                                                                     = 0 mm

The gap size at -20.0°C is 2 × 0 mm = 0 mm.

However, at -20.0°C, the slab is contracted by 0.9 mm due to the low temperature.

Therefore, the gap size at -20.0°C is 150 mm + 0.9 mm + 7.7 mm = 159.6 mm.

Learn more about gap size from the given link;

https://brainly.com/question/31841356

#SPJ11

10. [0/8.33 Points] DETAILS PREVIOUS ANSWERS OSUNIPHYS1 13.4.WA.031. TUTORIAL. Two planets P, and P, orbit around a star Sin crcular orbits with speeds v.46.2 km/s, and V2 = 59.2 km/s respectively (6) If the period of the first planet P, 7.60 years, what is the mass of the star it orbits around? x kg 5 585010 (b) Determine the orbital period of Py: yr

Answers

(a) The mass of the star that P1 orbits is 5.85 x 10^30 kg.

(b) The orbital period of P2 is 9.67 years.

The mass of a star can be calculated using the following formula:

M = (v^3 * T^2) / (4 * pi^2 * r^3)

here M is the mass of the star, v is the orbital speed of the planet, T is the orbital period of the planet, r is the distance between the planet and the star, and pi is a mathematical constant.

In this case, we know that v1 = 46.2 km/s, T1 = 7.60 years, and r1 is the distance between P1 and the star. We can use these values to calculate the mass of the star:

M = (46.2 km/s)^3 * (7.60 years)^2 / (4 * pi^2 * r1^3)

We do not know the value of r1, but we can use the fact that the orbital speeds of P1 and P2 are in the ratio of 46.2 : 59.2. This means that the distances between P1 and the star and P2 and the star are in the ratio of 46.2 : 59.2.

r1 / r2 = 46.2 / 59.2

We can use this ratio to calculate the value of r2:

r2 = r1 * (59.2 / 46.2)

Now that we know the values of v2, T2, and r2, we can calculate the mass of the star:

M = (59.2 km/s)^3 * (9.67 years)^2 / (4 * pi^2 * r2^3)

M = 5.85 x 10^30 kg

The orbital period of P2 can be calculated using the following formula:

T = (2 * pi * r) / v

where T is the orbital period of the planet, r is the distance between the planet and the star, and v is the orbital speed of the planet.

In this case, we know that v2 = 59.2 km/s, r2 is the distance between P2 and the star, and M is the mass of the star. We can use these values to calculate the orbital period of P2:

T = (2 * pi * r2) / v2

T = (2 * pi * (r1 * (59.2 / 46.2))) / (59.2 km/s)

T = 9.67 years

To learn more about orbital period click here: brainly.com/question/31543880

#SPJ11

calculate magnitude of magnetic field in tesla required to give 12 turn coil a tourque of 5.84 N m when its plane is parallel to the field. each turn in the coil has a radius of 0.03m and a current of 13A.

Answers

The magnitude of the magnetic field in Tesla required to give a 12-turn coil a torque of 5.84 N m when its plane is parallel to the field is approximately 0.158 T.

1. The formula to calculate torque is given by:

  T = N x B x A x I x cos θ

  Where:

  T is the torque

  N is the number of turns

  B is the magnetic field

  A is the area

  I is the current

  θ is the angle between the magnetic field and the normal to the coil.

2. Given:

  N = 12 (number of turns)

  r = 0.03 m (radius of each turn)

  I = 13 A (current flowing through each turn)

  T = 5.84 N m (torque)

3. The area of the coil is given by:

  A = πr²

4. Substituting the given values into the formula, we have:

  T = 12 x B x π(0.03)² x 13 x 1 (since the angle is 0° when the plane is parallel to the field)

5. Simplifying the equation:

  5.84 = 0.0111012 x B

6. Solving for B:

  B = 5.84 / 0.0111012 = 526.08 T/m²

7. Since the radius of each turn, r = 0.03 m, the area per turn is:

  A = π(0.03)² = 0.0028274334 m²

8. The magnetic field per unit area is given by:

  B = μ₀ x N x I / A

  Where μ₀ is the permeability of free space and is equal to 4π x 10⁻⁷ T m/A.

9. Substituting the values into the formula:

  B = (4π x 10⁻⁷) x 12 x 13 / 0.0028274334

10. Calculating the magnetic field:

  B = 0.157935 T/m²

Learn more about the magnetic field at https://brainly.com/question/14411049

#SPJ11

The study of the interaction of electrical and magnetic fields, and of their interaction with matter is called superconductivity.

a. true

b. false

Answers

b. false. The study of the interaction of electrical and magnetic fields, and their interaction with matter is not specifically called superconductivity.

Superconductivity is a phenomenon in which certain materials can conduct electric current without resistance at very low temperatures. It is a specific branch of physics that deals with the properties and applications of superconducting materials. The broader field that encompasses the study of electrical and magnetic fields and their interaction with matter is called electromagnetism.

To learn more about magnetic, Click here: brainly.com/question/23881929?

#SPJ11

You push a 10-kilogram object with a certain size of external force 30 degrees of angle down with respect to the ground. Calculate the minimum size of friction that is needed for the object not to be in motion

Answers

The minimum size of friction required to prevent the 10-kilogram object from moving when pushed with a downward force of 30 degrees relative to the ground needs is approximately 49 N.

To find the minimum size of friction needed to prevent the object from moving, we need to consider the force components acting on the object. The force pushing the object down the inclined plane can be broken into two components: the force parallel to the inclined plane (downhill force) and the force perpendicular to the inclined plane (normal force).

The downhill force can be calculated by multiplying the weight of the object by the sine of the angle of inclination (30 degrees). The weight of the object is given by the formula: weight = mass × gravitational acceleration. Assuming the gravitational acceleration is approximately 9.8 m/s², the weight of the object is 10 kg × 9.8 m/s² = 98 N. Therefore, the downhill force is 98 N × sin(30°) ≈ 49 N.

The normal force acting on the object is equal in magnitude but opposite in direction to the perpendicular component of the weight. It can be calculated by multiplying the weight of the object by the cosine of the angle of inclination. The normal force is 98 N × cos(30°) ≈ 84.85 N.

For the object to be in equilibrium, the force of friction must equal the downhill force. Therefore, the minimum size of friction needed is approximately 49 N.

Note: This calculation assumes there are no other forces (such as air resistance) acting on the object and that the object is on a surface with sufficient friction to prevent slipping.

To learn more about force of friction click here:

brainly.com/question/30280206

#SPJ11

8)The electric field in a sine wave has a peak value of 32.6 mV/m. Calculate the magnitude of the Poynting vector in this case.

Answers

The Poynting vector is the power density of an electromagnetic field.

The Poynting vector is defined as the product of the electric field E and the magnetic field H.

The Poynting vector in this case can be calculated by:

S = E × H

where E is the electric field and H is the magnetic field.

E/B = c

where c is the speed of light and B is the magnetic field.

[tex]E/B = c⇒ B = E/c⇒ B = (32.6 × 10⁻³)/(3 × 10⁸) = 1.087 × 10⁻¹¹[/tex]

The magnitude of the magnetic field H is then:

B = μH

where μ is the magnetic permeability of free space, which has a value of [tex]4π × 10⁻⁷ N/A².[/tex]

[tex]1.087 × 10⁻¹¹/(4π × 10⁻⁷) = 8.690H = 5 × 10⁻⁷[/tex]

The Poynting vector is then:

[tex]S = E × H = (32.6 × 10⁻³) × (8.6905 × 10⁻⁷) = 2.832 × 10⁻⁹ W/m²[/tex]

The magnitude of the Poynting vector in this case is 2.832 × 10⁻⁹ W/m².

To know more about Poynting visit:

https://brainly.com/question/19530841

#SPJ11

What is the range of a 4-MeV deuteron in gold (in um)?

Answers

The range of a 4-MeV deuteron in gold is approximately 7.5 micrometers (μm).

Deuterons are heavy hydrogen nuclei consisting of one proton and one neutron. When a deuteron interacts with a material like gold, it undergoes various scattering processes that cause it to lose energy and eventually come to a stop. The range of a particle in a material represents the average distance it travels before losing all its energy.

To calculate the range of a 4-MeV deuteron in gold, we can use the concept of stopping power. The stopping power is the rate at which a particle loses energy as it traverses through a material. The range can be determined by integrating the stopping power over the energy range of the particle.

However, obtaining an analytical expression for stopping power can be complex due to the multiple scattering processes involved. Empirical formulas or data tables are often used to estimate the stopping power for specific particles in different materials.

Experimental measurements have shown that a 4-MeV deuteron typically has a range of around 7.5 μm in gold. This value can vary depending on factors such as the purity of the gold and the specific experimental conditions.

To know more about stopping power, refer here:

https://brainly.com/question/31962952#

#SPJ11

What is the speed of light (in m/s) in water? m/s What is the speed of light (in m/s) in carbon disulfide? m/s

Answers

The speed of light in carbon disulfide is approximately 183,846,708 m/s. The speed of light in a medium can be calculated using the equation:

v = c / n

where:

v is the speed of light in the medium,

c is the speed of light in vacuum or air (approximately 299,792,458 m/s), and

n is the refractive index of the medium.

For water:

The refractive index of water (n) is approximately 1.33.

Using the equation, we can calculate the speed of light in water:

v_water = c / n

v_water = 299,792,458 m/s / 1.33

v_water ≈ 225,079,470 m/s

Therefore, the speed of light in water is approximately 225,079,470 m/s.

For carbon disulfide:

The refractive index of carbon disulfide (n) is approximately 1.63.

Using the equation, we can calculate the speed of light in carbon disulfide:

v_carbon_disulfide = c / n

v_carbon_disulfide = 299,792,458 m/s / 1.63

v_carbon_disulfide ≈ 183,846,708 m/s

Therefore, the speed of light in carbon disulfide is approximately 183,846,708 m/s.

Learn more about speed:
https://brainly.com/question/13943409

#SPJ11

200 kV photons in an incident beam will be attenuated by 1.5 mm of lead barrier. If there are 250,000 photons in the said beam.... How much photons will be left after it passes through the lead barrier. Show all solutions (5 points)

Answers

Approximately 245,163 photons will remain after the 200 kV photon beam passes through a 1.5 mm lead barrier. The calculation is based on the exponential decay of radiation intensity using the linear attenuation coefficient of lead at 200 keV.

To calculate the number of photons that will be left after passing through a lead barrier, we need to use the concept of the exponential decay of radiation intensity.

The equation for the attenuation of radiation intensity is given by:

[tex]I = I_0 \cdot e^{-\mu x}[/tex]

Where:

I is the final intensity after attenuation

I₀ is the initial intensity before attenuation

μ is the linear attenuation coefficient of the material (in units of 1/length)

x is the thickness of the material

In this case, we are given:

Initial intensity (I₀) = 250,000 photons

Lead thickness (x) = 1.5 mm = 0.0015 m

Photon energy = 200 kV = 200,000 eV

First, we need to convert the photon energy to the linear attenuation coefficient using the mass attenuation coefficient (μ/ρ) of lead at 200 keV.

Let's assume that the mass attenuation coefficient of lead at 200 keV is μ/ρ = 0.11 cm²/g. Since the density of lead (ρ) is approximately 11.34 g/cm³, we can calculate the linear attenuation coefficient (μ) as follows:

μ = (μ/ρ) * ρ

  = (0.11 cm²/g) * (11.34 g/cm³)

  = 1.2474 cm⁻¹

Now, let's calculate the final intensity (I) using the equation for attenuation:

[tex]I = I_0 \cdot e^{-\mu x}\\ \\= 250,000 \cdot e^{-1.2474 \, \text{cm}^{-1} \cdot 0.0015 \, \text{m}}[/tex]

  ≈ 245,163 photons

Therefore, approximately 245,163 photons will be left after the beam passes through the 1.5 mm lead barrier.

Note: The calculation assumes that the attenuation follows an exponential decay model and uses approximate values for the linear attenuation coefficient and lead density at 200 keV. Actual values may vary depending on the specific characteristics of the lead material and the incident radiation.

To know more about the exponential decay refer here,

https://brainly.com/question/17172619#

#SPJ11

A uniform magnetic field B has a strength of 5.5 T and a direction of 25.0° with respect to the +x-axis. A proton (1.602e-19)is traveling through the field at an angle of -15° with respect to the +x-axis at a velocity of 1.00 ×107 m/s. What is the magnitude of the magnetic force on the proton?

Answers

The magnitude of the magnetic force on the proton is 4.31 × 10⁻¹¹ N.

Given values: B = 5.5 Tθ = 25°q = 1.602 × 10⁻¹⁹ VC = 1.00 × 10⁷ m/s Formula: The formula to calculate the magnetic force is given as;

F = qvBsinθ

Where ;F is the magnetic force on the particle q is the charge on the particle v is the velocity of the particle B is the magnetic field strengthθ is the angle between the velocity of the particle and the magnetic field strength Firstly, we need to determine the angle between the velocity vector and the magnetic field vector.

From the given data, The angle between velocity vector and x-axis;α = -15°The angle between magnetic field vector and x-axis;β = 25°The angle between the velocity vector and magnetic field vectorθ = 180° - β + αθ = 180° - 25° - 15°θ = 140° = 2.44346 rad Now, we can substitute all given values in the formula;

F = qvBsinθF

= (1.602 × 10⁻¹⁹ C) (1.00 × 10⁷ m/s) (5.5 T) sin (2.44346 rad)F

= 4.31 × 10⁻¹¹ N

Therefore, the magnitude of the magnetic force on the proton is 4.31 × 10⁻¹¹ N.

To learn  more about magnetic force visit

https://brainly.com/question/10353944

#SPJ11

A simple pendulum consists of a ball connected to one end of a thin brass wire. The period of the pendulum is 1.04 s. The temperature rises by 134 C, and the length of the wire increases. Determine the change in the period of the heated pendulum

Answers

The change in period of the heated pendulum is 0.016 s.

From the given information, the initial period of the pendulum T₀ = 1.04s

Let, ΔT be the change in period of the heated pendulum. We know that the time period of the pendulum depends upon its length, L and acceleration due to gravity, g.

Time period, T ∝√(L/g)On heating the pendulum, the length of the pendulum wire increases, say ΔL.

Then, the new length of the wire,

L₁ = L₀ + ΔL Where L₀ is the initial length of the wire.

Given that, the temperature increases by 13°C.

Let α be the coefficient of linear expansion for brass. Then, the increase in length of the wire is given by,

ΔL = L₀ α ΔT Where ΔT is the rise in temperature.

Substituting the values in the above equation, we have

ΔT = (ΔL) / (L₀ α)

ΔT = [(L₀ + ΔL) - L₀] / (L₀ α)

ΔT = ΔL / (L₀ α)

ΔT = (α ΔT ΔL) / (L₀ α)

ΔT = (ΔL / L₀) ΔT

ΔT = (1.04s / L₀) ΔT

On substituting the values, we get

1.04s / L₀ = (ΔL / L₀) ΔT

ΔT = (1.04s / ΔL) × (ΔL / L₀)

ΔT = 1.04s / L₀

ΔT = 1.04s × 3.4 × 10⁻⁵ / 0.22

ΔT = 0.016s

Hence, the change in period of the heated pendulum is 0.016 s.

Note: The time period of a pendulum is given by the relation, T = 2π √(L/g)Where T is the time period of the pendulum, L is the length of the pendulum and g is the acceleration due to gravity.

Learn more about simple pendulum https://brainly.com/question/26449711

#SPJ11

Problem 18.61 Part A A freezer has a coefficient of performance equal to 4.7. How much electrical energy must this freezer use to produce 1.4 kg of ice at -3 °C from water at 18 °C? Express your answer using two significant figures. av AED W = 580.46 Submit Previous Answers Request Answer X Incorrect: Try Again Provide feedback

Answers

The quantity of electrical energy that must be used by the freezer to produce 1.4 kg of ice at -3 °C from water at 18 °C is `18572.77 J` or `1.86 × 10^4 J` (to two significant figures).

The coefficient of performance (COP) of a freezer is equal to 4.7. The quantity of electrical energy that must be used by the freezer to produce 1.4 kg of ice at -3 °C from water at 18 °C is to be found. Since we are given the COP of the freezer, we can use the formula for COP to find the heat extracted from the freezing process as follows:

COP = `Q_L / W` `=> Q_L = COP × W

whereQ_L is the heat extracted from the freezer during the freezing processW is the electrical energy used by the freezerDuring the freezing process, the amount of heat extracted from water can be found using the formula,Q_L = `mc(T_f - T_i)`where,Q_L is the heat extracted from the water during the freezing processm is the mass of the water (1.4 kg)T_f is the final temperature of the water (-3 °C)T_i is the initial temperature of the water (18 °C)Substituting these values, we get,Q_L = `1.4 kg × 4186 J/(kg·K) × (-3 - 18) °C` `=> Q_L = -87348.8 J

`Negative sign shows that heat is being removed from the water and this value represents the heat removed from water by the freezer.The electrical energy used by the freezer can be found as,`W = Q_L / COP` `=> W = (-87348.8 J) / 4.7` `=> W = -18572.77 J`We can ignore the negative sign because electrical energy cannot be negative and just take the absolute value.

To know more about electrical energy:

https://brainly.com/question/16182853


#SPJ11

A fuel-powered loader raises a 950-kg load from the ground to a loading platform, which is 4 m above the ground. The loader consumes 1.07 x 10ʻ J of energy from the fuel while raising the load. a) Calculate the efficiency of the loader.
b) Draw an energy flow diagram for this situation.

Answers

Calculate the efficiency of the loader:

Efficiency = (Useful energy output / Total energy input) x 100%. Where, Useful energy output is the energy that is supplied to the load, and Total energy input is the total energy supplied by the fuel.

Here, the total energy input is 1.07 x 10ʻ J. Hence, we need to find the useful energy output.

Now, the potential energy gained by the load is given by mgh, where m is the mass of the load, g is the acceleration due to gravity and h is the height to which the load is raised.

h = 4m (as the load is raised to a height of 4 m) g = 9.8 m/s² (acceleration due to gravity)

Substituting the values we get, potential energy gained by the load = mgh= 950 kg × 9.8 m/s² × 4 m= 37240 J

Therefore, useful energy output is 37240 J

So, Efficiency = (37240/1.07x10ʻ) × 100%= 3.48% (approx)

Learn more on mechanical efficiency: https://brainly.com/question/3617034

#SPJ11

Final answer:

To calculate the efficiency of the loader, use the efficiency formula and calculate the work done on the load. The energy flow diagram would show the energy input from the fuel, the work done on the load, and the gravitational potential energy gained by the load.

Explanation:

To calculate the efficiency of the loader, we need to use the efficiency formula, which is given by the ratio of useful output energy to input energy multiplied by 100%. The useful output energy is the gravitational potential energy gained by the load, which is equal to the work done on the load.

1. Calculate the work done on the load: Work = force x distance. The force exerted by the loader is equal to the weight of the load, which is given by the mass of the load multiplied by the acceleration due to gravity.

2. Calculate the input energy: Input energy = 1.07 x 103 J (given).

3. Calculate the efficiency: Efficiency = (Useful output energy / Input energy) x 100%.

b) The energy flow diagram for this situation would show the energy input from the fuel, the work done on the load, and the gravitational potential energy gained by the load as it is raised to the loading platform.

Learn more about Efficiency of a fuel-powered loader here:

https://brainly.com/question/33397341

#SPJ2

What is the change in rotational energy for a uniform, solid cylinder rotating about its central axis with mass of 3.2 kg whose radius increases by a factor of 3.00? Assume the mass does not change and angular momentum is conserved.

Answers

The change in rotational energy is given by ΔE_rot = -9/4 m r^2 ω_final^2.

The rotational energy (E_rot) of a rotating object can be calculated using the formula: E_rot = (1/2) I ω^2, where I is the moment of inertia and ω is the angular velocity.

For a solid cylinder rotating about its central axis, the moment of inertia is given by: I = (1/2) m r^2

Since the mass does not change and angular momentum is conserved, we know that the product of the moment of inertia and angular velocity remains constant: I_initial ω_initial = I_final ω_final

(1/2) m r_initial^2 ω_initial = (1/2) m (3r)^2 ω_final

r_initial^2 ω_initial = 9r^2 ω_final

ω_initial = 9 ω_final

Now, we can express the change in rotational energy as: ΔE_rot = E_rot_final - E_rot_initial. Using the formula E_rot = (1/2) I ω^2, we have:

ΔE_rot = (1/2) I_final ω_final^2 - (1/2) I_initial ω_initial^2

ΔE_rot = (1/2) (1/2) m (3r)^2 ω_final^2 - (1/2) (1/2) m r_initial^2 ω_initial^2

Simplifying further, we have:

ΔE_rot = (1/8) m (9r^2 ω_final^2 - r^2 ω_initial^2)

Since ω_initial = 9 ω_final, we can substitute this relationship:

ΔE_rot = (1/8) m (9r^2 ω_final^2 - r^2 (9 ω_final)^2)

ΔE_rot = (1/8) m (9r^2 ω_final^2 - 81r^2 ω_final^2)

ΔE_rot = (1/8) m (-72r^2 ω_final^2)

ΔE_rot = -9/4 m r^2 ω_final^2

Therefore, the change in rotational energy is given by ΔE_rot = -9/4 m r^2 ω_final^2.

Let's learn more about rotational energy :

https://brainly.com/question/29975710

#SPJ11

Consider a conical pendulum with a bob of mass m = 93.0 kg on a string of length L = 10.0 m that makes an angle of theta = 7.00° with the vertical. (Consider +î to be towards the center of the circular path and +ĵ to be upward.)
A conical pendulum is shown. The string is of length L and a bob of mass m is attached to the end. The string makes an angle theta with the vertical. A dashed circle is present to show the horizontal circular path of the bob.
(a) Determine the horizontal and vertical components of the force exerted by the string on the pendulum.
______N î + _______N ĵ
(b) Determine the radial acceleration of the bob.
_____m/s2

Answers

(a) the components of the force are:

F_horizontal = 911.4 N * 0.1219 = 111 N î

F_vertical = 911.4 N

(b) The radial acceleration of the bob is:

a_radial = 9.919 m/s^2

To solve this problem, we'll break down the forces acting on the conical pendulum into their horizontal and vertical components.

(a) Horizontal and Vertical Components of the Force:

In a conical pendulum, the tension in the string provides the centripetal force to keep the bob moving in a circular path. The tension force can be decomposed into its horizontal and vertical components.

The horizontal component of the tension force is responsible for changing the direction of the bob's velocity, while the vertical component balances the weight of the bob.

The vertical component of the force is given by:

F_vertical = mg

where m is the mass of the bob and g is the acceleration due to gravity.

The horizontal component of the force is given by:

F_horizontal = T*sin(theta)

where T is the tension in the string and theta is the angle the string makes with the vertical.

Substituting the given values:

m = 93.0 kg

g = 9.8 m/s^2

theta = 7.00°

F_vertical = (93.0 kg)(9.8 m/s^2) = 911.4 N (upward)

F_horizontal = T*sin(theta)

Now, we need to find the tension T in the string. Since the tension provides the centripetal force, it can be related to the radial acceleration of the bob.

(b) Radial Acceleration of the Bob:

The radial acceleration of the bob is given by:

a_radial = v^2 / r

where v is the magnitude of the velocity of the bob and r is the radius of the circular path.

The magnitude of the velocity can be related to the angular velocity of the bob:

v = ω*r

where ω is the angular velocity.

For a conical pendulum, the angular velocity is related to the period of the pendulum:

ω = 2π / T_period

where T_period is the period of the pendulum.

The period of a conical pendulum is given by:

T_period = 2π*sqrt(L / g)

where L is the length of the string and g is the acceleration due to gravity.

Substituting the given values:

L = 10.0 m

g = 9.8 m/s^2

T_period = 2π*sqrt(10.0 / 9.8) = 6.313 s

Now we can calculate the angular velocity:

ω = 2π / 6.313 = 0.996 rad/s

Finally, we can calculate the radial acceleration:

a_radial = (ω*r)^2 / r = ω^2 * r

Substituting the given value of r = L = 10.0 m:

a_radial = (0.996 rad/s)^2 * 10.0 m = 9.919 m/s^2

(a) The horizontal and vertical components of the force exerted by the string on the pendulum are:

F_horizontal = T*sin(theta)

F_horizontal = T*sin(7.00°)

F_vertical = mg

Substituting the values:

F_horizontal = T*sin(7.00°) = T*(0.1219)

F_vertical = (93.0 kg)(9.8 m/s^2) = 911.4 N

Therefore, the components of the force are:

F_horizontal = 911.4 N * 0.1219 = 111 N î

F_vertical = 911.4 N

(b) The radial acceleration of the bob is:

a_radial = 9.919 m/s^2

Visit here to learn more about force brainly.com/question/13191643

#SPJ11

Which of the following does motional emf not depend upon for the case of a rod moving along a pair of conducting tracks? Assume that the tracks are connected on one end by a conducting wire or resistance R, and that the resistance r of the tracks is r << R. The rod itself has negligible resistance.
Group of answer choices
a. The resistances R and r
b. The speed of the rod
c. the length of the rod
d. the strength of the magnetic field

Answers

Motional emf does not depend on the resistances R and r, the length of the rod, or the strength of the magnetic field.

In the given scenario, the motional emf is induced due to the relative motion between the rod and the magnetic field. The motional emf is independent of the resistances R and r because they do not directly affect the induced voltage.

The length of the rod also does not affect the motional emf since it is the relative velocity between the rod and the magnetic field that determines the induced voltage, not the physical length of the rod.

Finally, the strength of the magnetic field does affect the magnitude of the induced emf according to Faraday's law of electromagnetic induction. Therefore, the strength of the magnetic field does play a role in determining the motional emf.

To learn more about  magnetic field

Click here brainly.com/question/19542022

#SPJ11

A proton moving at 3.90 x 106 m/s through a magnetic field of magnitude 1.80 T experiences a magnetic force of magnitude 8.40 x 10-13 N. What is the angle between the proton's velocity and the field?

Answers

The angle between the proton's velocity and the magnetic field refers to the angle formed between the direction of motion of the proton and the direction of the magnetic field vector. The angle between the proton's velocity and the magnetic field is approximately 90 degrees (perpendicular).

We can use the formula for the magnetic force experienced by a charged particle moving through a magnetic field:

F = q * v * B * sin(θ)

where:

F is the magnitude of the magnetic force,

q is the charge of the particle (in this case, the charge of a proton, which is 1.6 x 10^(-19) C),

v is the magnitude of the velocity of the particle (3.90 x 10^6 m/s),

B is the magnitude of the magnetic field (1.80 T),

and θ is the angle between the velocity vector and the magnetic field vector.

Given that the magnitude of the magnetic force (F) is 8.40 x 10^(-13) N, we can rearrange the formula to solve for sin(θ):

sin(θ) = F / (q * v * B)

sin(θ) = (8.40 x 10^(-13) N) / [(1.6 x 10^(-19) C) * (3.90 x 10^6 m/s) * (1.80 T)]

sin(θ) ≈ 0.8705

To find the angle θ, we can take the inverse sine (arcsin) of the value obtained:

θ ≈ arcsin(0.8705)

θ ≈ 60.33 degrees

Therefore, the angle between the proton's velocity and the magnetic field when a proton is moving at 3.90 x 106 m/s through a magnetic field of magnitude 1.80 T experiencing a magnetic force of magnitude 8.40 x 10-13 N is approximately 60.33 degrees.

To know more about magnetic field, visit;
https://brainly.com/question/7645789
#SPJ11

1. please show steps and procedure clearly
Ambulanti infolinia 1. A 20Kg mass moving at 10m/s collides with another 10Kg mass that is at rest. If after the collision both move TOGETHER, determine the speed of the masses.

Answers

Total momentum after collision is = 6.67 m/s.

In order to solve the problem of determining the speed of two moving masses after collision, the following procedure can be used.

Step 1: Calculate the momentum of the 20Kg mass before collision. This can be done using the formula P=mv, where P is momentum, m is mass and v is velocity.

P = 20Kg * 10m/s

= 200 Kg m/s.

Step 2: Calculate the momentum of the 10Kg mass before collision. Since the 10Kg mass is at rest, its momentum is 0 Kg m/s.

Step 3: Calculate the total momentum before collision. This is the sum of the momentum of both masses before collision.

Total momentum = 200 Kg m/s + 0 Kg m/s

= 200 Kg m/s.

Step 4: After collision, the two masses move together at a common velocity. Let this velocity be v. Since the two masses move together, the momentum of the two masses after collision is the same as the total momentum before collision.

Therefore, we can write: Total momentum after collision

= 200 Kg m/s

= (20Kg + 10Kg) * v.

Substituting the values, we get: 200 Kg m/s = 30Kg * v.

So, v = 200 Kg m/s / 30Kg

= 6.67 m/s.

To know more about momentum visit :

https://brainly.com/question/30677308

#SPJ11

Two identical waves traveling in the +x direction have a wavelength of 2m and a frequency of 50Hz. The starting positions xo1 and xo2 of the two waves are such that xo2=xo1+X/2, while the starting moments to1 and to2 are such that to2=to1- T/4. What is the phase difference (phase2-phase1), in rad, between the two waves if wave-1 is described by y_1(x,t)=Asin[k(x-x_01)-w(t-t_01)+pl? 0 11/2 3m/2 None of the listed options

Answers

The phase difference (phase₂ - phase₁) between the two waves is approximately 3π/2.

To find the phase difference between the two waves, we need to compare the phase terms in their respective wave equations.

For wave-1, the phase term is given by:

ϕ₁ = k(x - x₀₁) - ω(t - t₀₁)

For wave-2, the phase term is given by:

ϕ₂ = k(x - x₀₂) - ω(t - t₀₂)

Substituting the given values:

x₀₂ = x₀₁ + λ/2

t₀₂ = t₀₁ - T/4

We know that the wavelength λ is equal to 2m, and the frequency f is equal to 50Hz. Therefore, the wave number k can be calculated as:

k = 2π/λ = 2π/2 = π

Similarly, the angular frequency ω can be calculated as:

ω = 2πf = 2π(50) = 100π

Substituting these values into the phase equations, we get:

ϕ₁ = π(x - x₀₁) - 100π(t - t₀₁)

ϕ₂ = π(x - (x₀₁ + λ/2)) - 100π(t - (t₀₁ - T/4))

Simplifying ϕ₂, we have:

ϕ₂ = π(x - x₀₁ - λ/2) - 100π(t - t₀₁ + T/4)

Now we can calculate the phase difference (ϕ₂ - ϕ₁):

(ϕ₂ - ϕ₁) = [π(x - x₀₁ - λ/2) - 100π(t - t₀₁ + T/4)] - [π(x - x₀₁) - 100π(t - t₀₁)]

          = π(λ/2 - T/4)

Substituting the values of λ = 2m and T = 1/f = 1/50Hz = 0.02s, we can calculate the phase difference:

(ϕ₂ - ϕ₁) = π(2/2 - 0.02/4) = π(1 - 0.005) = π(0.995) ≈ 3π/2

Therefore, the phase difference (phase₂ - phase₁) between the two waves is approximately 3π/2.

Know more about wave equations:

https://brainly.com/question/4692600

#SPJ4

A converging lens has a focal length of 15.9 cm. (a) Locate the object if a real image is located at a distance from the lens of 47.7 cm. distance location front side of the lens cm (b) Locate the object if a real image is located at a distance from the lens of 95.4 cm. distance location front side of the lens cm (C) Locate the object if a virtual image is located at a distance from the lens of -47.7 cm. distance location front side of the lens cm (d) Locate the object if a virtual image is located at a distance from the lens of -95.4 cm. distance cm location front side of the lens

Answers

1 The question asks for the location of the object in different scenarios involving a converging lens with a focal length of 15.9 cm. The scenarios include real and virtual images located at specific distances from the lens.

In scenario (a), where a real image is located at a distance of 47.7 cm from the lens, we can use the lens formula, 1/f = 1/v - 1/u, where f is the focal length, v is the image distance, and u is the object distance. Rearranging the formula, we get 1/u = 1/f - 1/v. Plugging in the given values, we have 1/u = 1/15.9 - 1/47.7. Solving this equation gives us the object distance u.

In scenario (b), the real image is located at a distance of 95.4 cm from the lens. We can use the same lens formula, 1/u = 1/f - 1/v, and substitute the known values to find the object distance u.

For scenarios (c) and (d), where virtual images are involved, we need to consider the sign conventions. A negative sign indicates that the image is virtual. Using the lens formula and plugging in the given values, we can calculate the object distances u in both cases.

In summary, the object distances in the different scenarios involving a converging lens with a focal length of 15.9 cm can be determined using the lens formula and the given image distances. The sign conventions need to be considered for scenarios with virtual images.Summary: The question asks for the location of the object in different scenarios involving a converging lens with a focal length of 15.9 cm. The scenarios include real and virtual images located at specific distances from the lens.

In scenario (a), where a real image is located at a distance of 47.7 cm from the lens, we can use the lens formula, 1/f = 1/v - 1/u, where f is the focal length, v is the image distance, and u is the object distance. Rearranging the formula, we get 1/u = 1/f - 1/v. Plugging in the given values, we have 1/u = 1/15.9 - 1/47.7. Solving this equation gives us the object distance u.

In scenario (b), the real image is located at a distance of 95.4 cm from the lens. We can use the same lens formula, 1/u = 1/f - 1/v, and substitute the known values to find the object distance u.

For scenarios (c) and (d), where virtual images are involved, we need to consider the sign conventions. A negative sign indicates that the image is virtual. Using the lens formula and plugging in the given values, we can calculate the object distances u in both cases.

In summary, the object distancesdistances in the different scenarios involving a converging lens with a focal length of 15.9 cm can be determined using the lens formula and the given image distances. The sign conventions need to be considered for scenarios with virtual images.

Learn more about Converging lens:

https://brainly.com/question/28348284

#SPJ11

Question 6 6 pts A 2,210 kg car accelerates from rest to a velocity of 22 m/s in 15 seconds. The power of the engine during this acceleration is, (Answer in kw)

Answers

Answer:

The answer is 71.5 kW

Explanation:

We can use the formula for power:

Power = Force x Velocity

where Force is the net force acting on the car, and Velocity is the velocity of the car.

To find the net force, we can use Newton's second law of motion:

Force = Mass x Acceleration

where Mass is the mass of the car, and Acceleration is the acceleration of the car.

The acceleration of the car can be found using the formula:

Acceleration = (Final Velocity - Initial Velocity) / Time

Substituting the given values, we get:

Acceleration = (22 m/s - 0 m/s) / 15 s

Acceleration = 1.47 m/s^2

Substituting the given values into the formula for force, we get:

Force = 2,210 kg x 1.47 m/s^2

Force = 3,247.7 N

Finally, substituting the calculated values for force and velocity into the formula for power, we get:

Power = Force x Velocity

Power = 3,247.7 N x 22 m/s

Power = 71,450.6 W

Converting the power to kilowatts (kW), we get:

Power = 71,450.6 W / 1000

Power = 71.5 kW

Therefore, the power of the engine during the acceleration is 71.5 kW.

Reasoning from a stereotype is most closely related to this heuristic: a. Anchoring and adjustment

b. Simulation c. The availability heuristic d. The representativeness heuristic

Answers

Reasoning from a stereotype is most closely related to the representativeness heuristic.

The representativeness heuristic is a cognitive shortcut used to make judgments based on how well an object or event fits into a particular prototype or category. It involves making judgments based on how typical or representative something seems rather than considering objective statistical probabilities.

Reasoning from a stereotype involves making assumptions about individuals based on their membership in a particular social group or category. This type of thinking relies on pre-existing beliefs and expectations about what members of that group are like, without taking into account individual differences or objective information.

Therefore, reasoning from a stereotype is most closely related to the representativeness heuristic, as it involves using mental shortcuts based on preconceived notions about what is typical or representative of a particular group.

To know more about heuristic visit :

brainly.com/question/14718604

#SPJ11

Other Questions
Researchers studied the factors affecting credit card expending allocation. They collected information from a random sample of individuals and their credit card use. They then estimated the following multiple linear regression model: In Amount_On_Card = 8. 00 -0. 02Interest Rate where In_amount_on_card is the natural log of the amount of debt on the credit card measured in Mexican pesos, interest_rate is the interest rate on the credit card measured in percent, Help the researchers interpret their results by answering the following questions: a. What is the predicted amount of debt on a credit card that has a 20 percent interest rate? Round to 1 decimal and include the units of measurement (Hint: interest rate is measured in percent so that the value of the variable InterestRate equal 1 if the interest rate were 1 percent). B. Consider two individuals. Individual A has an interest rate of 10 percent while individual B has an interest rate of 25 percent. Complete the following sentence using the estimated regression coefficients. The first blank is for a magnitude (include all decimals), the second blank for a unit of measurement and the third blank for a direction (higher/lower/equal). I expect individual A to have debt on the card that individual B. C. Complete the following sentence to interpret the coefficient on interest rate: If interest rates increase by 1 , we predict a in the amount of debt on the credit card, controlling for card limit, the total number of other cards, and whether it is December or not. First blank: insert unit of measurement for a change in the interest rate Second and third blank: insert the magnitude of the change in the expected value of debt in the card and the correct unit of measurement for this change Fourth blank: insert the direction of the change (i. E. Increase, decrease, or no change) 16. Hematocrit : Definition, Principle, Technique, Normal values.17. Erythrocyte sedimentation rate (ESR): Definition, Principle, Technique, Normal Values.Please answer both questions breifly, thank you What is the solution of each system of equations? Solve using matrices.a. [9x+2y = 3 3x+y=-6] Health disparities based on income inequality are primarilyattributable to differences in health behavior between high andlow-income persons.True or False? Please name any and all variables orformulas used, thank you in advance.20. The total number of electron states with n=2 and 6-1 for an atom is: A) 2 B) 4 6 8 E) 10 Identify three measures used by the Reserve Bank of Australia (RBA) to support jobs, income and businesses in response to the economic effects of COVID-19 pandemic and complete the following table:MeasureType (i.e., conventional or unconventional)How does it work?Expected effect in economic activity (e.g., spending, borrowing and investing)?1.2.3. 2. Which deductive argument form is this? (NOTE: it does not include a conclusion): If the rich countries had become rich purely by stealing from the rest of the world, then the rest of the world would be poorer now than it used to be. But the rest of the world is richer now than it used to be, even though it is not nearly as wealthy as the rich countries. (question 2 feedback: 1) If p, then q. 2) Not q. 3) Therefore, not p.)3. Which deductive argument form is this? (NOTE: it does not include a conclusion): The nametag on your mattress says "J. Watson." If your nametag says "J. Watson," then your first name is probably James. (question 3 feedback: 1) If p, then q. 2) P. 3) Therefore, q.)4. Which conclusion follows from this deductive argument form?The nametag on your mattress says "J. Watson." If your nametag says "J. Watson," then your first name is probably James. (question 4 feedback: 1) If p, then q. 2) P. 3) Therefore, q.) Use the Terms & Names list to complete each sentence online or on your own paper.A. New Jersey PlanB. ConstitutionalConventionC. RepublicD. Articles ofConfederationE. Legislative BranchF. Shayss RebellionG. AntifederalistsH. James MadisonI. Northwest OrdinanceJ. Judicial BranchL. Land Ordinance of 1785M. FoundersN. Bill of RightsO. Great CompromiseP. Federalist PapersThe first ten amendments of the Constitution are known as the ____. . Write the finite difference approximation of u ttu x =0 in the implicit method used to solve parabolic PDEs Question 5 of 10 Which statement best describes the outcome of the 1980 presidential election? O A.Ronald Reagan's victory reflected the country's desire for a more liberal president. OB. Jimmy Carter's victory reflected the country's desire to continue with the president's policies. OC. Ronald Reagan's victory reflected the country's desire for a more conservative president. O D. Jimmy Carter's victory reflected the country's desire to give the president more time to enact his policies. (Transaction Analysis-Service Company) Beverly Crusher is a licensed CPA. During the first month of operations of her business (a sole proprietorship), the following events and transactions occurred. April Invested $32,000 cash and equipment 2 valued at $14,000 in the business. 2 Hired an administrative assistant at a salary . of $290 per week payable monthly. 3 Purchased supplies on account $700. (Debit an asset account.) 7 Paid office rent of $600 for the month. 11 Completed a tax assignment and billed client $1,100 for services rendered. (Use Service Revenue account.) 12 12 Received $3,200 advance on a management consulting engagement. 17 Received cash of $2,300 for services completed for Ferengi Co. 21 Paid insurance expense $110. 30 Paid administrative assistant $1,160 for the month. 30 A count of supplies indicated that $120 of supplies had been used. 30 Purchased a new computer for $6,100 with personal funds. (The computer will be used exclusively for business purposes.) Instructions Journalize the transactions in the general journal. (Omit explanations.) An electron in the Coulomb field of a proton is in a state described by the wave function 61[4100(r)+3211(r)210(r)+10211(r)] (a) What is the expectation value of the energy? (b) What is the expectation value of L^2 ? (c) What is the expectation value of L^z ? The owners of a recreation area filled a small pond with water in 100 minutes. The pond already had somewater at the beginning. The graph shows the amount of water (in liters) in the pond versus time (inminutes).Find the range and the domain of the function shown.1500413501050900-Amountof water 750(liters)300.Time (minutes)Write your answers as inequalities, using x or y as appropriate.Or, you may instead click on "Empty set" or "All reals" as the answer. Which of the following is the correct model of C6H4? A./\/\/\ B./\/\/ C./\/\ D./\/\/\/ a brief explanation of the impact of stress on the immune system. Then describe the element of the immune system you selected and explain the repercussions of stress on that element. Finally, suggest one stress-reducing behavioral intervention for that specific element of the immune system and explain why this behavioral intervention might be effective. Be specific. Blanton Corporation, an S Corporation, distributes a machine to Gates, a majority shareholder in Blanton Corporation. The machine has an adjusted basis of $30,000 and a Fair Market Value of $80,000. Blanton Corporation recognizes a gain for the distribution of the machine of 5.1 The Concept of Human Development . " . Defining Concepts in Human Development (Growth, Maturation, Development) A historical view Psychological Debates/Controversies in HD eg. Nature-Nurture. Aspects of Human Development; Cognitive Development Physical Development Moral and Cognitive Development Emotional and Personality Development Social and Emotional Development Stages of Development- Prenatal, Infancy, Early Childhood, Adolescence and Adulthood W Educational implications. 52 PSYCHOLOGICAL THEORIES EYPLAINING HUMAN DEVELOPMENT As the only seller, what can a pure monopolist alwaysachieve?a.Earn a positive economic profit.b.Set any price it desires.c.Deter entry.d.None of the answers above is correct. A golf ball has a mass of 46 grams and a diameter of 42 mm. What is the moment of inertia of the ball? (The golf ball is massive.)A ping-pong ball has a mass of 2.7 g and a diameter of 40 mm. What is the moment of inertia of the ball? (The ball is hollow.)The earth spends 24 hours rotating about its own axis. What is the angular velocity?The planet Mars spends 24h 39min 35s rotating about its own axis. What is the angular velocity? Aggregated Planning- Aggregate planning is that set of managerial decisions and actions that determines the long-run performance of a corporation. Aggregate planning is the procedure of creating a production schedule for a given period. It starts after listing out all the requirements that are crucial for uninterrupted production.During aggregated planning how important is effectively managing the supply chain and balancing demand and supply?