A woman is standing in the ocean, and she notices that after a wave crest passes by, five more crests pass in a time of 50.2 s. The distance between two successive crests is 30.2 m. What is the wave's (a) period, (b) frequency, (c) wavelength, and (d) speed

Answers

Answer 1

Explanation:

(a) The period of a wave is the time required for one complete cycle. In this case, we have the time of five cycles. So:

[tex]T=\frac{t}{n}\\\\T=\frac{50.2s}{5}\\T=10.04s[/tex]

(b) The frequency of a wave is inversely proportional to its period:

[tex]f=\frac{1}{T}\\f=\frac{1}{10.04s}\\f=0.01Hz[/tex]

(c) The wavelength is the distance between two successive crests, so:

[tex]\lambda=30.2m[/tex]

(d) The speed of a wave is defined as:

[tex]v=f\lambda\\v=(0.1Hz)(30.2m)\\v=3.02\frac{m}{s}[/tex]


Related Questions

Three masses are located in the x-y plane as follows: a mass of 6 kg is located at (0 m, 0 m), a mass of 4 kg is located at (3 m, 0 m), and a mass of 2 kg is located at (0 m, 3 m). Where is the center of mass of the system?
A. (1 m, 2 m)
B. (2 m, 1 m)
C. (1 m, 1 m)
D. (1 m, 0.5 m)
E. (0.5 m, 1 m)

Answers

Answer:

D. (1m, 0.5m)

Explanation:

The center of mass (or center of gravity) of a system of particles is the point where the weight acts when the individual particles are replaced by a single particle of equivalent mass. For the three masses, the coordinates of the center of mass C(x, y) is given by;

x = (m₁x₁ + m₂x₂ + m₃x₃) / M       ----------------(i)

y = (m₁y₁ + m₂y₂ + m₃y₃) / M       ----------------(ii)

Where;

M = sum of the masses

m₁ and x₁ = mass and position of first mass in the x direction.

m₂ and x₂ = mass and position of second mass in the x direction.

m₃ and x₃ = mass and position of third mass in the x direction.

y₁ , y₂ and y₃ = positions of the first, second and third masses respectively in the y direction.

From the question;

m₁ = 6kg

m₂ = 4kg

m₃ = 2kg

x₁ = 0m

x₂ = 3m

x₃ = 0m

y₁ = 0m

y₂ = 0m

y₃ = 3m

M = m₁ + m₂ + m₃ = 6 + 4 + 2 = 12kg

Substitute these values into equations (i) and (ii) as follows;

x = ((6x0) + (4x3) + (2x0)) / 12

x = 12 / 12

x = 1 m  

y = (6x0) + (4x0) + (2x3)) / 12

y = 6 / 12

y = 0.5m

Therefore, the center of mass of the system is at (1m, 0.5m)

The robot HooRU is lost in space, floating around aimlessly, and radiates heat into the depths of the cosmos at the rate of 13.1 W. HooRU's surface area is 1.55 m2 and the emissivity of its surface is 0.287. Ignoring the radiation that HooRU absorbs from the cold universe, what is HooRU's temperature T?

Answers

Answer:

The temperature is  [tex]T = 168.44 \ K[/tex]

Explanation:

From the question ewe are told that

   The rate of heat transferred is    [tex]P = 13.1 \ W[/tex]

     The surface area is  [tex]A = 1.55 \ m^2[/tex]

      The emissivity of its surface is  [tex]e = 0.287[/tex]

Generally, the rate of heat transfer is mathematically represented as

           [tex]H = A e \sigma T^{4}[/tex]

=>         [tex]T = \sqrt[4]{\frac{P}{e* \sigma } }[/tex]

where  [tex]\sigma[/tex] is the Boltzmann constant with value  [tex]\sigma = 5.67*10^{-8} \ W\cdot m^{-2} \cdot K^{-4}.[/tex]

substituting value  

             [tex]T = \sqrt[4]{\frac{13.1}{ 0.287* 5.67 *10^{-8} } }[/tex]

            [tex]T = 168.44 \ K[/tex]

That 85 kg paratrooper from the 50's was moving at constant speed of 56 m/s because the air was applying a frictional drag force to him that matched his weight. If he fell this way for 40 m, how much heat was generated by this frictional drag force in J

Answers

Answer:

46648 J

Explanation:

mass m= 85 Kg

velocity v = 56 m/s

distance covered s =40 m

According to Question,

frictional drag force to him that matched his weight

[tex]\Rightarrow F_d =mg\\=85\times9.81=833 N[/tex]

Therefore, work done by practometer against the drag force = heat was generated by this frictional drag force in J

W=Q= F_d×s

=833×56 = 46648 J

Two conductors made of the same material are connected across the same potential difference. Conductor A has seven times the diameter and seven times the length of conductor B. What is the ratio of the power delivere

Answers

Complete question:

Two conductors made of the same material are connected across the same potential difference. Conductor A has seven times the diameter and seven times the length of conductor B. What is the ratio of the power delivered to A to power delivered to B.

Answer:

The ratio of the power delivered to A to power delivered to B is 7 : 1

Explanation:

Cross sectional area of a wire is calculated as;

[tex]A = \frac{\pi d^2}{4}[/tex]

Resistance of a wire is calculated as;

[tex]R = \frac{\rho L}{A} \\\\R = \frac{4\rho L}{\pi d^2} \\\\[/tex]

Resistance in wire A;

[tex]R = \frac{4\rho _AL_A}{\pi d_A^2}[/tex]

Resistance in wire B;

[tex]R = \frac{4\rho _BL_B}{\pi d_B^2}[/tex]

Power delivered in wire;

[tex]P = \frac{V^2}{R}[/tex]

Power delivered in wire A;

[tex]P = \frac{V^2_A}{R_A}[/tex]

Power delivered in wire B;

[tex]P = \frac{V^2_B}{R_B}[/tex]

Substitute in the value of R in Power delivered in wire A;

[tex]P_A = \frac{V^2_A}{R_A} = \frac{V^2_A \pi d^2_A}{4 \rho_A L_A}[/tex]

Substitute in the value of R in Power delivered in wire B;

[tex]P_B = \frac{V^2_B}{R_B} = \frac{V^2_B \pi d^2_B}{4 \rho_B L_B}[/tex]

Take the ratio of power delivered to A to power delivered to B;

[tex]\frac{P_A}{P_B} = (\frac{V^2_A \pi d^2_A}{4\rho_AL_A} ) *(\frac{4\rho_BL_B}{V^2_B \pi d^2_B})\\\\ \frac{P_A}{P_B} = (\frac{V^2_A d^2_A}{\rho_AL_A} )*(\frac{\rho_BL_B}{V^2_B d^2_B})\\\\[/tex]

The wires are made of the same material, [tex]\rho _A = \rho_B[/tex]

[tex]\frac{P_A}{P_B} = (\frac{V^2_A d^2_A}{L_A} )*(\frac{L_B}{V^2_B d^2_B})\\\\[/tex]

The wires are connected across the same potential; [tex]V_A = V_B[/tex]

[tex]\frac{P_A}{P_B} = (\frac{ d^2_A}{L_A} )* (\frac{L_B}{d^2_B} )[/tex]

wire A has seven times the diameter and seven times the length of wire B;

[tex]\frac{P_A}{P_B} = (\frac{ (7d_B)^2}{7L_B} )* (\frac{L_B}{d^2_B} )\\\\\frac{P_A}{P_B} = \frac{49d_B^2}{7L_B} *\frac{L_B}{d^2_B} \\\\\frac{P_A}{P_B} =\frac{49}{7} \\\\\frac{P_A}{P_B} = 7\\\\P_A : P_B = 7:1[/tex]

Therefore, the ratio of the power delivered to A to power delivered to B is

7 : 1

A 25 kg box is 220 N pulled at constant speed up a frictionless inclined plane by a force that is parallel to the incline. If the plane is inclined at an angle of 25o above the horizontal, the magnitude of the applied force is

Answers

Answer:

F = 103.54N

Explanation:

In order to calculate the magnitude of the applied force, you take into account that the forces on the box are the applied force F and the weight of the box W.

The box moves with a constant velocity. By the Newton second law you have that the sum of forces must be equal to zero.

Furthermore, you have that the sum of forces are given by:

[tex]F-Wsin\theta=0[/tex]                (1)

F: applied force = ?

W: weight of the box = Mg = (25kg)(9.8m/s^2) = 245N

θ: degree of the incline = 25°

You solve the equation (1) for F:

[tex]F=Wsin\theta=(245N)sin(25\°)=103.54N[/tex]          (2)

The applied force on the box is 103.54N

A small, rigid object carries positive and negative 3.00 nC charges. It is oriented so that the positive charge has coordinates (−1.20 mm, 1.20 mm) and the negative charge is at the point (1.70 mm, −1.30 mm).

Required:
a. Find the electric dipole moment of the object.
b. The object is placed in an electric field E = (7.80 103 î − 4.90 103 ĵ). Find the torque acting on the object.
c. Find the potential energy of the object–field system when the object is in this orientation.
d. Assuming the orientation of the object can change, find the difference between the maximum and the minimum potential energies of the system,

Answers

Answer:

Umax = 105.8nJ

Umin =-105.8nJ

Umax-Umin = 211.6nJ

Explanation:

A heavy, 6 m long uniform plank has a mass of 30 kg. It is positioned so that 4 m is supported on the deck of a ship and 2 m sticks out over the water. It is held in place only by its own weight. You have a mass of 70 kg and walk the plank past the edge of the ship. How far past the edge do you get before the plank starts to tip, in m

Answers

Answer:

about 1 meter

Explanation:

   

The distance past the edge that the man will get before the plank starts to tip is; 0.4285 m

We are given;

Mass of plank; m = 30 kg

Length of plank; L = 6m

Mass of man; M = 70 kg

Since the plank has 2 supports which are the deck of the ship, then it means that, we can take moments about the right support before the 2m stick out of the plank.

Thus;

Moment of weight of plank about the right support;

τ_p = mg((L/2) - 2)

τ_p = 30 × 9.8((6/2) - 2)

τ_p = 294 N.m

Moment of weight of man about the right support;

τ_m = Mgx

where x is the distance past the edge the man will get before the plank starts to tip.

τ_m = 70 × 9.8x

τ_m = 686x

Now, moment of the board is counterclockwise while that of the man is clockwise. Thus;

τ_m = τ_p

686x = 294

x = 294/686

x = 0.4285 m

Read more at; https://brainly.com/question/22150651

what is the orbital speed for a satellite 3.5 x 10^8m from the center of mars? Mars mass is 6.4 x 10^23 kg

Answers

Answer:

v = 349.23 m/s

Explanation:

It is required to find the orbital speed for a satellite [tex]3.5\times 10^8\ m[/tex] from the center of mass.

Mass of Mars, [tex]M=6.4\times 10^{23}\ kg[/tex]

The orbital speed for a satellite is given by the formula as follows :

[tex]v=\sqrt{\dfrac{GM}{r}} \\\\v=\sqrt{\dfrac{6.67\times 10^{-11}\times 6.4\times 10^{23}}{3.5\times 10^8}} \\\\v=349.23\ m/s[/tex]

So, the orbital speed for a satellite is 349.23 m/s.

Potential difference of a battery is 2.2 V when it is connected
across a resistance of 5 ohm, if suddenly the potential difference
falls to 1.8V, its internal resistance will be​

Answers

Answer:

1.1ohms

Explanation:

According to ohms law E = IR

If potential difference of a battery is 2.2 V when it is connected across a resistance of 5 ohm and if suddenly the voltage Falls to 1.8V then the current in the 5ohms resistor I = V/R = 1.8/5

I = 0.36A (This will be the load current).

Before we can calculate the value of the internal resistance, we need to know the voltage drop across the internal resistance.

Voltage drop = 2.2V - 1.8V = 0.4V

Then we calculate the internal resistance using ohms law.

According to the law, V = Ir

V= voltage drop

I is the load current

r = internal resistance

0.4 = 0.36r

r = 0.4/0.36

r = 1.1 ohms

A 4.5 kg ball swings from a string in a vertical circle such that it has constant sum of kinetic and gravitational potential energy. Ignore any friction forces from the air or in the string. What is the difference in the tension between the lowest and highest points on the circle

Answers

Answer:

88.29 N

Explanation:

mass of the ball = 4.5 kg

weight of the ball will be = mass x acceleration due to gravity(9.81 m/s^2)

weight W = 4.5 x 9.81 = 44.145 N

centrifugal forces Tc act on the ball as it swings.

At the top point of the vertical swing,

Tension on the rope = Tc - W.

At the bottom point of the vertical swing,

Tension on the rope = Tc + W

therefore,

difference in tension between these two points will be;

Net tension = tension at bottom minus tension at the top

= Tc + W - (Tc - W) = Tc + W -Tc + W

= 2W

imputing the value of the weight W, we have

2W = 2 x 44.145 = 88.29 N

Two astronauts, of masses 60 kg and 80 kg, are initially right next to each other and at rest in outer space. They suddenly push each other apart. What is their separation after the heavier astronaut has moved 12m

Answers

Answer:

The astronauts are separated by 28 m.

Explanation:

The separation of the astronauts can be found by conservation of linear momentum:

[tex] p_{i} = p_{f} [/tex]

[tex] m_{1}v_{1i} + m_{2}v_{2i} = m_{1}v_{1f} + m_{2}v_{2f} [/tex]

[tex] m_{1}*0 + m_{2}*0 = m_{1}v_{1f} + m_{2}v_{2f} [/tex]

[tex] m_{1}v_{1f} = -m_{2}v_{2f} [/tex]

[tex] v_{1f} = -\frac{m_{2}v_{2f}}{m_{1}} = -\frac{80v_{2f}}{60} [/tex]

Now, the distance (x) is:      

[tex] x = \frac{v}{t} [/tex]  

The distance traveled by the astronaut 1 is:

[tex] x_{1} = v_{1f}*t = -\frac{80v_{2f}}{60}*t [/tex]    (1)

And, the distance traveled by the astronaut 2 is:

[tex] x_{2} = v_{2f}*t [/tex]  (2)

From the above equation we have:  

[tex] t = \frac{x_{2}}{v_{2f}} [/tex]    (3)                                    

By entering equation (3) into (1) we have:    

[tex] x_{1} = -\frac{80v_{2f}}{60}*(\frac{x_{2}}{v_{2f}}) [/tex]

[tex] x_{1} = -\frac{4*12}{3} = -16 m [/tex]    

The minus sign is because astronaut 1 is moving in the opposite direction of the astronaut 2.      

Finally, the separation of the astronauts is:

[tex] x_{T} = |x_{1}| + x_{2} = (16 + 12)m = 28 m [/tex]

Therefore, the astronauts are separated by 28 m.

   

I hope it helps you!

The total separation between the two astronauts is 28m.

The given parameters:

masses of the astronauts, = 60 kg and 80 kg

Apply the principle of conservation of momentum to determine the final velocity of each astronauts as follows;

[tex]m_1u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2\\\\60(0) + 80(0) = 60(v_1) + 80(v_2)\\\\0 = 60v_1 + 80v_2\\\\-60v_1 = 80v_2\\\\v_1 = \frac{-80v_2}{60} \\\\v_1 = -1.333v_2[/tex]

Let the time when astronaut 2 moved 12 m = t

The distance traveled by astronaut 1 is calculated as;

[tex]x_1 = v_1 t\\\\x_1 = -1.333v_2t[/tex]

The  distance traveled by astronaut 2 is calculated as;

[tex]x_2 = v_2 t\\\\12 = v_2t\\\\t = \frac{12}{v_2}[/tex]

Now solve for the distance of astronaut 1

[tex]x_1 = - 1.333v_2 \times t\\\\x_1 = -1.333 v_2 \times \frac{12}{v_2} \\\\x_1 = -16 \ m[/tex]

The total separation between the two astronauts is calculated as follows;

[tex]d = |x_1| + x_2\\\\d = 16 + 12\\\\d = 28 \ m[/tex]

Learn more about conservation of linear momentum here: https://brainly.com/question/24424291

A man stands on a platform that is rotating (without friction) with an angular speed of 1.2 rev/s; his arms are outstretched and he holds a brick in each hand.The rotational inertia of the system consisting of the man, bricks, and platform about the central vertical axis of the platform is 6.0 k g times m squared. If by moving the bricks the man decreases the rotational inertia of the system to 2.0 k g times m squared, what is the resulting angular speed of the platform in rad/s

Answers

Answer:

resulting angular speed = 3.6 rev/s

Explanation:

We are given;

Initial angular speed; ω_i = 1.2 rev/s

Initial moment of inertia;I_i = 6 kg/m²

Final moment of inertia;I_f = 2 kg/m²

From conservation of angular momentum;

Initial angular momentum = Final angular momentum

Thus;

I_i × ω_i = I_f × ω_f

Making ω_f the subject, we have;

ω_f = (I_i × ω_i)/I_f

Plugging in the relevant values;

ω_f = (6 × 1.2)/2

ω_f = 3.6 rev/s

A brass ring of diameter 10.00 cm at 19.0°C is heated and slipped over an aluminum rod with a diameter of 10.01 cm at 19.0°C. Assuming the average coefficients of linear expansion are constant. What if the aluminum rod were 10.02 cm in diameter?

Answers

Answer:

the final temperature is [tex]\mathbf{T_f = -377.2^0 C}[/tex]

Explanation:

The change in length of a bar can be expressed with the relation;

[tex]\Delta L = L_f - L_i[/tex]   ---- (1)

Also ; the relative or fractional increase in length  is proportional to the change in temperature.

Mathematically;

ΔL/L_i ∝ kΔT

where;

k is replaced with ∝ (the proportionality constant )

[tex]\dfrac{ \Delta L}{L_i}=\alpha \Delta T[/tex]    ---- (2)

From (1) ;

[tex]L_f = \Delta L + L_i[/tex]  ---  (3)

from (2)

[tex]{ \Delta L}=\alpha \Delta T*{L_i}[/tex]  ---- (4)

replacing (4) into (3);we have;

[tex]L_f =(\alpha \Delta T*{L_i} ) + L_i[/tex]

On re-arrangement; we have

[tex]L_f = L_i + \alpha L_i (\Delta T )[/tex]

from the given question; we can say that :

[tex](L_f)_{brass}}} = (L_f)_{Al}[/tex]

So;

[tex]L_{brass} + \alpha _{brass} L_{brass}(\Delta T) = L_{Al} + \alpha _{Al} L_{Al}(\Delta T)[/tex]

Making the change in temperature the subject of the formula; we have:

[tex]\Delta T = \dfrac{L_{Al}-L_{brass}}{\alpha _ {brass} L_{brass}-\alpha _{Al}L_{Al}}[/tex]

where;

[tex]L_{Al}[/tex] = 10.02 cm

[tex]L_{brass}[/tex] = 10.00 cm

[tex]\alpha _{brass}[/tex] = 19 × 10⁻⁶ °C ⁻¹

[tex]\alpha_{Al}[/tex] = 24  × 10⁻⁶ °C ⁻¹

[tex]\Delta T = \dfrac{10.02-10.00}{19*10^{-6} \ \ {^0}C^{-1} *10.00 -24*10^{-6} \ \ {^0}C^{-1} *10.02}[/tex]

[tex]\Delta T[/tex] = −396.1965135 ° C

[tex]\Delta T[/tex] ≅ −396.20  °C

Given that the initial temperature [tex]T_i = 19^0 C[/tex]

Then ;

[tex]\Delta T = T_f - T_i[/tex]

[tex]T_f = \Delta T + T_I[/tex]

Thus;

[tex]T_f =(-396.20 + 19.0)^0 C[/tex]

[tex]\mathbf{T_f = -377.2^0 C}[/tex]

Thus; the final temperature is [tex]\mathbf{T_f = -377.2^0 C}[/tex]

At a pressure of one atmosphere oxygen boils at −182.9°C and freezes at −218.3°C. Consider a temperature scale where the boiling point of oxygen is 100.0°O and the freezing point is 0°O. Determine the temperature on the Oxygen scale that corresponds to the absolute zero point on the Kelvin scale.

Answers

Answer: -254.51°O

Explanation:

Ok, in our scale, we have:

-182.9°C corresponds to 100° O

-218.3°C corresponds to 0°

Then we can find the slope of this relation as:

S = (100° - 0°)/(-182.9°C - (-218.3°C)) = 2.82°O/°C

So we can have the linear relationship between the scales is:

Y = (2.82°O/°C)*X + B

in this relation, X is the temperature in Celcius and Y is the temperature in the new scale.

And we know that when X = -182.9°C, we must have Y = 0°O

then:

0 = (2.82°O/°C)*(-182.9°C) + B

B = ( 2.82°O/°C*189.9°C) = 515.778°O.

now, we want to find the 0 K in this scale, and we know that:

0 K = -273.15°C

So we can use X =  -273.15°C in our previous equation and get:

Y = (2.82°O/°C)*(-273.15°C) + 515.778°O = -254.51°O

An object of mass 3.07 kg, moving with an initial velocity of 5.07 m/s, collides with and sticks to an object of mass 2.52 kg with an initial velocity of -3.11 m/s. Find the final velocity of the composite objec

Answers

Answer:

This is an inelastic collision. This means, unfortunately, that KE cannot save you, at least in the problem's current form.  

Let's see what conservation of momentum in both directions does ya:

Conservation in the x direction:

Only 1 object here has a momentum in the x direction initally.  

m1v1i + 0 = (m1 + m2)(vx)

3.09(5.10) = (3.09 + 2.52)Vx

Vx = 2.81 m/s

Explanation:

Conservation in the y direction:

Again, only 1 object here has initial velocity in the y:

0 + m2v2i = (m1 +m2)Vy

(2.52)(-3.36) = (2.52 + 3.09)Vy

Vy = -1.51 m/s

++++++++++++++++++++

Now that you have Vx and Vy of the composite object, you can find the final velocity by doing Vf = √Vx^2 + Vy^2)

Vf = √(2.81)^2 + (-1.51)^2

Vf = 3.19 m/s

13. Under what condition (if any) does a moving body experience no energy even though there
is a net force acting on it?
(2 marks)​

Answers

Answer:

When the Net Forces are equal to 0

Explanation:

Momentum of a body can be defined as product of mass and velocity. It is in the same direction as in velocity. When the momentum of a body doesn't change, it is said to be conserved. If the momentum of a body is constant, the the net forces acting on a body becomes zero. When net forces acting on a body is zero, it means that no kinetic energy is being lost or gained, hence the kinetic energy is also conserved. If no energy is being gained or lost, it means that the body will experience no energy.

Question 4
3 pts
I am approaching a traffic light at a speed of 135 km/h when I suddenly notice that
the light is red. I slam on my brakes and come to a stop in 4.29 seconds. What is the
acceleration of the car as I screech to a complete stop? (Note that an object that slows down
simply has a negative acceleration.)
& show work please I want to also understand

Answers

Answer:

The deceleration of the car is [tex]\approx -0.065m/s^{2}[/tex]

Explanation:

to solve this, we will have to apply the knowledge that will be got from the equations of motion.

There are several equations of motion, and depending on the parameters given in the problem, we can choose the perfect equation that can best be used to solve the problem.

In this case, since we are given the velocity and time, and we are solving for the acceleration, we will use this formula

[tex]v = u +at[/tex]

where v= final velocity = 0

u = initial velocity = 135Km/h [tex]\approx 0.278 m/s[/tex]

t= time = 4.29 seconds.

[tex]a = \frac{v - u}{t}[/tex]

[tex]a =\frac{0-0.278}{4.29} \approx 0.065m/s^{2}[/tex]

Hence, the deceleration of the car is [tex]\approx -0.065m/s^{2}[/tex]

a wall, a 55.6 kg painter is standing on a 3.15 m long homogeneous board that is resting on two saw horses. The board’s mass is 14.5 kg. The saw horse on the right is 1.00 m from the right. How far away can the painter walk from the saw horse on the right until the board begins to tip?

Answers

Answer:

0.15 m

Explanation:

First calculating the center of mass from the saw horse

[tex]\frac{3.15}{2} -1=0.575 m[/tex]

from the free body diagram we can write

Taking moment about the saw horse

55.9×9.81×y=14.5×0.575×9.81

y= 0.15 m

So, the painter walk from the saw horse on the right until the board begins to tip is 0.15 m far.

A Nearsighted Eye. A certain very nearsighted person cannot focus on anything farther than 36.0 cm from the eye. Consider the simplified model of the eye. In a simplified model of the human eye, the aqueous and vitreous humors and the lens all have a refractive index of 1.40, and all the refraction occurs at the cornea, whose vertex is 2.60 cm from the retina.

Required:
a. If the radius of curvature of the cornea is 0.65 cm when the eye is focusing on an object 36.0 cm from the cornea vertex and the indexes of refraction are as described before, what is the distance from the cornea vertex to the retina?
b. What does this tell you about the shape of the nearsighted eye?

1. This distance is greater than for the normal eye.
2. This distance is shorter than for the normal eye.

Answers

Answer:

a) The distance from the cornea vertex to the retina is 2.37 cm

b) This distance is shorter than for the normal eye.

Explanation:

a) Let refractive index of air,

n(air) = x = 1

Let refractive index of lens,

n(lens) = y = 1.4

Object distance, s = 36 cm

Radius of curvature, R = 0.65 cm

The distance from the cornea vertex to the retina is the image distance because image is formed in the retina.

Image distance, s' = ?

(x/s) + (y/s') = (y-x)/R

(1/36) + (1.4/s') = (1.4 - 1)/0.65

1.4/s' = 0.62 - 0.028

1.4/s' = 0.592

s' = 1.4/0.592

s' = 2.37 cm

Distance from the cornea vertex to the retina is 2.37 cm

(b) For a normal eye, the distance between the cornea vertex and the retina is 2.60 cm. Since 2.37 < 2.60, this distance is shorter than for normal eye.

A charged particle q moves at constant velocity through a crossed electric and magnetic fields (E and B, which are both constant in magnitude and direction). Write the magnitude of the electric force on the particle in terms of the variables given. Do the same for the magnetic force

Answers

Answer:

The magnitude of the electric force on the particle in terms of the variables given is, F = qE

The magnitude of the magnetic force on the particle in terms of the variables given is, F = q (v x B)

Explanation:

Given;

a charged particle, q

magnitude of electric field, E

magnitude of magnetic field, B

The magnitude of the electric force on the particle in terms of the variables given;

F = qE

The magnitude of the magnetic force on the particle in terms of the variables given;

F = q (v x B)

where;

v is the constant velocity of the charged particle

Answer:

The magnitude of the electric force acting on a charged particle moving through an electric field = |qE|

The magnitude of the magnetic force of a charged particle moving at a particular velocity through a magnetic field = |qv × B|

Explanation:

The electric force acting on a charged particle, q, moving through an electric field, E, is given as a product of the charge on the particle (a scalar quantity) and the electric field (a vector quantity).

Electric force = qE

The magnitude of the electric force = |qE|

That is, magnitude of the product of the charge and the electric field vector.

The magnetic force acting on a charged particle, q, moving with a velocity, v, through a magnetic field, B is a vector product of qv [a product of the charge of the particle (a scalar quantity) and the velocity of the particle (a vector quantity)] and B (a vector quantity).

It is given mathematically as (qv × B)

The magnitude of the magnetic force is the magnitude of the vector product obtained.

Magnitude of the magnetic force = |qv × B|

Hope this Helps!!!

How much force is needed to cause a 15 kilogram bicycle to accelerate at a rate of 10
meters per second per second?
O A. 15 newtons
OB. 1.5 newtons
C. 150 newtons
OD. 10 newtons

Answers

Net force = (mass) x (acceleration)... that’s Newton’s 2nd law of motion.
Net force = (15kg) x (10 m/s squared)
Net force = 150 Newtons.

A helium nucleus (charge = 2e, mass = 6.63 10-27 kg) traveling at 6.20 105 m/s enters an electric field, traveling from point circled A, at a potential of 1.50 103 V, to point circled B, at 4.00 103 V. What is its speed at point circled B?

Answers

Answer:

[tex]v_B=3.78\times 10^5\ m/s[/tex]

Explanation:

It is given that,

Charge on helium nucleus is 2e and its mass is [tex]6.63\times 10^{-27}\ kg[/tex]

Speed of nucleus at A is [tex]v_A=6.2\times 10^5\ m/s[/tex]

Potential at point A, [tex]V_A=1.5\times 10^3\ V[/tex]

Potential at point B, [tex]V_B=4\times 10^3\ V[/tex]

We need to find the speed at point B on the circle. It is based on the concept of conservation of energy such that :

increase in kinetic energy = increase in potential×charge

[tex]\dfrac{1}{2}m(v_A^2-v_B^2)=(V_B-V_A)q\\\\\dfrac{1}{2}m(v_A^2-v_B^2)={(4\times 10^3-1.5\times 10^3)}\times 2\times 1.6\times 10^{-19}=8\times 10^{-16}\\\\v_A^2-v_B^2=\dfrac{2\times 8\times 10^{-16}}{6.63\times 10^{-27}}\\\\v_A^2-v_B^2=2.41\times 10^{11}\\\\v_B^2=(6.2\times 10^5)^2-2.41\times 10^{11}\\\\v_B=3.78\times 10^5\ m/s[/tex]

So, the speed at point B is [tex]3.78\times 10^5\ m/s[/tex].

A block slides down a ramp with friction. The friction experienced by the block is 21 N. The mass of the block is 8 kg. The ramp is 6 meters long (meaning, the block slides across 6 meters of ramp with friction). The block is originally 2 meters vertically above the ground (the bottom of the ramp). What is the change in energy of the block due to friction, expressed in Joules

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

the change in energy of the block due to friction is  [tex]E = -126 \ J[/tex]

Explanation:

From the question we are told that

    The  frictional force is  [tex]F_f = 21 \ N[/tex]

    The mass of the block is  [tex]m_b = 8 \ kg[/tex]

    The length of the ramp is  [tex]l = 6 \ m[/tex]

    The height of the block is  [tex]h = 2 \ m[/tex]

The change in energy of the block due to friction is mathematically represented as

     [tex]\Delta E = - F_s * l[/tex]

The negative sign is to show that the frictional force is acting against the direction of the block movement

  Now substituting values

      [tex]\Delta E = -(21)* 6[/tex]

      [tex]\Delta E = -126 \ J[/tex]

A fox locates rodents under the snow by the slight sounds they make. The fox then leaps straight into the air and burrows its nose into the snow to catch its meal. If a fox jumps up to a height of 85 cm , calculate the speed at which the fox leaves the snow and the amount of time the fox is in the air. Ignore air resistance.

Answers

Answer:

v = 4.08m/s₂

Explanation:

Two narrow slits, illuminated by light consisting of two distinct wavelengths, produce two overlapping colored interference patterns on a distant screen. The center of the eighth bright fringe in one pattern coincides with the center of the third bright fringe in the other pattern. What is the ratio of the two wavelengths?

Answers

Answer:

The ration of the two wavelength is  [tex]\frac{\lambda_1}{\lambda_2} = \frac{8}{3}[/tex]

Explanation:

Generally two slit constructive interference can be mathematically represented as

      [tex]\frac{y}{L} = \frac{m * \lambda}{d}[/tex]

Where  y is the distance between fringe

           d  is the distance between the two slit

           L is the distance between the slit and the wall

           m is the order of the fringe

given that  y , L  , d  are constant  we have that

     [tex]\frac{m }{\lambda } = constant[/tex]

So  

    [tex]\frac{m_1 }{\lambda_1 } = \frac{m_2 }{\lambda_2 }[/tex]

So     [tex]m_1 = 8[/tex]

  and  [tex]m_2 = 3[/tex]

=>     [tex]\frac{m_2}{m_1} = \frac{\lambda_1}{\lambda_2}[/tex]

=>     [tex]\frac{8}{3} = \frac{\lambda_1}{\lambda_2}[/tex]

So

     [tex]\frac{\lambda_1}{\lambda_2} = \frac{8}{3}[/tex]

In a contest, two tractors pull two identical blocks of stone thesame distance over identical surfaces. However, block A is moving twice as fast as block B when it crosses the finish line. Which statement is correct?a) Block A has twiceas much kinetic energy as block B.b) Block B has losttwice as much kinetic energy to friction as block A.c) Block B has losttwice as much kinetic energy as block A.d) Both blocks havehad equal losses of energy to friction.e) No energy is lostto friction because the ground has no displacement.

Answers

Answer:

d) Both blocks have had equal losses of energy to friction

Explanation:

As it is mentioned in the question that two tractors pull two same stone blocks having the identical distance over the same surfaces

Moreover, the block A is twice as fast than block B at the time of crossing the finish line

So based on the above information,  it contains the losses of identical friction

And we also know that

Friction energy loss is

[tex]= \mu \times m \times g \times D[/tex]

It would be the same for both the blocks

hence, the option d is correct

The correct answer will be both blocks have had equal losses of energy to friction.

What is friction?

Friction is defined as when any object is slides on a surface by means of any external force then the force in the opposite direction generated between the surface and the body restrict the motion of the body this force is called as the friction.

As it is mentioned in the question that two tractors pull two same stone blocks having the identical distance over the same surfaces.

Moreover, the block A is twice as fast as block B at the time of crossing the finish line.

So based on the above information,  it contains the losses of identical friction.

And we also know that

Friction energy loss is

[tex]E_f=\mu m g D[/tex]

It would be the same for both the blocks

Hence both blocks have had equal losses of energy to friction.

To know more about friction, follow

https://brainly.com/question/24386803

Four fixed point charges are at the corners of a square with sides of length L. Q1 is positive and at (OL) Q2 is positive and at (LL) Q3 is positive and at (4,0) Q4 is negative and at (0,0) A) Draw and label a diagram of the described arrangement described above (include a coordinate system). B) Determine the force that charge Q1 exerts on charge Qz. C) Determine the force that charge Q3 exerts on charge Q2. D) Determine the force that charge Q4 exerts on charge Q2. E) Now assume that all the charges have the same magnitude (Q) and determine the net force on charge Q2 due to the other three charges. Reduce this to the simplest form (but don't put in the numerical value for the force constant).

Answers

Answer:

A) See Annex

B) Fq₁₂ = K *  Q₁*Q₂ /16 [N] (repulsion force)

C)  Fq₃₂  = K * Q₃*Q₂ /16 [N] (repulsion force)

D) Fq₄₂ = K * Q₄*Q₂ /32 [N] (attraction force)

E) Net force (its components)

Fnx = (2,59/64 )* K*Q²  [N] in direction of original Fq₃₂

Fny =(2,59/64 )* K*Q² [N] in direction of original Fq₁₂

Explanation:

For calculation of d (diagonal of the square, we apply Pythagoras Theorem)

d² = L² + L²    ⇒  d² = 2*L²     ⇒ d = √2*L²   ⇒ d= (√2 )*L

d = 4√2 units of length   (we will assume meters, to work with MKS system of units)

B) Force of Q₁ exerts on charge Q₂

Fq₁₂  = K * Q₁*Q₂ /(L)²     Fq₁₂ = K *  Q₁*Q₂ /16 (repulsion force in the direction indicated in annex)

C) Force of Q₃ exerts on charge Q₂

Fq₃₂  = K * Q₃*Q₂ /(L)²     Fq₃₂  = K * Q₃*Q₂ /16  (repulsion force in the direction indicated in annex)

D) Force of -Q₄ exerts on charge Q₂

Fq₄₂ = K * Q₄*Q₂ / (d)²      Fq₄₂ = K * Q₄*Q₂ /32 (Attraction force in the direction indicated in annex)

E) Net force in the case all charges have the same magnitude Q (keeping the negative sign in Q₄)

Let´s take the force that  Q₄ exerts on Q₂  and Q₂ = Q  ( magnitude) and

Q₄ = -Q

Then the force is:

F₄₂ = K * Q*Q / 32       F₄₂  = K* Q²/32  [N]

We should get its components

F₄₂(x) = [K*Q²/32 ]* √2/2   and so is F₄₂(y)  =  [K*Q²/32 ]* √2/2

Note that this components have opposite direction than forces  Fq₁₂  and

Fq₃₂  respectively, and that Fq₁₂ and Fq₃₂ are bigger than F₄₂(x) and  F₄₂(y) respectively

In new conditions

Fq₁₂ = K *  Q₁*Q₂ /16    becomes  Fq₁₂ = K * Q²/ 16 [N]   and

Fq₃₂ = K* Q₃*Q₂ /16      becomes   Fq₃₂ = K* Q² /16  [N]

Note that Fq₁₂ and Fq₃₂ are bigger than F₄₂(x) and  F₄₂(y) respectively

Then over x-axis we subtract Fq₃₂ - F₄₂(x)  = Fnx

and over y-axis, we subtract   Fq₁₂ - F₄₂(y) = Fny

And we get:

Fnx = K* Q² /16 - [K*Q²/32 ]* √2/2  ⇒  Fnx =  K*Q² [1/16 - √2/64]

Fnx = (2,59/64 )* K*Q²

Fny has the same magnitude  then

Fny =(2,59/64 )* K*Q²

The fact that Fq₁₂ and Fq₃₂ are bigger than F₄₂(x) and  F₄₂(y) respectively, means that Fnx and Fny remains as repulsion forces

A nonuniform electric field is given by the expression = ay î + bz ĵ + cx , where a, b, and c are constants. Determine the electric flux (in the +z direction) through a rectangular surface in the xy plane, extending from x = 0 to x = w and from y = 0 to y = h. (Use any variable or symbol stated above as necessary.)

Answers

English please. I don’t under this. Is it Czechish Orr???

Two red blood cells each have a mass of 9.0 x 10-14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion from the excess charge prevents the cells from clumping together. One cell carries -2.5pC and the other -3.30 pC, and each cell can be modeled as a sphere 3.75 × 10-6 m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed.
1. What initial speed would each need so that they get close enough to just barely touch?
2. What is the maximum acceleration of the cells as they move toward each other and just barely touch?

Answers

Answer:

Explanation:

Given that:

The mass of the cell is 9.0 x 10^-14 kg

The charges of the cell is -2.5pC and the other -3.30 pC

[tex]q_1=-2.5\times10^{-12}C \ \ and \ \ q_2=-3.75\times10^{-12}C[/tex]

Radius is  3.75 × 10-6 m

The final distance is twice the radius

i.e [tex]2*(3.75 \times 10^{-6}) = 7.5*10^{-6}m[/tex]

The formula for the velocity of the cell is

[tex]mv^2=\frac{q_1q_2}{4\pi \epsilon 2 r} \\[/tex]

[tex]v=\sqrt{\frac{q_1q_2}{4\pi \epsilon 2 r} }[/tex]

[tex]=\sqrt{\frac{(-2.5\times10^{-12})(-3.3\times10^{-12}}{4(3.14)(8.85\times10^{-112}(2\times3.75\times10^{-6})(9\times10^{-14})} } \\\\=\sqrt{\frac{(-8.25\times10^{-24})}{(7503.03\times10^{-32})} } \\\\=\sqrt{109955.5779} \\\\=331.60m/s[/tex]

The maximum acceleration of the cells as they move toward each other and just barely touch is

[tex]ma= \frac{q_1q_2}{4\pi \epsilon (2r)^2} \\\\a= \frac{q_1q_2}{4\pi \epsilon (2r)^2(m)}[/tex]

[tex]=\frac{(-2.5\times10^{-12})(-3.3\times10^{-12})}{4(3.14)(8.85\times10^{-12})(2\times3.75\times10^{-6})^2(9\times10^{-14})}[/tex]

[tex]=\frac{(-8.25\times10^{-24})}{(56272.725\times10^{-38})} \\\\=1.47\times10^{10}m/s^2[/tex]

The answers obtained are;

1. The initial speed of each of the red blood cells is [tex]v= 331.66\,m/s[/tex].

2. The maximum acceleration of the cells is [tex]a=1.47\times 10^{10}\,m/s^2[/tex].

The answer is explained as shown below.

We have, the mass of the red blood cell;

[tex]m=9\times 10^{-14}\,kg[/tex]

Also, the charges of the cells are;

[tex]q_1=-2.5\times 10^{-12}\,C[/tex] and[tex]q_2=-3.30\times 10^{-12}\,C[/tex]

The distance between the charges when they barely touch will be two times the radius of each charge.

[tex]r=2\times r\,'=2\times3.75\times10^{-6}\,m=7.5\times10^{-6}\,m[/tex]

Kinetic Energy of moving charges

1. As both the cells are negatively charged they will repel each other.

So, for the cells to come nearly close, their kinetic energies must be equal to the electric potential between them.[tex]\frac{1}{2}mv^2+ \frac{1}{2}mv^2=k\frac{q_1 q_2}{r^2}[/tex]Where, [tex]k=9\times10^9\,Nm^2/C^2[/tex] is the Coulomb's constant.

Now, substituting all the known values in the equation, we get;

[tex](9\times 10^{-14}\,kg)\times v^2=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{7.5\times10^{-6}\,m}[/tex]

[tex]v^2=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{7.5\times10^{-6}\,m\times(9\times 10^{-14}\,kg)} =110000\,m^2/s^2[/tex]

[tex]\implies v=\sqrt{110000\,m^2/s^2}=331.66\,m/s[/tex]

Electrostatic force between two charges

2. Also as the force between them is repulsive, there must be an acceleration to make them barely touch each other.

[tex]ma=k\frac{q_1 q_2}{r^2}[/tex]

Substituting the known values, we get;

[tex](9\times 10^{-14}\,kg)\times a=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{(7.5\times10^{-6}\,m)^2}[/tex]

[tex]\implies a=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{(7.5\times10^{-6}\,m)^2\times(9\times 10^{-14}\,kg) }[/tex]

[tex]a=1.47\times 10^{10}\,m/s^2[/tex]

Find out more information about moving charges here:

https://brainly.com/question/14632877

Two guitarists attempt to play the same note of wavelength 6.50 cm at the same time, but one of the instruments is slightly out of tune. Consequently, a 17.0-Hz beat frequency is heard between the two instruments. What were the possible wavelengths of the out-of-tune guitar’s note? Express your answers, separated by commas, in centimeters to three significant figures IN cm.

Answers

Answer:

The two value of the wavelength for the out of tune guitar is  

[tex]\lambda _2 = (6.48,6.52) \ cm[/tex]

Explanation:

From the question we are told that

     The wavelength of the note is [tex]\lambda = 6.50 \ cm = 0.065 \ m[/tex]

     The difference in beat frequency is [tex]\Delta f = 17.0 \ Hz[/tex]

     

Generally the frequency of the note played by the guitar that is in tune is  

        [tex]f_1 = \frac{v_s}{\lambda}[/tex]

Where [tex]v_s[/tex] is the speed of sound with a constant value [tex]v_s = 343 \ m/s[/tex]

       [tex]f_1 = \frac{343}{0.0065}[/tex]

      [tex]f_1 = 5276.9 \ Hz[/tex]

The difference in beat is mathematically represented as

       [tex]\Delta f = |f_1 - f_2|[/tex]

Where [tex]f_2[/tex] is the frequency of the sound from the out of tune guitar

     [tex]f_2 =f_1 \pm \Delta f[/tex]

substituting values

      [tex]f_2 =f_1 + \Delta f[/tex]

      [tex]f_2 = 5276.9 + 17.0[/tex]  

     [tex]f_2 = 5293.9 \ Hz[/tex]

The wavelength for this frequency is

      [tex]\lambda_2 = \frac{343 }{5293.9}[/tex]

     [tex]\lambda_2 = 0.0648 \ m[/tex]

    [tex]\lambda_2 = 6.48 \ cm[/tex]

For the second value of the second frequency

     [tex]f_2 = f_1 - \Delta f[/tex]

     [tex]f_2 = 5276.9 -17[/tex]

      [tex]f_2 = 5259.9 Hz[/tex]

The wavelength for this frequency is

   [tex]\lambda _2 = \frac{343}{5259.9}[/tex]

   [tex]\lambda _2 = 0.0652 \ m[/tex]

   [tex]\lambda _2 = 6.52 \ cm[/tex]

This question involves the concepts of beat frequency and wavelength.

The possible wavelengths of the out-of-tune guitar are "6.48 cm" and "6.52 cm".

The beat frequency is given by the following formula:

[tex]f_b=|f_1-f_2|\\\\[/tex]

f₂ = [tex]f_b[/tex] ± f₁

where,

f₂ = frequency of the out-of-tune guitar = ?

[tex]f_b[/tex] = beat frequency = 17 Hz

f₁ = frequency of in-tune guitar = [tex]\frac{speed\ of\ sound\ in\ air}{\lambda_1}=\frac{343\ m/s}{0.065\ m}=5276.9\ Hz[/tex]

Therefore,

f₂ = 5276.9 Hz ± 17 HZ

f₂ = 5293.9 Hz (OR) 5259.9 Hz

Now, calculating the possible wavelengths:

[tex]\lambda_2=\frac{speed\ of\ sound}{f_2}\\\\\lambda_2 = \frac{343\ m/s}{5293.9\ Hz}\ (OR)\ \frac{343\ m/s}{5259.9\ Hz}\\\\[/tex]

λ₂ = 6.48 cm (OR) 6.52 cm

Learn more about beat frequency here:

https://brainly.com/question/10703578?referrer=searchResults

Other Questions
How does a worker bee develop a queen out of the larva stage? You want to obtain a sample to estimate a population proportion. At this point in time, you have no reasonable preliminary estimation for the population proportion. You would like to be 80% confident that you estimate is within 2.5% of the true population proportion. How large of a sample size is required? Calculate balloon volume for each balloon at maximum inflation from the circumference data. (You will have to assume that the balloon was a perfect sphere.) To calculate balloon volume, first find the radius (in cm) of the balloon by using the formula C = 2r. Then, use the radius' value in the formula V = (4/3)r3 to calculate volume (in cm3). Show all your work, place units on all numbers (even those within the calculations), and express your answers with appropriate sig figs. (12 pts) Can someone please help me The Bohr radius a0 is the most probable distance between the proton and the electron in the Hydrogen atom, when the Hydrogen atom is in the ground state. The value of the Bohr Radius is: 1 a0 = 0.529 angstrom. One angstrom is 10-10 m. What is the magnitude of the electric force between a proton and an electron when they are at a distance of 2.63 Bohr radius away from each other? Use the fundamental theorem of algebra to explain how many roots your expression can have. How many real roots and how many complex roots are possible? (X+12)^9. Change the unit of length. 6 ft 2 in. = _____ ft Answer Choices A. 6 1/3 B. 6 1/6 C. 6 1/12 D .6 2/3 The water from a fire hose follows a path described by y equals 2.0 plus 0.9 x minus 0.10 x squared (units are in meters). If v Subscript x is constant at 10.0 m/s, find the resultant velocity at the point left parenthesis 9.0 comma 2.0 right parenthesis . write h(x)=x2-6x + 3 in vertex form if four points are collinear, they are also coplanar What information does a phase diagram give? A. The effect of temperature on volume changes of substances B. The effect of temperature and pressure on the phase of a substance C. The effect of concentration on the freezing point of a solution D. The effect of oxidation number on the melting point of a metal If a company uses a predetermined rate for absorbing manufacturing overhead, the volume variance is the: Group of answer choices a. Underapplied or overapplied variable cost element of overhead. b. Underapplied or overapplied fixed cost element of overhead. c. Difference in budgeted costs and actual costs of fixed overhead items. d. Difference in budgeted costs and actual costs of variable overhead items. I need helppppppppppppp Find the slope of the line that passes through (37, 57) and (38, -7). Change each algebraic expression to a verbal expression.1. A+B = 102. 4x - y = a I Am Thinking of a number. 1/12 of it equals 6. 1/3 of it equals_________. DasGute, a not-for-profit (NFP) organization located in Frankfurt, Germany, directly solicited CoolSchool, an NFP university located in Westport, CT, to enter into an agreement to establish a branch campus of CoolSchool in Frankfurt called CoolNewSchool. CoolNewSchool is not a separate legal entity and will operate as adegree-granting branch campus of CoolSchool in Frankfurt with the intent to provide students the same level of undergraduate education that it provides to students enrolled at its main campus in Westport. DasGute has entered into similar agreements with other U.S. universities in fulfillment of its mission to develop human resources through highquality education and research in Frankfurt. The boards of directors for both DasGute and CoolSchool require that CoolNewSchool prepare stand-alone financial statements in accordance with U.S. GAAP to demonstrate that revenue and expenses of CoolNewSchool have been generated and incurred inaccordance with the operating budgets described below.Eddie V., the new controller of CoolNewSchool isnt sure how to account for its formation under U.S. GAAP but has knowledge of NFP accounting principles, specifically whether an agreement should be accounted for as an exchange transaction or a contribution within the stand-alone financial statements.Case FactsResponsibilities of CoolSchoolThe agreement requires that CoolSchool be responsible for the following activities:(1) hiring and terminating of personnel (including the dean, who will function as the CEO of CoolNewSchool) (2) recruiting, admitting, and enrolling students; (3) designing and delivering the academic curriculum; (4) establishing and implementing operational policies and procedures (including compensation for employees and tuition rates for students); and (5) authorizing expenditures once a budget is approved.Responsibilities of DasGuteThe agreement requires that DasGute be responsible to (1) construct, own, furnish, and maintain the site; (2) bear the costs of the joint advisory board; and (3) fund all necessary expenditures for CoolNewSchool, as stipulated by the annual budget.Shared Responsibilities of CoolSchool and DasGuteA nine-member joint advisory board will be established, consisting of three appointed members by CoolSchool, three appointed members by DasGute, and three jointly appointed members. The joint advisory board does not have decision-making authority but will provide guidance on CoolNewSchools operations and final approval of the annual budget.Operating BudgetEach year, CoolNewSchool will develop an operating budget that is subject to approval by the joint advisory board. If an agreement is not reached on a proposed budget, the operating budget for the fiscal year in question will be based on the previous years budget. Any unresolved issue, whether related to the budget or any other matter, will be settled by arbitration. Once the annual budget has been approved, CoolSchool has full expenditure authority for CoolNewSchools operating expenses. DasGute will reimburseCoolSchool for all expenditures incurred in accordance with the annual budget. In addition, DasGute will pay an annual management fee to CoolSchool. While CoolSchool is responsible for tuition billing, DasGute is required to fundany shortfall between the tuition rates established for CoolNewSchool and theactual amounts paid by the students, to cover the annual budgeted operatingexpenses.Required:1. Determine whether CoolNewSchool represents an extension of DasGute orCoolSchool by identifying which entity exercises control of CoolNewSchool(analogous to the idea of control if consolidated financial statements wererequired) and from whose perspective (DasGute or CoolSchool) the controllingentitys agreement should be analyzed as either an exchange transaction or acontribution.2. Does the agreement represent an exchange transaction (and therefore all tuitionamounts should be recorded as "Tuition Revenue") or a contribution (andtherefore the amounts received from DasGute in the form of tuition subsidiesshould be recorded as "Cont? The Husband and the wife ofen argure ____ ( fill in the answer) political affairs Who created artifacts such as ironarmor, swords, pottery, jade, andbronze?A. Hinduism and BuddhismB. EuropeansC. Hal Artisans how to write the lewis dot structure for H2CCl2