Answer:
a) v₂ = 13.20 m / s
Explanation:
To solve this exercise we will use the kinematic relations
Let's start with the Lioness. Let's find the time to reach top speed
v = v₀ + a t
as part of rest, its initial velocity is zero
t = v / a
t₁ = 21.0 / 2.57
t₁ = 8.17 s
the total time is the acceleration time plus the time (t₂ = 25 s) that the maximum speed can withstand
t = t₁ + t₂
t = 8.17 +25.0 = 33.17 s
Now let's find out what distance the lioness travels in these times
during acceleration
x = v₀ t + ½ a t²
x = ½ a t²
x₁ = ½ 2.57 8.17²
x₁ = 85.77 m
during constant speed part
x₂ = v t₂
x₂ = 21.0 25.0
x₂ = 525 m
therefore the total distance traveled is
x = x₁ + x₂
x = 85.77 + 525
x = 610.77 m
a) the average speed of the gazelle
this must be the distance that the lioness travels minus the initial distance that separates the two animals (xo = 173 m) between the time taken
v₂ = [tex]\frac{x -x_o}{t}[/tex]
v₂ = [tex]\frac{610.77 - 173}{33.17}[/tex]
v₂ = 13.20 m / s
b) in the attachment we can see a graph of the displacement of the two animals
From the center of the Earth to the moon, what should the orbital radius of such satellite be in order to stay over the same point on the earth’s surface?
In order to have a period that matches the Earth's rotation, a satellite must be in a circular orbit, and 42,164 km from the center of the Earth.
But that's not quite enough to make sure that it always stays over the same point on the Earth's surface (and appears motionless in the sky). For that to happen, the satellite's orbit has to be directly over the Equator.
The Moon has nothing to do with any of this.
How does energy keep the world going? How is energy conserved?
Answer:
The most notable way that reducing energy helps the environment is by decreasing power plant emissions.
Answer:
Explanation:
The conservation of energy law states that energy cant be created or destroyed, only transferred. Since energy cant be created or destroyed, the amount of energy in the universe is completely constant.
Energy keeps the world "going" because we use it every single day in our life. Everything in the universe uses some sort of energy. We digest food for energy, we use electrical energy for electronics, we convert electrical energy into heat energy for heaters and such, we use solar panels to power our houses. There are countless examples of how energy keeps the world "going."
pls help ;-; this is the question btw
The answer is "Infrared"
Hope this helps
Answer:
x-rays
Explanation:
ASAP please thank you !
Find O and P
Explanation:
O + 6V = 9V, so O = 3V
P = 9V as it is parallel to the 9V power supply.
A uniform electric field is produced due to the charge distribution inside the closed cylindrical surface. (a) What type of charge distribution is inside the surface? a positively charged plane parallel to the end faces of the cylinder a positive line charge situated on and parallel to the axis of the cylinder a collection of positive point charges arranged in a line at the center of the cylinder and perpendicular to the axis of the cylinder a collection of negative point charges arranged in a line at the center of the cylinder and perpendicular to the axis of the cylinder a negatively charged plane parallel to the end faces of the cylinder (b) If the radius of the cylinder is 0.66 m and the magnitude of the electric field is 300 N/C, what is the net electric flux through the closed surface? How is the electric flux related to the electric field vector and the normal to the surface? What is the orientation of the electric field relative to the curved surface? N · m2/C (c) What is the net charge inside the cylinder?
Answer with Explanation:
a. Option d is true.
a negatively charged plane parallel to the end faces of the cylinder
b. Radius of cylinder, r=0.66m
Magnitude of electric field, E=300 N/C
We have to find the net flux through the closed surface.
Net electric flux,[tex]\phi=-2 EA=-2E(\pi r^2)[/tex]
[tex]\phi=-2\times 300\times (3.14\times (0.66)^2)[/tex]
[tex]\phi=-820.67 Nm^2/C[/tex]
c.
Net charge,[tex]Q=\epsilon_0\times \phi[/tex]
Where
[tex]\epsilon_0=8.85\times 10^{-12}[/tex]
[tex]Q=-820.67\times 8.85\times 10^{-12}[/tex]
[tex]Q=-7.26\times 10^{-9} C[/tex]
[tex]Q=-7.26nC[/tex]
Where [tex]1nC=10^{-9}C[/tex]
When an object falls, its:
A. PE increases and KE decreases.
B. PE does not change.
C. PE and KE both increase.
D. PE decreases and kE increases
Answer:
Option D. is correct.
Explanation:
The object's mechanical energy refers to the sum of the potential and kinetic energies of the object. When an object falls, its potential energy (PE) decreases, and its kinetic energy (KE) increases. The increase in kinetic energy is exactly equal to the decrease in potential energy.
Option D. is correct.
A ball is dropped from a top of a 70 m tall building. How fast will the velocity be when it hits the
ground?
Answer:
take gravaiy and times it by 70m to find max v
Explanation:
ps i am olny 10 cool ya
A student swings a 0.5kg rubber ball attached to a string over her head in a horizontal, circular
path. The string is 1.5 meters long and in 60 seconds the ball makes 120 complete circles.
What is the velocity of the ball?
What is the ball’s centripetal acceleration?
What is the ball's centripetal force?
Answer:
The balls velocity is 1 divided by 3
The velocity of the ball is 18.85 m/s.
The ball’s centripetal acceleration is 236.87 m/s².
The ball's centripetal force is 118.44 Newton.
What is centripetal acceleration?Centripetal acceleration is a characteristic of an object's motion along a circular path. Centripetal acceleration applies to any item travelling in a circle with an acceleration vector pointing in the direction of the circle's center.
Given parameters:
length of the string: l = 1.5 meters.
Time interval = 60 seconds.
Total number of complete rotation = 120.
Hence, the velocity of the ball = 120×2π×1.5/60 m/s
= 18.85 m/s.
The ball’s centripetal acceleration = (velocity)²/ radius
= (18.85)²/1.5 m/s²
= 236.87 m/s²
The ball's centripetal force = mass × centripetal acceleration
= 0.5 × 236.87 Newton
= 118.44 Newton
Learn centripetal acceleration here:
https://brainly.com/question/14465119
#SPJ2
During a phase change the temperature of a substance remains constant this is because during a phase heat changes the ____ energy of particles in a substance without changing their ____ energy
Answer:
Explanation:
individual and then net
hope that helps I could be wrong about this one though
A boy throws a rock with an initial horizontal velocity of 17.0 m/s and an initial vertical velocity of 21.0 m/s. How high above the boy's hand is the rock after 2.8 s?
Answer:
53.2
Explanation:
You can use the kinematic equation: displacement of x = (initial velocity + final velocity)*t/2
Subsititing: 17+21 = 38 * 2.8/2 = 53.2
Note: Displacement = distance between the 2 points
The primary reason for the path of motion of an object being a smooth curve is: Select an answer and submit. For keyboard navigation, use the up/down arrow keys to select an answer. a the third derivative of parabolas is always zero. b inertia. c tangent direction unit vectors change continuously. d calculus must have continuous derivatives to apply correctly.
Answer:
the correct answer is d
Explanation:
The laws of mechanics are related
F = m a
the acceleration of the body is given by the kinematics
a = [tex]\frac{dv}{dt}[/tex]
v = [tex]\frac{dx}{dt}[/tex]
substituting
a = \frac{d2x}{dt^2}
F = m [tex]\frac{d^2x}{dt^2}[/tex]
Therefore, in order to obtain the force (interaction of a body), continuous curves are needed and derivable from the position and the speed, for which all change in the trajectory of a body must be smooth where smooth is understood to have until the second derived.
Consequently the correct answer is d
A particle moving in the xy-plane has velocity v⃗ =(2ti^+(3−t2)j^)m/s, where t is in s.
Part A
What is the x component of the particle's acceleration vector at t = 6 s?
Express your answer with the appropriate units.
Part B
What is the y component of the particle's acceleration vector at t = 6 s?
Express your answer with the appropriate units.
Answer:
A) 2 m/s²
B) -12 m/s²
Explanation:
A)
Applying the definition of instantaneous acceleration as the derivative of the velocity with respect to time, the acceleration vector can be expressed as follows:a = 2i^ + (-2t) j^ m/s²So, the x-component of the acceleration vector is constant, and equal to 2m/s², at any time.When t=6 s, aₓ= 2 m/s²B)
Applying the definition of instantaneous acceleration as the derivative of the velocity with respect to time, the acceleration vector can be expressed as follows:a = 2i^ + (-2t) j^ m/s²So, when t= 6s, the y component of a is as follows:ay = -2(6s) = -12 m/s²A) The x-component of the particle's acceleration is; 2 m/s²
B) The y-component of the particle's acceleration at t = 6 is; -12 m/s²
X and Y components of Acceleration
We are given the velocity as;
v^ = 2t i^ + (3 − t²) j^ m/s
A) We know that acceleration is simply a derivative of velocity with respect to time. Thus;
a^ = dv/dt = 2 i^ + (-2t) j^ m/s²
The x - component of the acceleration is the figure attached to the vector i^.
Thus, x-component of acceleration = 2 m/s²
B) The y-component of the acceleration will be the value attached to the vector j^. Thus;
y-component of acceleration = -2t m/s²
At t = 6 s, we have;
y-component of acceleration = -2(6) = -12 m/s²
Read more about x and y components of acceleration at; https://brainly.com/question/7114558
A 0.1 kg arrow with an initial velocity of 30 m/s hits a 4.0 kg melon initially at rest on a friction-less surface. The arrow emerges out the other side of the melon with a speed of 20 m/s. What is the speed of the melon? Why would we normally not expect to see the melon move with the is speed after being hit by the arrow?
Answer:
Speed of the melon = 0.25 m/s
we would normally don't see the melon moving due to friction with the resting surface.
Explanation:
We use conservation of momentum:
Pi = Pf
with Pi = 0.1 kg * 30 m/s = 3 kg m/s
and Pf = 0.1 kg * 20 m/s + 4.0 kg * V = 2 kg m/s + 4 * V
Then using the equality above, we solve for V (velocity of the melon)
3 kg m/s = 2 kg m/s + 4 V
1 kg m/s = 4 kg * V
Then V = 1 / 4 M/s = 0.25 m/s
So we would normally don't see the melon moving due to friction with the resting surface.
What is the frequency of highly energetic ul-
traviolet radiation that has a wavelength of
124 nm?
The speed of light is 3 x 108 m/s.
Answer in units of Hz.
Frequency = (speed) / (wavelength)
Frequency = (3 x 10⁸ m/s) / (124 x 10⁻⁹ m)
Frequency = 2.42 x 10¹⁵ Hz
regular reflection is the reflection of light on a surface
on smooth surface like mirror.
___is found in fruits and honey. *
1.Maltose
2.Sucrose
3.Fructose
4.Galactose
Answer:
3. Fructose
Explanation:
Fructose is a sugar found naturally in fruits, fruit juices, some vegetables and honey.
it is number 3 (Fructose)
A 20-turn coil of area 0.32 m2 is placed in a uniform magnetic field of 0.055 T so that the perpendicular to the plane of the coil makes an angle of 30∘ with respect to the magnetic field.
The flux through the coil is
Answer:
1.5 * 10^-2 Tm^2
Explanation:
Electric Flux = B.A cos(theta)
B = 0.055 T
A = 0.32 m^2
theta = 30
Electric Flux = (0.055 T).(0.32 m^2).Cos(30) = 0.0152 = 1.5 * 10^-2 Tm^2
6th grade science I mark as brainliest
Answer:
7 would be C, a cell.
Explanation:
Hi.
7 would be C, a cell.
A cell is the basic unit of structure and function in all living things.
If it is living, it is made of cells.
Hope this helps.
Answer:
7. Cell
8. Organelle
a ball has a mass of 140g if it thrown with a velocity of 450m/s what is its kenetic energy?
Kinetic energy = mv²
Therfore kinetic energy =14175 joule
Help please ............
Answer:
Explanation:
Electrical current is the movement of charge. The units are Amperes (Amps)
A movie stunt double is supposed to run across the top of a train (in the opposite direction that the train is moving) and just barely jump off before reaching a tunnel, but after reaching the end of the train (starting from the front). If the train is moving at 150 km/hr, is 2 km long and the tunnel is 20 km away from the end (where the stunt double is going to jump from), how fast (in km/hr) will the stunt double need to run
Answer:
the required speed/velocity of the stunt double is 13.633 km/h
Explanation:
Given the data in the question;
velocity of train V = 150 km/h
distance = length of train + distance between the tunnel and the end
= 2 km + 20 km = 22 km
first we calculate time t taken by the train to reach the tunnel;
t = distance / velocity
we substitute
t = 22 km / 250 km/h
t = 0.1467 hr
so the velocity of the of the stunt double will be;
velocity = distance / time
we substitute
velocity = 2 km / 0.1467 hr
velocity = 13.633 km/h
Therefore, the required speed/velocity of the stunt double is 13.633 km/h
A block is pushed so that it moves up a ramp at constant speed. Identify from choices (a)-(e) below the appropriate description for the work done by the specified force while the block moves from point A to point B. (a) is zero. (b) is less than zero. (c) is greater than zero. (d) could be positive or negative depending on the choice of coordinate systems. (e) cannot be determined.
Answer:
*The work of the Normal (N) y Wy are zero answer a
*The work of the applied force (F1) is positive answer c
*The work of the friction force (fr) is negative, answer b
*The work of the Wy isnegative, answer d
Explanation:
In this exercise it is asked to identify the type of work, unfortunately the diagram cannot be seen, but in the attached we can see the diagram of a body moving upward on an inclined plane, the existing forces are shown.
As the body moves at constant speed the accelerations are zero. Let's look for the job that is defined
W = F. d
W = F d cos θ
where the dot represents the dot product and the bold letters are vectors.
* The work of the Normal (N) and the y component of the weight (Wy) are zero because they are perpendicular to the motion
answer a
* The work of the applied force (F1) is positive because it is in the same direction of motion
W = F1 Δx
answer c
* The work of the friction force (fr) is negative because the force in the displacement have opposite directions
W = -fr Δx
answer b
* the work the x component of the weight (Wx) in this case is negative
answer d
what do you call these sound waves whose frequency is above 20000 hertz
Answer:
Untrasound
Explanation:
Your welcome :)
acceleration greater than 1,000 m/s2 lasting for at least 1 ms will cause injury. Suppose a small child rolls off a bed that is 0.63 m above the floor. If the floor is hardwood, the child's head is brought to rest in approximately 1.8 mm. If the floor is carpeted, this stopping distance is increased to about 1.3 cm. Calculate the magnitude and duration of the deceleration in both cases, to determine the risk of injury. Assume the child remains horizontal during the fall to the floor. Note that a more complicated fall could result in a head velocity greater or less than the speed you calculate. hardwood floor magnitude m/s2 hardwood floor duration ms carpeted floor magnitude m/s2 carpeted floor duration ms g
What is moral duty?Please tell me the answer of this question.
Explanation:
Moral duties are the duties performed by the people on the basis of humanity and moral values. The following are some of the moral duties :
Respecting elders and loving juniorsHelped the needy , poor and helpless peopleHaving friendly behavior with othersRespecting everyone as human beingBeing obedient and respectful to parents , elderly people and teachers.Living ideal and respectful lifeHope I helped ! ♡
Have a wonderful day / night ! ツ ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Police driving with a velocity of 50 m/s decide to chase a speeder who is 3 km ahead and moving at 55 m/s. The police car accelerates at 2 m/s2. Instantly the speeder becomes aware that he is being chased and starts to accelerate at 1 m/s2. How much time (in s) passes until the police catch the speeder
Answer:
The time that passes until the police catch the speeder is 82.6204 seconds.
Explanation:
A body performs a uniformly accelerated rectilinear motion or uniformly varied rectilinear motion when its path is a straight line and its acceleration is constant. This implies that the speed increases or decreases its modulus in a uniform way.
The position is calculated by the expression:
x = x0 + v0*t + 1/2*a*t²
where:
x0 is the initial position. v0 is the initial velocity. a is the acceleration. t is the time interval in which the motion is studied.First, let’s look at the police car’s equations of motion. In this case:
x0= 0 v0= 50 m/s a= 2 m/s²So: x = 50 m/s*t + 1/2*2 m/s²*t²
Now for the speeder’s car’s equations of motion you know:
x0= 3 km= 3,000 m v0= 55 m/s a= 1 m/s²So: x = 3,000 m + 55 m/s*t + 1/2*1 m/s²*t²
When the police catch the speeder they are both in the same position. So:
50 m/s*t + 1/2*2 m/s²*t²= 3,000 m + 55 m/s*t + 1/2*1 m/s²*t²
Solving:
0= 3,000 m + 55 m/s*t + 1/2*1 m/s²*t² - 50 m/s*t - 1/2*2 m/s²*t²
0= 3,000 + 55 *t + 1/2*t² - 50*t - 1*t²
0= 3,000 + 55 *t - 50*t - 1*t² + 1/2*t²
0= 3,000 + 5*t - 1/2*t²
Applying the quadratic formula:
[tex]x1,x2=\frac{-5+-\sqrt{5^{2}-4*(-\frac{1}{2})*3000 } }{2*(-\frac{1}{2} )}[/tex]
x1= -72.6209
and x2= 82.6209
Since you are calculating the value of a time and it cannot be negative, then the time that passes until the police catch the speeder is 82.6204 seconds.
A particle with a charge of -4.3 μC and a mass of 4.4 x 10-6 kg is released from rest at point A and accelerates toward point B, arriving there with a speed of 80 m/s. The only force acting on the particle is the electric force. What is the potential difference VB - VA between A and B? If VB is greater than VA, then give the answer as a positive number. If VB is less than VA, then give the answer as a negative number.
Answer:
ΔV = - 3274 V
Explanation:
For this exercise we can use conservation of energy
starting point.
Em₀ = U = q ΔV
final point
Em_f = K = ½ m v²
energy is conserved
Em₀ = Em_f
q ΔV = ½ m v²
ΔV = [tex]\frac{m \ v^2 }{q}[/tex]
let's calculate
ΔV = [tex]\frac{4.4 \ 10^{-6} \ 80^2 }{ 2 \ 4.3 10^{-6} }[/tex]
ΔV = 3274.4 1 V
since the charge q is negative, the potential at point B must be less than the potential at point A, so the answers
ΔV = - 3274 V
A pendulum is placed on a distant planet. The length is one meter, and the measured period is 1.4 seconds, what is the acceleration of gravity on that planet?
Answer:
[tex]a=20.14\ m/s^2[/tex]
Explanation:
The time period of the simple pendulum is given by :
[tex]T=2\pi \sqrt{\dfrac{l}{g}}[/tex]
l is the length of the pendulum
g is the acceleration due to gravity
We have,
T = 1.4 s, l = 1 m
So,
[tex]T^2=\dfrac{4\pi^2 l}{g}\\\\g= \dfrac{4\pi^2 l}{T^2}\\\\g= \dfrac{4\pi^2 \times 1}{(1.4)^2}\\\\g=20.14\ m/s^2[/tex]
So, the acceleration due to gravity of that planet is [tex]20.14\ m/s^2[/tex].
to see if the original results are Which career field is an applied science?
geology
biotechnology
physics
chemistry
Answer:
it is chemistry
Explanation:
Basketball player Darrell Griffith is on record as
attaining a standing vertical jump of 1.2 m (4 ft).
(This means that he moved upward by 1.2 m after
his feet left the floor.) Griffith weighed 890 N (200
lb). g=9.8 m/s2
1- What is his speed as he leaves the floor?
2- if the time of the part of the jump before his feet left the floor was 0.300s, what was the magnitude of his average acceleration while he was pushing against the floor?
Explanation:
1.
We use the equation
h = [tex]\frac{gt^2}{2}[/tex], where
h is the height traveled,
g is the acceleration due to gravity and
t is the time taken to reach height h.
We can now calculate t to be
[tex]\sqrt{\frac{2*1.2 m}{9.81 m/s^2} }[/tex]
= 0.495 s
Let v be the initial velocity of the player.
The player deaccelarates from v m/s to 0 m/s in 0.495 s at the rate of 9.81 m/s^2.
v = 9.81 m/s^2 x 0.495 s = 4.85 m/s
2.
The player takes 0.3 s to increase his velocity from 0 m/s to 4.85 m/s. So his average accelaration is
4.85 m/s / 0.3 s = 16.2 m/s^2