A wire has an electric field of 6.2 V/m and carries a current density of 2.4 x 108 A/m2. What is its resistivity

Answers

Answer 1

Answer:

The resistivity is  [tex]\rho = 2.5 *10^{-8} \ \Omega \cdot m[/tex]

Explanation:

From the question we are told that

    The magnitude of the electric field is  [tex]E = 6.2 V/m[/tex]

     The  current density is  [tex]J = 2.4 *10^{8} \ A/m^2[/tex]

Generally  the resistivity is mathematically represented as

         [tex]\rho = \frac{E}{J}[/tex]

substituting values

        [tex]\rho = \frac{6.2}{2.4 *10^{8}}[/tex]

        [tex]\rho = 2.5 *10^{-8} \ \Omega \cdot m[/tex]


Related Questions

Which best describes the relationship between heat, internal energy, and thermal energy?
Internal energy is heat that flows, and heat is the part of thermal energy that can be transferred.
Internal energy is thermal energy that flows, and thermal energy is the part of heat that can be transferred.
Thermal energy is heat that flows, and heat is the part of internal energy that can be transferred.
Heat is thermal energy that flows, and thermal energy is the part of internal energy that can be transferred.
Mark this and return
Save and Exit
Next
Submit

Answers

Answer:

I think it is the 4th answer choice

Explanation:

Heat is thermal energy that flows in the direction of high temp to low temp, and internal energy is the "energy contained in a system", and thermal energy is a part of that.

A 30 L electrical radiator containing heating oil is placed in a 50 m3room. Both the roomand the oil in the radiator are initially at 10◦C. The radiator with a rating of 1.8 kW is nowturned on. At the same time, heat is lost from the room at an average rate of 0.35 kJ/s.After some time, the average temperature is measured to be 20◦C for the air in the room,and 50◦C for the oil in the radiator. Taking the density and the specific heat of the oil to be950 kg/m3and 2.2 kJ/kg◦C, respectively, determine how long the heater is kept on. Assumethe room is well sealed so that there are no air leaks.

Answers

Answer:

Explanation:

Heat absorbed by oil

= mass x specific heat x rise in temperature

= 30 x 10⁻³ x 950 x 2.2 x 10³ x ( 50-10 )

= 25.08 x 10⁵ J  

Heat absorbed by air

= 50 x 1.2 x 1.0054 x 10³ x ( 20-10 )

= 6.03 x 10⁵ J

Total heat absorbed = 31.11 x 10⁵ J

If time required = t

heat lost from room

= .35 x 10³ t

Total heat generated in time t

= 1.8 x 10³ t

Heat generated = heat used

1.8 x 10³ t =  .35 x 10³ t  + 31.11 x 10⁵

1.45 x 10³ t = 31.11 x 10⁵

t = 31.11 x 10⁵ / 1.45 x 10³

t = 2145.5 s

How far apart (in mm) must two point charges of 90.0 nC (typical of static electricity) be to have a force of 3.80 N between them

Answers

Answer:

The distance between the two charges is =4.4mm

Two beams of coherent light start out at the same point in phase and travel different paths to arrive at point P. If the maximum destructive interference is to occur at point P, the two beams must travel paths that differ by

Answers

Answer:

the two beams must travel paths that differ by one-half of a wavelength.

Pulling out of a dive, the pilot of an airplane guides his plane into a vertical circle with a radius of 600 m. At the bottom of the dive, the speed of the airplane is 150 m/s. What is the apparent weight of the 70.0-kg pilot at that point?

Answers

Answer:

The apparent weight of the pilot is 3311 N

Explanation:

Given;

radius of the vertical circle, r = 600 m

speed of the plane, v = 150 m/s

mass of the pilot, m = 70 kg

Weight of the pilot due to his circular motion;

[tex]W= F_v\\\\F_v = \frac{mv^2}{r} \\\\F_v = \frac{70*150^2}{600} \\\\F_v = 2625 \ N[/tex]

Real weight of the pilot;

[tex]W_R = mg\\\\W_R = 70 *9.8\\\\W_R = 686 \ N[/tex]

Apparent weight - Real weight of pilot = weight due to centripetal force

[tex]F_N - mg = \frac{mv^2}{r} \\\\F_N = \frac{mv^2}{r} + mg\\\\F_N = 2625 \ N + 686 \ N\\\\F_N = 3311\ N[/tex]

Therefore, the apparent weight of the pilot is 3311 N

Two identical small charged spheres are a certain distance apart, and each one initially experiences an electrostatic force of magnitude F due to the other. With time, charge gradually leaks off of both spheres. When each of the spheres has lost half its initial charge, the magnitude of the electrostatic force will be

Answers

Answer:

F' = F/4

Thus, the magnitude of electrostatic force will become one-fourth.

Explanation:

The magnitude of force applied by each charge on one another can be given by Coulomb's Law:

F = kq₁q₂/r²   -------------- equation 1

where,

F = Force applied by charges

k = Coulomb's Constant

q₁ = magnitude of first charge

q₂ = magnitude of 2nd charge

r = distance between the charges

Now, in the final state the charges on both spheres are halved. Therefore,

q₁' = q₁/2

q₂' = q₂/2

Hence, the new force will be:

F' = kq₁'q₂'/r²

F' = k(q₁/2)(q₂/2)/r²

F' = (kq₁q₂/r²)(1/4)

using equation 1:

F' = F/4

Thus, the magnitude of electrostatic force will become one-fourth.

The magnitude of the electrostatic force will be F' = F/4

The magnitude of the electrostatic force:

Here we used Coulomb's Law:

F = kq₁q₂/r²   -------------- equation 1

Here

F = Force applied by charges

k = Coulomb's Constant

q₁ = magnitude of first charge

q₂ = magnitude of 2nd charge

r = distance between the charges

Now

q₁' = q₁/2

q₂' = q₂/2

So, the new force should be

F' = kq₁'q₂'/r²

F' = k(q₁/2)(q₂/2)/r²

F' = (kq₁q₂/r²)(1/4)

So,

F' = F/4

Learn more about force here: https://brainly.com/question/14282312

mention two similarities of citizen and aliens​

Answers

Answer:

The main points of difference between a citizen and alien are: (a) A citizen is a permanent resident of a state, while an alien is a temporary resident, who comes for a specific duration of time as a tourist or on diplomatic assignment. ... Aliens do not possess such rights in the state where they reside temporarily

Explanation:

A hard drive disk rotates at 7200 rpm. The disk has a diameter of 5.1 in (13 cm). What is the speed of a point 6.0 cm from the center axle

Answers

Answer:

The speed will be "3.4×10⁴ m/s²".

Explanation:

The given values are:

Angular speed,

w = 7200 rpm

i.e.,

  = [tex]7200 \times \frac{2 \pi}{60}[/tex]

  = [tex]753.6 \ rad/s[/tex]

Speed from the center,

r = 6.0 cm

As we know,

⇒  Linear speed, [tex]v=wr[/tex]

On putting the estimated values, we get

                               [tex]=753.6\times 0.06[/tex]

                               [tex]=45.216 \ m[/tex]

Now,

Acceleration on disk will be:

⇒  [tex]a=\frac{v^2}{r}[/tex]

       [tex]=34074 \ m/s^2[/tex]

       [tex]=3.4\times 10^4 \ m/s^2[/tex]

An asteroid that has an orbit with a semi-major axis of 4 AU will have an orbital period of about ______ years.

Answers

Answer:

16 years.

Explanation:

Using Kepler's third Law.

P2=D^3

P=√d^3

Where P is the orbital period and d is the distance from the sun.

From the question the semi major axis of the asteroid is 4 AU= distance. The distance is always express in astronomical units.

P=?

P= √4^3

P= √256

P= 16 years.

Orbital period is 16 years.

In the child's game of tetherball, a rope attached to the top of a tall pole is tied to a ball. Players hit the ball in opposite directions in an attempt to wrap the ball and rope around the pole. Assume the rope has negligible mass and that resistive forces, such as air resistance and friction, can be neglected. As the ball wraps around the pole between hits, how does the angular speed of the ball change

Answers

Answer:

The angular speed of the ball will increase

Explanation:

the angular speed of the ball will increase because the force of hit by the players will sum up in opposite direction to increase the angular speed

A wave with a frequency of 1200 Hz propagates along a wire that is under a tension of 800 N. Its wavelength is 39.1 cm. What will be the wavelength if the tension is decreased to 600 N and the frequency is kept constant

Answers

Answer:

The wavelength will be 33.9 cm

Explanation:

Given;

frequency of the wave, F = 1200 Hz

Tension on the wire, T = 800 N

wavelength, λ = 39.1 cm

[tex]F = \frac{ \sqrt{\frac{T}{\mu} }}{\lambda}[/tex]

Where;

F is the frequency of the wave

T is tension on the string

μ is mass per unit length of the string

λ is wavelength

[tex]\sqrt{\frac{T}{\mu} } = F \lambda\\\\\frac{T}{\mu} = F^2\lambda^2\\\\\mu = \frac{T}{F^2\lambda^2} \\\\\frac{T_1}{F^2\lambda _1^2} = \frac{T_2}{F^2\lambda _2^2} \\\\\frac{T_1}{\lambda _1^2} = \frac{T_2}{\lambda _2^2}\\\\T_1 \lambda _2^2 = T_2\lambda _1^2\\\\[/tex]

when the tension is decreased to 600 N, that is T₂ = 600 N

[tex]T_1 \lambda _2^2 = T_2\lambda _1^2\\\\\lambda _2^2 = \frac{T_2\lambda _1^2}{T_1} \\\\\lambda _2 = \sqrt{\frac{T_2\lambda _1^2}{T_1}} \\\\\lambda _2 = \sqrt{\frac{600* 0.391^2}{800}}\\\\\lambda _2 = \sqrt{0.11466} \\\\\lambda _2 =0.339 \ m\\\\\lambda _2 =33.9 \ cm[/tex]

Therefore, the wavelength will be 33.9 cm

How does an atom of rubidium-85 become a rubidium ion with a +1 charge?

Answers

Answer:

C. The atom loses 1 electron to have a total of 36.

Explanation:

Cations have a positive charge. Cations lose electrons.

The number of electrons in a Rubidium atom is 37. If the atom loses 1 electron, then it has 36 left.

1. The uniform purely axial magnetic induction required by the experiment in a volume large enough to accommodate the Lorentz Tube is produced by the Helmholtz Coils. What is the magnetic induction due to a coil current 1.5 Ampere

Answers

Complete Question

The uniform purely axial magnetic induction required by the experiment in a volume large enough to accommodate the Lorentz Tube is produced by the Helmholtz Coils. What is the magnetic induction due to a coil current 1.5 Ampere? Convert the result in the still popular non-SI unit Gauss (1 Tesla = 10^4 Gauss).

B = N*mue*I/(2*r)

# of loops = 140

radius of the coil = 0.14m

Answer:

 The magnetic induction is [tex]B = 2.639 \ Gauss[/tex]

Explanation:

From the question we are told that

     The coil current is  [tex]I = 1.5 \ A[/tex]

     The number of loops is  [tex]N = 140[/tex]

The magnetic field due to the current is mathematically represented as

           [tex]B = \mu_o * N * I[/tex]

[tex]\mu_o[/tex] is the permeability of free space with value  [tex]\mu_o = 4\pi * 10^{-7} N/A^2[/tex]

substituting value

           [tex]B = 4\pi * 10^{-7} * 140 * 1.5[/tex]

           [tex]B = 2.639*19^{-4} \ T[/tex]

From question

        (1 Tesla = [tex]10^4 \ Gauss[/tex]).

=>      [tex]B = 2.693 *10^{-4} *10^4 = 2.63 \ Gauss[/tex]

=>      [tex]B = 2.639 \ Gauss[/tex]

         

Please Help!!!! I WILL GIVE BRAINLIEST!!!!!!!!!!!!!

Upon using Thomas Young’s double-slit experiment to obtain measurements, the following data were obtained. Use these data to determine the wavelength of light being used to create the interference pattern. Do this using three different methods.

The angle to the eighth maximum is 1.12°.

The distance from the slits to the screen is 302.0 cm.

The distance from the central maximum to the fifth minimum is 3.33 cm.

The distance between the slits is 0.000250 m.



The 3 equations I used were 1). d sin θ_m =(m)λ 2). delta x =λL/d and 3.) d(x_n)/L=(n-1/2)λ
but all my answers are different.
DID I DO SOMETHING WRONG!!!!!!!

Answers

Given info

d = 0.000250 meters = distance between slits

L = 302 cm = 0.302 meters = distance from slits to screen

[tex]\theta_8 = 1.12^{\circ}[/tex] = angle to 8th max (note how m = 8 since we're comparing this to the form [tex]\theta_m[/tex])

[tex]x_n = x_5 = 3.33 \text{ cm} = 0.0333 \text{ meters}[/tex] (n = 5 as we're dealing with the 5th minimum )

---------------

Method 1

[tex]d\sin(\theta_m) = m\lambda\\\\0.000250\sin(\theta_8) = 8\lambda\\\\8\lambda = 0.000250\sin(1.12^{\circ})\\\\\lambda = \frac{0.000250\sin(1.12^{\circ})}{8}\\\\\lambda \approx 0.000 000 61082633\\\\\lambda \approx 6.1082633 \times 10^{-7} \text{meters}\\\\ \lambda \approx 6.11 \times 10^{-7} \text{ meters}\\\\ \lambda \approx 611 \text{ nm}[/tex]

Make sure your calculator is in degree mode.

-----------------

Method 2

[tex]\Delta x = \frac{\lambda*L*m}{d}\\\\L*\tan(\theta_m) = \frac{\lambda*L*m}{d}\\\\\tan(\theta_m) = \frac{\lambda*m}{d}\\\\\tan(\theta_8) = \frac{\lambda*8}{0.000250}\\\\\tan(1.12^{\circ}) = \frac{\lambda*8}{0.000250}\\\\\lambda = \frac{1}{8}*0.000250*\tan(1.12^{\circ})\\\\\lambda \approx 0.00000061094306 \text{ meters}\\\\\lambda \approx 6.1094306 \times 10^{-7} \text{ meters}\\\\\lambda \approx 611 \text{ nm}\\\\[/tex]

-----------------

Method 3

[tex]\frac{d*x_n}{L} = \left(n-\frac{1}{2}\right)\lambda\\\\\frac{0.000250*3.33}{302.0} = \left(5-\frac{1}{2}\right)\lambda\\\\0.00000275662251 \approx \frac{9}{2}\lambda\\\\\frac{9}{2}\lambda \approx 0.00000275662251\\\\\lambda \approx \frac{2}{9}*0.00000275662251\\\\\lambda \approx 0.00000061258279 \text{ meters}\\\\\lambda \approx 6.1258279 \times 10^{-7} \text{ meters}\\\\\lambda \approx 6.13 \times 10^{-7} \text{ meters}\\\\\lambda \approx 613 \text{ nm}\\\\[/tex]

There is a slight discrepancy (the first two results were 611 nm while this is roughly 613 nm) which could be a result of rounding error, but I'm not entirely sure.

An ice skater spinning with outstretched arms has an angular speed of 5.0 rad/s . She tucks in her arms, decreasing her moment of inertia by 11 % . By what factor does the skater's kinetic energy change? (Neglect any frictional effects.)

Answers

Answer:

  K_{f} / K₀ =1.12

Explanation:

This problem must work using the conservation of angular momentum (L), so that the moment is conserved in the system all the forces must be internal and therefore the torque is internal and the moment is conserved.

Initial moment. With arms outstretched

         L₀ = I₀ w₀

the wo value is 5.0 rad / s

final moment. After he shrugs his arms

         [tex]L_{f}[/tex] = I_{f}  w_{f}

indicate that the moment of inertia decreases by 11%

        I_{f} = I₀ - 0.11 I₀ = 0.89 I₀

        L_{f} = L₀

        I_{f} w_{f}  = I₀ w₀

        w_{f} = I₀ /I_{f}    w₀

let's calculate

        w_{f} = I₀ / 0.89 I₀   5.0

        w_{f} = 5.62 rad / s

Having these values ​​we can calculate the change in kinetic energy

         [tex]K_{f}[/tex] / K₀ = ½ I_{f} w_{f}² (½ I₀ w₀²)

         K_{f} / K₀ = 0.89 I₀ / I₀ (5.62 / 5)²

         K_{f} / K₀ =1.12

Two space ships collide in deep space. Spaceship P, the projectile, has a mass of 4M,
while the target spaceship T has a mass of M. Spaceship T is initially at rest and the
collision is elastic. If the final velocity of Tis 8.1 m/s, what was the initial velocity of
P?

Answers

Answer:

The initial velocity of spaceship P was u₁ = 5.06 m/s

Explanation:

In an elastic collision between two bodies the expression for the final velocity of the second body is given as follows:

[tex]V_{2} = \frac{(m_{2}-m_{1}) }{(m_{1}+m_{2})}u_{2} + \frac{2m_{1} }{(m_{1}+m_{2})}u_{1}[/tex]

Here, subscript 1 is used for spaceship P and subscript 2 is used for spaceship T. In this equation:

V₂ = Final Speed of Spaceship T = 8.1 m/s

m₁ = mass of spaceship P = 4 M

m₂ = mass of spaceship T = M

u₁ = Initial Speed of Spaceship P = ?

u₂ = Initial Speed of Spaceship T = 0 m/s

Using these values in the given equation, we get:

[tex]8.1 m/s = \frac{M-4M }{4M+M}(0 m/s) + \frac{2(4M) }{4M+M}u_{1}[/tex]

8.1 m/s = (8 M/5 M)u₁

u₁ = (5/8)(8.1 m/s)

u₁ = 5.06 m/s

You’re driving down the highway late one night at 20 m/s when a deer steps onto the road 35 m in front of you. Your reaction time before stepping on the brakes is 0.50 s, and the maximum deceleration of your car is 10 m/s2.

a. How much distance is between you and the deer when you come to a stop?

b. What is the maximum speed you could have and still not hit the deer?

Answers

Answer:

(a) Distance between deer and car = 5 m

(b) Vmax = 21.92 m/s

Explanation:

a.

First we calculate distance covered during response time:

s₁ = vt   --------- equation 1

where,

s₁ = distance covered during response time = ?

v = speed of car = 20 m/s

t = response time = 0.5 s

Therefore,

s₁ = (20 m/s)(0.5 s)

s₁ = 10 m

Now, we calculate the distance covered by the car during deceleration. Using 3rd equation of motion:

2as₂ = Vf² - Vi²

s₂ = (Vf² - Vi²)/2a ------ eqation 2

where,

a = deceleration = - 10 m/s²

s₂ = Distance covered during deceleration = ?

Vf = Final Velocity = 0 m/s (since car finally stops)

Vi = Initial Velocity = 20 m/s

Therefore,

s₂ = [(0 m/s)² - (20 m/s)²]/2(-10 m/s²)

s₂ = (400 m²/s²)/(20 m/s²)

s₂ = 20 m

thus, the total distance covered by the car before coming to rest is given as:

s = s₁ + s₂

s = 10 m + 20 m

s = 30 m

Now, the distance between deer and car, when it comes to rest, can be calculated as:

Distance between deer and car = 35 m - s = 35 m - 30 m

Distance between deer and car = 5 m

b.

Since, the distance covered by the car in total must be equal to 35 m at maximum. Therefore,

s₁ + s₂ = 35 m

using equation 1 and equation 2 from previous part:

Vi t + (Vf² - Vi²)/2a = 35 m

Vi(0.5 s) + [(0 m/s)² - Vi²]/2(-10 m/s²) = 35 m

0.5 Vi + 0.05 Vi² = 35

0.05 Vi² + 0.5 Vi - 35 = 0

solving this quadratic equation, we get:

Vi = - 31.92 m/s  (OR)  Vi = 21.92 m/s

For maximum velocity:

Vmax = 21.92 m/s

The center of gravity of an ax is on the centerline of the handle, close to the head. Assume you saw across the handle through the center of gravity and weigh the two parts. What will you discover?

Answers

Answer:

I believe it is they will weigh the same

Explanation:

Center of gravity is the axis on which the mass rotates evenly if I remember correctly from AP Physics

The head side is heavier than the handle side. - this will be discovered.

What is center of gravity of a object?

Theoretically, the body's center of gravity is where all of the weight is believed to be concentrated. Knowing the centre of gravity is crucial because it may be used to forecast how a moving object will behave when subjected to the effects of gravity. In designing immobile constructions like buildings and bridges, it is also helpful.

We know that center of gravity is  close to some particular point refers the mass of the point is greater then others. It is given that: The center of gravity of an ax is on the centerline of the handle, close to the head.

So, we can conclude that the head side of the ax is heavier than the handle side of it.

Learn more about center of gravity here:

https://brainly.com/question/17409320

#SPJ5

g At some point the road makes a right turn with a radius of 117 m. If the posted speed limit along this part of the highway is 25.1 m/s, how much should Raquel bank the turn so that a vehicle traveling at the posted speed limit can make the turn without relying on the frictional force between the tires and the road

Answers

Answer:

Ф = 28.9°

Explanation:

given:

radius (r) = 117m

velocity (v) = 25.1 m/s

required: angle Ф

Ф = inv tan (v² / (r * g))      we know that g = 9.8

Ф = inv tan (25.1² / (117 * 9.8))

Ф = 28.9°

An 88.0 kg spacewalking astronaut pushes off a 645 kg satellite, exerting a 110 N force for the 0.450 s it takes him to straighten his arms. How far apart are the astronaut and the satellite after 1.40 min?

Answers

Answer:

The astronaut and the satellite are 53.718 m apart.

Explanation:

Given;

mass of spacewalking astronaut, = 88 kg

mass of satellite, = 645 kg

force exerts by the satellite, F = 110N

time for this action, t = 0.45 s

Determine the acceleration of the satellite after the push

F = ma

a = F / m

a = 110 / 645

a = 0.171 m/s²

Determine the final velocity of the satellite;

v = u + at

where;

u is the initial velocity of the satellite = 0

v = 0 + 0.171 x 0.45

v = 0.077 m/s

Determine the displacement of the satellite after 1.4 m

d₁ = vt

d₁ = 0.077 x (1.4 x 60)

d₁ = 6.468 m

According to Newton's third law of motion, action and reaction are equal and opposite;

Determine the backward acceleration of the astronaut after the push;

F = ma

a = F / m

a = 110 / 88

a = 1.25 m/s²

Determine the final velocity of the astronaut

v = u + at

The initial velocity of the astronaut = 0

v = 1.25 x 0.45

v = 0.5625 m/s

Determine the displacement of the astronaut after 1.4 min

d₂ = vt

d₂ = 0.5625 x (1.4 x 60)

d₂ = 47.25 m

Finally, determine the total separation between the astronaut and the satellite;

total separation = d₁ + d₂

total separation = 6.468 m + 47.25 m

total separation = 53.718 m

Therefore, the astronaut and the satellite are 53.718 m apart.

A 5.0-Ω resistor and a 9.0-Ω resistor are connected in parallel. A 4.0-Ω resistor is then connected in series with this parallel combination. An ideal 6.0-V battery is then connected across the series-parallel combination of the three resistors. What is the current through (a) the 4.0-Ω resistor? (b) the 5.0-Ω resistor? (c) the 9.0-Ω resistor?

Answers

Answer:

Explanation:

The current through the  resistor is 0.83 A

.

Part b

The current through  resistor is 0.53 A

.

Part c

The current through  resistor is 0.30 A

1. In a Millikan type experiment, two horizontal plates are 2.5 cm apart. A latex sphere of
mass 1.5 x 10-15 kg remains stationary when the potential difference between the
plates is 460 V, with the upper plate positive. [2+2+2+2 = 8 marks]
a. Is the sphere charged negatively or positively?
b. What is the magnitude of the electric field intensity between the plates?
C. Calculate the magnitude of the charge on the latex sphere.
d. How many excess or deficit electrons does the sphere have?

Answers

Answer:

Explanation:

a. Is the sphere charged negatively or positively?

The sphere us negatively charged. In a Millikan type experiment, there will be two forces that will be acting on the sphere which are the electric force which acts upward and also the gravity which acts downward.

Because the upper plate is positively charged, there'll what an attractive curve with an upward direction which will be felt by the negatively charged sphere.

b. What is the magnitude of the electric field intensity between the plates?

The magnitude of the electric field intensity between the plates is 18400v/m.

C. Calculate the magnitude of the charge on the latex sphere.

The magnitude of the charge on the latex sphere hae been solved and attached

d. How many excess or deficit electrons does the sphere have?

There are 5 excess electrons that the sphere has.

Check the attachment for further explanation.


When looking at the chemical symbol, the charge of the ion is displayed as the
-superscript
-subscript
-coefficient
-product

Answers

Answer:

superscript

Explanation:

When looking at the chemical symbol, the charge of the ion is displayed as the Superscript. This is because the charge of ions is usually written up on the chemical symbol while the atom/molecule is usually written down the chemical symbol. The superscript refers to what is written up on the formula while the subscript is written down on the formula.

An example is H2O . The 2 present represents two molecule of oxygen and its written as the subscript while Fe2+ in which the 2+ is written up is known as the superscript.

Answer:

superscript

Explanation:

A simple pendulum of length 1.62 m has a mass of 117 g attached. It is drawn back 38.0 degrees and then released. What is the maximum speed of the mass

Answers

Answer:

The maximum speed of the mass is 4.437 m/s.

Explanation:

Given;

length of pendulum, L = 1.62 m

attached mass, m = 117 g

angle of inclination, θ = 38°

This mass was raised to a height of

h = 1.62 - cos38° = 1.0043 m

Apply the principle of conservation of mechanical energy

PE = KE

mgh = ¹/₂mv²

v  = √(2gh)

v = √(2 * 9.8 * 1.0043)

v = 4.437 m/s.

Therefore, the maximum speed of the mass is 4.437 m/s.

The magnitude of the magnetic flux through the surface of a circular plate is 6.80 10-5 T · m2 when it is placed in a region of uniform magnetic field that is oriented at 43.0° to the vertical. The radius of the plate is 8.50 cm. Determine the strength of the magnetic field. mT A circular plate of radius r is lying flat. A field of arrows labeled vector B rising up and to the right pass through the plate.

Answers

Answer:

B = 4.1*10^-3 T = 4.1mT

Explanation:

In order to calculate the strength of the magnetic field, you use the following formula for the magnetic flux trough a surface:

[tex]\Phi_B=S\cdot B=SBcos\alpha[/tex]        (1)

ФB: magnetic flux trough the circular surface = 6.80*10^-5 T.m^2

S: surface area of the circular plate = π.r^2

r: radius of the circular plate = 8.50cm = 0.085m

B: magnitude of the magnetic field = ?

α: angle between the direction of the magnetic field and the normal to the surface area of the circular plate = 43.0°

You solve the equation (1) for B, and replace the values of the other parameters:

[tex]B=\frac{\Phi_B}{Scos\alpha}=\frac{6.80*10^{-5}T.m^2}{(\pi (0.085m)^2)cos(43.0\°)}\\\\B=4.1*10^{-3}T=4.1mT[/tex]

The strength of the magntetic field is 4.1mT

Monochromatic coherent light shines through a pair of slits. If the wavelength of the light is decreased, which of the following statements are true of the resulting interference pattern? (There could be more than one correct choice.)
a. The distance between the maxima decreases.
b. The distance between the minima decreases.
c. The distance between the maxima stays the same.
d. The distance between the minima increases.
e. The distance between the minima stays the same.

Answers

Answer:

he correct answers are a, b

Explanation:

In the two-slit interference phenomenon, the expression for interference is

          d sin θ= m λ                       constructive interference

          d sin θ = (m + ½) λ             destructive interference

in general this phenomenon occurs for small angles, for which we can write

           tanθ = y / L

           tan te = sin tea / cos tea = sin tea

           sin θ = y / La

un

derestimate the first two equations.

Let's do the calculation for constructive interference

         d y / L = m λ

the distance between maximum clos is and

         y = (me / d) λ

this is the position of each maximum, the distance between two consecutive maximums

         y₂-y₁ = (L   2/d) λ - (L 1 / d) λ₁          y₂ -y₁ = L / d λ

examining this equation if the wavelength decreases the value of y also decreases

the same calculation for destructive interference

         d y / L = (m + ½) κ

         y = [(m + ½) L / d] λ

again when it decreases the decrease the distance

the correct answers are a, b

A very long, solid cylinder with radius R has positive charge uniformly distributed throughout it, with charge per unit volume \rhorho.
(a) Derive the expression for the electric field inside the volume at a distance r from the axis of the cylinder in terms of the charge density \rhorho.
(b) What is the electric field at a point outside the volume in terms of the charge per unit length \lambdaλ in the cylinder?
(c) Compare the answers to parts (a) and (b) for r = R.
(d) Graph the electric-field magnitude as a function of r from r = 0 to r = 3R.

Answers

Answer:

the answers are provided in the attachments below

Explanation:

Gauss law state that the net electric field coming out of a closed surface is directly proportional to the charge enclosed inside the closed surface

Applying Gauss law to the long solid cylinder

A) E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]

B) E = 2K λ / r

C) Answers from parts a and b are the same

D) attached below

Applying Gauss's law which states that the net electric field in an enclosed surface is directly ∝ to the charge found in the enclosed surface.

A ) The expression for the electric field inside the volume at a distance r

Gauss law :  E. A = [tex]\frac{q}{e_{0} }[/tex]  ----- ( 1 )

where : A = surface area = 2πrL ,  q = p(πr²L)

back to equation ( 1 )

E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]

B) Electric field at point Outside the volume in terms of charge per unit length  λ

Given that:  linear charge density = area * volume charge density

                                            λ    =  πR²P

from Gauss's law : E ( 2πrL) = [tex]\frac{q}{e_{0} }[/tex]

∴ E = [tex]\frac{\pi R^{2}P }{2e_{0}r\pi }[/tex]    ----- ( 2 )

where : πR²P = λ

Back to equation ( 2 )

E = λ  / 2e₀π*r              where : k = 1 / 4πe₀

∴ The electric field ( E ) at point outside the volume in terms of charge per unit Length λ

E = 2K λ / r

C) Comparing answers A and B

Answers to part A and B are similar

Hence we can conclude that Applying Gauss law to the long solid cylinder

E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex], E = 2K λ / r also Answers from parts a and b are the same.

Learn more about Gauss's Law : https://brainly.com/question/15175106

An ice skater is in a fast spin with her arms held tightly to her body. When she extends her arms, which of the following statements in NOT true?
A. Het total angular momentum has decreased
B. She increases her moment of inertia
C. She decreases her angular speed
D. Her moment of inertia changes

Answers

Answer:

A. Her total angular momentum has decreased

Explanation:

Total angular momentum is the product of her moment of inertia and angular velocity. In this scenario it doesn’t decrease but rather remains constant as the movement of the arms doesn’t have any effect on the total angular momentum.

The movement of the arm under certain conditions however has varying effects and changes on parameters such as the moment of inertia and the angular speed.

What is the transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described in Question 3

Answers

Answer:

3) Transmitted intensity of light if unpolarized light passes through a single polarizing filter = 40 W/m²

- Transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described = 7.5 W/m²

Explanation:

Complete Question

3) What is the transmitted intensity of light if unpolarized light passes through a single polarizing filter and the initial intensity is 80 W/m²?

- What is the transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described in Question 3 (the setup)? Show all work in your answer.

The image of this setup attached to this question as obtained from online is attached to this solution.

Solution

3) When unpolarized light passes through a single polarizer, the intensity of the light is cut in half.

Hence, if the initial intensity of unpolarized light is I₀ = 80 W/m²

The intensity of the light rays thay pass through the first single polarizer = I₁ = (I₀/2) = (80/2) = 40 W/m²

- According to Malus' law, the intensity of transmitted light through a polarizer is related to the intensity of the incident light and the angle at which the polarizer is placed with respect to the major axis of the polarizer before the current polarizer of concern.

I₂ = I₁ cos² θ

where

I₂ = intensity of light that passes through the second polarizer = ?

I₁ = Intensity of light from the first polarizer that is incident upon the second polarizer = 40 W/m²

θ = angle between the major axis of the first and second polarizer = 30°

I₂ = 40 (cos² 30°) = 40 (0.8660)² = 30 W/m²

In the same vein, the intensity of light that passes through the third/additional polarizer is related to the intensity of light that passes through the second polarizer and is incident upon this third/additional polarizer through

I₃ = I₂ cos² θ

I₃ = intensity of light that passes through the third/additional polarizer = ?

I₂ = Intensity of light from the second polarizer that is incident upon the third/additional polarizer = 30 W/m²

θ = angle between the major axis of the second and third/additional polarizer = 60° (although, it is 90° with respect to the first polarizer, it is the angle it makes with the major axis of the second polarizer, 60°, that matters)

I₃ = 30 (cos² 60°) = 30 (0.5)² = 7.5 W/m²

Hope this Helps!!!

A 3-liter container has a pressure of 4 atmospheres. The container is sent underground, with resulting compression into 2 L. Applying Boyle's Law, what will the new pressure be? choices: 2.3 atm 8 atm 6 atm 1.5 atm

Answers

Answer:

6 atm

Explanation:

PV = PV

(4 atm) (3 L) = P (2 L)

P = 6 atm

Other Questions
BRAINLIEST FOR CORRECT ANSWERRRThe function f(x) = x^2 + 28x 192 models the hourly profit, in dollars, a shop makes for selling sodas, where x is the number of sodas sold. Determine the vertex, and explain what it means in the context of the problem.(12, 16); The vertex represents the maximum profit. (12, 16); The vertex represents the minimum profit. (14, 4); The vertex represents the maximum profit. (14, 4); The vertex represents the minimum profit. ok gamers i just need an answer for this right hereName the property of a definition illustrated by each of the following. 6(x-7)=6x-42 can some body help me plz The domain for f(x) and g(x) is the set of all real numbers.Let f(x) = 3x + 5 and g(x) = x2.Find f(x) g(x).A. 3x3 + 3x2 + 5B. 3x3 + 5x2C. 3x2 + 5D. x2 3x 5 The points plotted below satisfy a polynomial. In what ranges of x-values must there be a root of the graph? Check all that apply. I will mark brainliest! odvertisementI like the most If P represents the price of goods and services measured in money, then 1/P is the value of money measured in terms of goods and services True False Regular exercise can NOT prevent, delay, or reduce __________. A. diabetes B. arthritis C. skin cancer D. heart disease can somebody please help me asap !!! Determine the best answer6 pointsMULTIPLE CHOICE Find the length of BC. (Lesson 10-2)B21 cmC168A 18C 168B 2.20 cmD 30.79 cmA Helppp!!!! please!!! It is based on perceived characteristics such as style, fashion or peer acceptance. 3. Two spherical objects at the same altitude move with identical velocities and experience the same drag force at a time t. If Object 1 has twice (2x) the diameter of Object 2, which object has the larger drag coefficient? Explain your answer using the drag equation. Each energy sub level contains __________ number of electrons. For example, sub level D can hold up to _______ electrons. A. the same, 10 B. the same, 14 C. a different, 6 D. a different, 10 help pls, Find PG if JG=18. NEED HELP ASAP PLEASE WILL MARK BRANLIEST What would the equation of a hyperbola with directrices at x=2 and foci at (6,0) (-6,0) be? A circle is shown. Angles 3 and 4 intersect an arc with a measure of 106 degrees. Angles 1 and 2 intersect an arc with measure 58 degrees. Is the measure of 1 equal to the measure of 2? Why? Assume the total cost of a college education will be $395,000 when your child enters college in 18 years. You presently have $65,000 to invest. What annual rate of interest must you earn on your investment to cover the cost of your childs college education? Which correctly describes crossing over? ullbright Company sold goods to Blue Dirt Company for $400,000 in exchange for a 4-year, zero-interest-bearing note with a face amount of $629,406 (imputed rate of 12%). The goods have an inventory cost on Fullbrights books of $240,000. What amount of Sales Revenue should Fullbright recognize in 2017?