A windmill on a farm rotates at a constant speed and completes one-half of a rotation in 0.5 seconds. What is its rotation speed

Answers

Answer 1

Answer:

v = 6.28 m/s

Explanation:

It is given that,

A windmill on a farm rotates at a constant speed and completes one-half of a rotation in 0.5 seconds,

Number of revolution is half. It means angular velocity is 3.14 radians.

Let v is the angular speed. So,

[tex]v=\dfrac{\omega}{t}\\\\v=\dfrac{3.14}{0.5}\\\\v=6.28\ m/s[/tex]

So, the rotation speed is 6.28 m/s.

Answer 2

The angular velocity is the rotation speed, which is the angle of rotation

of the windmill per second, which is 2·π radians.

Response:

The rotation speed is 2·π rad/s

How can the rotational speed of the windmill be calculated?

The given parameter are;

The angle of rotation the windmill rotates in 0.5 seconds = One-half a

rotation.

Required:

The rotational speed (angular velocity)

Solution:

The angle of one rotation = 2·π radians

Angle of one-half ration = [tex]\frac{1}{2}[/tex] × 2·π radians = π radians

[tex]Rotational \ speed = \mathbf{\dfrac{Angle \ of \ rotation}{Time}}[/tex]

Which gives;

[tex]Rotational \ speed, \omega = \dfrac{\pi}{0.5 \ s} = \mathbf{2 \cdot \pi \ rad/s}[/tex]

The rotation speed is 2·π rad/s

Learn more about rotational speed here:

https://brainly.com/question/6969329


Related Questions

It's nighttime, and you've dropped your goggles into a 3.2-m-deep swimming pool. If you hold a laser pointer 1.2 m above the edge of the pool, you can illuminate the goggles if the laser beam enters the water 2.0 m from the edge.
How far are the goggles from the edge of the pool?

Answers

Answer:

Explanation:

Laser angle with water surface is given by: Tan α = 1/2.0= 0.5/

α = 26.56°

Laser angle with Normal = 90 - 26.56 = 63.44 °

Assuming a red laser, refractive index in water is 1.331.

Angle of refraction in water is given by:

Ref Ind = Sin i / Sin r

1.331 = Sin 63.44 / Sin r

Sin r = 0.8945 / 1.331 = 0.6721

Angle r = 42.22°

For the path in water:

Tan 42.22 = x / 3.2

x = 2.9m where x is the lateral displacement of the laser ince it hits the water

So the goggles are 2.0 + 2.9 = 4.9 m from edge of pool

A simple series circuit consists of a 120 Ω resistor, a 21.0 V battery, a switch, and a 3.50 pF parallel-plate capacitor (initially uncharged) with plates 5.0 mm apart. The switch is closed at t =0s .

Required:
a. After the switch is closed, find the maximum electric flux through the capacitor.
b. After the switch is closed, find the maximum displacement current through the capacitor.
c. Find the electric flux at t =0.50ns.
d. Find the displacement current at t =0.50ns.

Answers

Answer

Integral EdA = Q/εo =C*Vc(t)/εo = 3.5e-12*21/εo = 4.74 V∙m <----- A)

Vc(t) = 21(1-e^-t/RC) because an uncharged capacitor is modeled as a short.

ic(t) = (21/120)e^-t/RC -----> ic(0) = 21/120 = 0.175A <----- B)

Q(0.5ns) = CVc(0.5ns) = 2e-12*21*(1-e^-t/RC) = 30.7pC

30.7pC/εo = 3.47 V∙m <----- C)

ic(0.5ns) = 29.7ma <----- D)

Equal currents of magnitude I travel into the page in wire M and out of the page in wire N. The direction of the magnetic field at point P which is at the same distance from both wires is

Answers

Answer:

The direction of the magnetic field on point P, equidistant from both wires, and having equal magnitude of current flowing through them will be pointed perpendicularly away from the direction of the wires.

Explanation:

Using the right hand grip, the direction of the magnet field on the wire M is counterclockwise, and the direction of the magnetic field on wire N is clockwise. Using this ideas, we can see that the magnetic flux of both field due to the currents of the same magnitude through both wires, acting on a particle P equidistant from both wires will act in a direction perpendicularly away from both wires.

Suppose there are only two charged particles in a particular region. Particle 1 carries a charge of +q and is located on the positive x-axis a distance d from the origin. Particle 2 carries a charge of +2q and is located on the negative x-axis a distance d from the origin.

Required:
Where is it possible to have the net field caused by these two charges equal to zero?

1. At the origin.
2. Somewhere on the x-axis between the two charges, but not at the origin.
3. Somewhere on the x-axis to the right of q2.
4. Somewhere on the y-axis.
5. Somewhere on the x-axis to the left of q1.

Answers

Answer:

x₂ = 0.1715 d

1) false

2) True

3) True

4) false

5) True

Explanation:

The field electrifies a vector quantity, so we can add the creative field by these two charges

             E₂-E₁ = 0

             k q₂ / r₂² - k q₁ / r1₁²= 0

             q₂ / r₂² = q₁ / r₁²

suppose the sum of the fields is zero at a place x to the right of zero

          r₂ = d + x

          r₁ = d -x

we substitute

           q₂ / (d + x)² = q₁ / (d-x)²

we solve the equation

           q₂ / q₁ (d-x)² = (d + x) ²

           

let's replace the value of the charges

       q₂ / q₁ = + 2q / + q = 2

          2 (d²- 2xd + x²) = d² + 2xd + x²

          x² -6xd + d² = 0

we solve the quadratic equation

          x = [6d ± √ (36d² - 4 d²)] / 2

          x = [6d ± 5,657 d] / 2

          x₁ = 5.8285 d

          x₂ = 0.1715 d

      with the total field value zero it is between the two loads the correct solution is x₂ = 0.1715 d

this value remains on the positive part of the x axis, that is, near charge 1

now let's examine the different proposed outcomes

1) false

2) True

3) True

4) false

5) True

If a ray of light traveling in the liquid has an angle of incidence at the interface of 33.0 ∘, what angle does the refracted ray in the air make with the normal?

Answers

Answer:

29°

Explanation:

because the refracted ray angle is small than angle of incidence

An electron in a vacuum chamber is fired with a speed of 7400 km/s toward a large, uniformly charged plate 75 cm away. The electron reaches a closest distance of 15 cm before being repelled.

What is the plate's surface charge density?

Answers

Answer:

2.29e-9C/m²

Explanation:

Using E = σ/ε₀ means the force on the electron is F = eE = eσ/ε₀.

The work done on the electron is W = Fd = deσ/ε₀. This equals the kinetic energy lost, ½mv².

½mv² = deσ/ε₀

d = 75cm – 15cm = 60cm = 0.6m

σ = mv²ε₀/(2de)

. .= 9.11e-31 * (7.4e6)² * 8.85e-12 / (2 * 0.6 * 1.6e-19)

. .= 2.29e-9 C/m² (i.e. 2.29x10^-9 C/m²)

When a monochromatic light of wavelength 433 nm incident on a double slit of slit separation 6 µm, there are 5 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.9 nm for the same double slit?

Answers

Answer:

The number of interference fringes is  [tex]n = 3[/tex]

Explanation:

From the question we are told that

     The wavelength is  [tex]\lambda = 433 \ nm = 433 *10^{-9} \ m[/tex]

      The distance of separation is  [tex]d = 6 \mu m = 6 *10^{-6} \ m[/tex]

       The  order of maxima is m =  5

       

The  condition for constructive interference is

       [tex]d sin \theta = n \lambda[/tex]

=>     [tex]\theta = sin^{-1} [\frac{5 * 433 *10^{-9}}{ 6 *10^{-6}} ][/tex]

=>    [tex]\theta = 21.16^o[/tex]

So at  

      [tex]\lambda_1 = 632.9 nm = 632.9*10^{-9} \ m[/tex]

   [tex]6 * 10^{-6} * sin (21.16) = n * 632.9 *10^{-9}[/tex]

=>    [tex]n = 3[/tex]

   

If the mass of an object is 10 kg and the
velocity is -4 m/s, what is the momentum?
A. 4 kgm/s
B. -40 kgm/s
C.-4 kgm/s
D. 40 kgm/s

Answers

Answer:

B. -40 kgm/s is the answer

An archer practicing with an arrow bow shoots an arrow straight up two times. The first time the initial speed is vi and second

time he increases the initial sped to 4v. How would you compare the maximum height in the second trial to that in the first trial?

Answers

Answer:

The maximum height reached in the second trial is 16times the maximum height reached in the first trial.

Explanation:

The following data were obtained from the question:

First trial

Initial speed (u) = v

Final speed (v) = 0

Second trial

Initial speed (u) = 4v

Final speed (v) = 0

Next, we shall obtain the expression for the maximum height reached in each case.

This is illustrated below:

First trial:

Initial speed (u) = v

Final speed (v) = 0

Acceleration due to gravity (g) = 9.8 m/s²

Height (h₁) =.?

v² = u² – 2gh₁ (going against gravity)

0 = (v)² – 2 × 9.8 × h₁

0 = v² – 19.6 × h₁

Rearrange

19.6 × h₁ = v²

Divide both side by 19.6

h₁ = v²/19.6

Second trial

Initial speed (u) = 4v

Final speed (v) = 0

Acceleration due to gravity (g) = 9.8 m/s²

Height (h₂) =.?

v² = u² – 2gh₂ (going against gravity)

0 = (4v)² – 2 × 9.8 × h₂

0 = 16v² – 19.6 × h₂

Rearrange

19.6 × h₂ =16v²

Divide both side by 19.6

h₂ = 16v²/19.6

Now, we shall determine the ratio of the maximum height reached in the second trial to that of the first trial.

This is illustrated below:

Second trial:

h₂ = 16v²/19.6

First trial:

h₁ = v²/19.6

Second trial : First trial

h₂ : h₁

h₂ / h₁ = 16v²/19.6 ÷ v²/19.6

h₂ / h₁ = 16v²/19.6 × 19.6/v²

h₂ / h₁ = 16

h₂ = 16 × h₁

From the above illustrations, we can see that the maximum height reached in the second trial is 16times the maximum height reached in the first trial.

What is the magnitude of the applied electric field inside an aluminum wire of radius 1.4 mm that carries a 4.5-A current

Answers

Answer:

Explanation:

From the question we are told that

    The radius is  [tex]r = 1.4 \ mm = 1.4 *10^{-3} \ m[/tex]

     The  current is  [tex]I = 4.5 \ A[/tex]

Generally the electric field is mathematically represented as

         [tex]E = \frac{J}{\sigma }[/tex]

Where [tex]\sigma[/tex] is the conductivity of  aluminum with value [tex]\sigma = 3.5 *10^{7} \ s/m[/tex]

J is the current density which mathematically represented as  

      [tex]J = \frac{I}{A}[/tex]

Here A is the cross-sectional area which is mathematically represented as  

       [tex]A = \pi r^2[/tex]

       [tex]A = 3.142 * (1.4*10^{-3})^2[/tex]

       [tex]A = 6.158*10^{-6} \ m^2[/tex]

So

    [tex]J = \frac{ 4.5 }{6.158*10^{-6}}[/tex]

    [tex]J = 730757 A/m^2[/tex]

So

       [tex]E = \frac{ 730757}{3.5*10^{7} }[/tex]

       [tex]E = 0.021 \ N/C[/tex]

An L-R-C series circuit is connected to a 120 Hz ac source that has Vrms = 82.0 V. The circuit has a resistance of 71.0 Ω and an impedance at this frequency of 107 Ω and an impedance at this frequency of 105Ω. What average power is delivered to the circuit by the source?

Answers

Explanation:

Given that,

Frequency of LCR circuit is 120 Hz

RMS voltage, [tex]V_{rms}=82\ V[/tex]

Resistance of circuit, R = 71 Ω

Impedance, Z = 107 Ω

We need to find the average power is delivered to the circuit by the source. Firstly, finding the rms value of current,

[tex]I_{rms}=\dfrac{V_{rms}}{Z}\\\\I_{rms}=\dfrac{82}{105}\\\\I_{rms}=0.78\ A[/tex]

Power is given by :

[tex]P=I_{rms}V_{rms}\cos\phi[/tex]

[tex]\cos\phi = \dfrac{R}{Z}\\\\\cos\phi = \dfrac{71}{105}\\\\\cos\phi =0.676[/tex]

Now, power,

[tex]P=0.78\times 82\times 0.676\\\\P=43.23\ W[/tex]

So, the average power of 43.23 watts is delivered to the circuit by the source.

White light is spread out into spectral hues by a diffraction grating. If the grating has 1000 lines per cm, at what angle will red light (λ = 640 nm) appear in first order?

Answers

Answer:

3.67°

Explanation: Given that λ=640nm , m = 1

Considering the slit separation

d = 1cm/1000

= 1.000×10^-3cm

= 1.000×10-5m

We then have

Sinθ = mλ/d

Sinθ= (1×640×10^-9)/1.000×10-5m

Sinθ = 0.064

θ= sin-1 0.064

θ= 3.669°

= 3.67°

A rollercoaster is not moving and has 50,000 J of GPE at the top of a hill. How much kinetic energy will it have halfway down the hill, assuming there is no friction

Answers

Answer:

The kinetic energy is 25000 J

Explanation:

At the top of the hill, the potential energy = 50000 J

the potential energy = mgh

where m is the mass

g is the acceleration due to gravity

h is the vertical height at the top of the hill

Note the mass of the roller coaster and acceleration due to gravity will always remain constant, so that halfway down the hill, only the height changes by half its initial value.

This means that at halfway down the hill, the potential energy of the roller coaster is

PE = [tex]mg\frac{h}{2}[/tex] = 50000/2 = 25,000 J

We also know that the total mechanical energy of a system is given as

ME = KE + PE = constant

where

ME is the mechanical energy of the system

PE is the potential energy of the system

KE is the kinetic energy of the system

Let us now analyse.

At the top of the hill, all the mechanical energy of the roller coaster is equal to its potential energy due to the height on the hill above ground, since the roller coaster is not moving (kinetic energy is energy due to motion). Halfway down, the mechanical energy of the roller coaster is due to both the kinetic energy and the potential energy, since the roller coaster is moving down, and is still at a given height above the ground. Having all these in mind, we can proceed and say that at halfway down the hill, ignoring friction,

ME = KE + PE = constant

50000 = KE + 25000

therefore

KE = 25000 J

Consult Interactive Solution 27.18 to review a model for solving this problem. A film of oil lies on wet pavement. The refractive index of the oil exceeds that of the water. The film has the minimum nonzero thickness such that it appears dark due to destructive interference when viewed in visible light with wavelength 653 nm in vacuum. Assuming that the visible spectrum extends from 380 to 750 nm, what is the longest visible wavelength (in vacuum) for which the film will appear bright due to constructive interference

Answers

Answer:

Explanation:

In the given case for destructive interference , the condition is,

path difference = (2n+1)λ /2  where n is an integer and λ is wavelength

2 μ d = (2n+1)λ /2

Putting λ = 653 nm

for minimum thickness n = 0

2 μ d = 653 / 2 nm

= 326.5 nm

For constructive interference the condition is

2 μ d = n λ₁

326.5 nm = n λ₁

λ₁ = 326.5 / n  

For n = 1

λ₁ = 326.5 nm ,

or , 326.5nm .

Longest wavelength possible is 326.5

Our system is a block attached to a horizontal spring on a frictionless table. The spring has a spring constant of 4.0 N/m and a rest length of 1.0 m, and the block has a mass of 0.25 kg.

Compute the PE when the spring is compressed by 0.50 m.

Answers

Answer

E - 1/2 K x^2      potential energy of compressed spring

E = 1/2 * 4 N / m * (.5 m)^2 = 2 * .5^2 N-m = .5 N-m

In a LRC circuit, a second capacitor is connected in parallel with the capacitor previously in the circuit. What is the effect of this change on the impedance of the circuit

Answers

Answer:

Impedance increases for frequencies below resonance and decreases for the frequencies above resonance

Explanation:

See attached file

Explanation:

a. Describe the relationship between the number of batteries and the voltage and explain what you think might be happening

Answers

Answer:

Their is a direct relationship between the number of batteries and the increase in power. The voltage is the product of the number of batteries and the voltage which is 9 volts. As the batteries touch ends the voltages of all three combines.

Explanation:

What is the answer?​

Answers

Answer: i think it is d. none of them.

Explanation: The speed of light in a vacuum is 186,282 miles per second and so when you look and the answer choices and the question it doesnt make any since.

A 10-cm-long thin glass rod uniformly charged to 6.00 nC and a 10-cm-long thin plastic rod uniformly charged to - 6.00 nC are placed side by side, 4.4 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods?
A. Specify the electric field strength E1
B. Specify the electric field strength E2
C. Specify the electric field strength E3

Answers

Answer:

A) E(r) = 1.3957 × 10^(5) N/C

B) E(r) = 9.8864 × 10⁴ N/C

C) E(r) = 1.13 × 10^(5) N/C

Explanation:

We are given;

q = 6 nc = 6 × 10^(-9) C

L = 10 cm = 0.1 m

d = 4.4 cm = 0.044 m

r1 = 1 cm = 0.01 m

r2 = 2 cm = 0.02 m

r3 = 3 cm = 0.03 m

Formula for the electric field strength in this question is given as;

E(r) = q/(2π(ε_o)rL) + q/(2π(ε_o)(d - r)L)

When factorized, we have;

E(r) = q/(2π(ε_o)L) × [(1/r) + (1/(d - r))]

Plugging in the relevant values for q/(2π(ε_o)L)

We know that (ε_o) has a constant value of 8.854 × 10^(−12) C²/N².m

Thus; q/(2π(ε_o)L) = (6 × 10^(-9))/(2π(8.854 × 10^(−12)0.1) = 1078.53

Thus;

E(r) = 1078.52 [1/r + 1/(d - r)]

A) E1 is at r = 1 cm = 0.01m

Thus;

E(r) = 1078.52 (1/0.01 + (1/(0.044 - 0.01))

E(r) = 1.3957 × 10^(5) N/C

B) E2 is at r = 2 cm = 0.02 m

Thus;

E(r) = 1078.52 (1/0.02 + (1/(0.044 - 0.02))

E(r) = 9.8864 × 10⁴ N/C

C) E2 is at r = 3 cm = 0.03 m

Thus;

E(r) = 1078.52 (1/0.03 + (1/(0.044 - 0.03))

E(r) = 1.13 × 10^(5) N/C

how many electrons do calcium have in their outer shell

Answers

Answer:

Calcium has two electrons in its outer shell.

Explanation:

Calcium is defined as a metal due to its physical and chemical traits. The two outer electrons are very reactive. Calcium has a valence of 2.

what effect does decreasing the field current below its nominal value have on the speed versus voltage characteristic of a separately excited dc motor

Answers

Answer

The effect is that it Decreases the field current IF and increases slope K1

You are performing an experiment that requires the highest-possible magnetic energy density in the interior of a very long current-carrying solenoid. Which of the following adjustments increases the energy density?a. Increasing only the length of the solenold while keeping the turns per unit lengh flxed. b. Increasing the number of turns per unit length on the solenold. c. Increasing the cross-sectional area of the solenoid. d. None of these. e. Increasing the current in the solenoid.

Answers

Answer:

The correct choice is B & E.  

Explanation:

A solenoid is a coil of wire (usually copper) which is used as an electromagnet. Solenoids are used to convert electrical energy to mechanical energy. When this type of device is created it is also called a solenoid. One can increase the energy density within the solenoid or the coil by upping the electric current in the coil.

Cheers!

Suppose a 1300 kg car is traveling around a circular curve in a road at a constant
9.0 m/sec. If the curve in the road has a radius of 25 m, then what is the
magnitude of the unbalanced force that steers the car out of its natural straight-
line path?

Answers

Answer:

F = 4212 N

Explanation:

Given that,

Mass of a car, m = 1300 kg

Speed of car on the road is 9 m/s

Radius of curve, r = 25 m

We need to find the magnitude of the unbalanced force that steers the car out of its natural straight-  line path. The force is called centripetal force. It can be given by :

[tex]F=\dfrac{mv^2}{r}\\\\F=\dfrac{1300\times 9^2}{25}\\\\F=4212\ N[/tex]

So, the force has a magnitude of 4212 N

Suppose that a sound source is emitting waves uniformly in all directions. If you move to a point twice as far away from the source, the frequency of the sound will be:________.
a. one-fourth as great.
b. half as great.
c. twice as great.
d. unchanged.

Answers

Answer:

d. unchanged.

Explanation:

The frequency of a wave is dependent on the speed of the wave and the wavelength of the wave. The frequency is characteristic for a wave, and does not change with distance. This is unlike the amplitude which determines the intensity, which decreases with distance.

In a wave, the velocity of propagation of a wave is the product of its wavelength and its frequency. The speed of sound does not change with distance, except when entering from one medium to another, and we can see from

v = fλ

that the frequency is tied to the wave, and does not change throughout the waveform.

where v is the speed of the sound wave

f is the frequency

λ is the wavelength of the sound wave.

g A solenoid 63.5 cm long has 960 turns and a radius of 2.77 cm. If it carries a current of 2.28 A, find the magnetic field along the axis at its center.Find the magnetic field on the solenoidal axis at the end of the solenoid.

Answers

Answer:

The  value is  [tex]B = 0.0043 \ T[/tex]

Explanation:

From the question we are told that

   The  length of the solenoid is  [tex]l = 63.5 = 0.635 \ m[/tex]

    The number of turns is  [tex]N = 960 \ turns[/tex]

    The  current is  [tex]I = 2.28 \ A[/tex]

Generally the magnetic field is mathematically represented as

      [tex]B = \mu _o * n * I[/tex]

Where  n is the number of turn per unit length which is mathematically evaluated as

      [tex]n = \frac{N}{l}[/tex]

     [tex]n = \frac{960}{0.635}[/tex]

     [tex]n = 1512 \ turns /m[/tex]

and  [tex]\mu_o[/tex] is the permeability of free space with value  [tex]\mu_o = 4\pi * 10^{-7} N/A^2[/tex]

So  

    [tex]B = 4\pi * 10^{-7} * 1512 * 2.28[/tex]

    [tex]B = 0.0043 \ T[/tex]

     

A person with a near point of 85 cm, but excellent distance vision normally wears corrective glasses. But he loses them while travelling. Fortunately he has his old pair as a spare. (a) If the lenses of the old pair have a power of 2.25 diopters, what is his near point (measured from the eye) when wearing the old glasses, if they rest 2.0 cm in front of the eye

Answers

Answer:

30.93 cm

Explanation:

Given that:

A person with a near point of 85 cm, but excellent distance vision normally wears corrective glasses

The power of the old pair of lens p = 2.25 diopters

The focal point length = 1/p

The focal point length =  1/2.25

The focal point length = 0.444 m

The focal point length = 44.4 cm

The near point of the person from the glass = (85 -2)cm , This is because the glasses are usually 2 cm from the lens

The near point of the person from the glass = 83 cm

Let consider s' to be the image on the same sides of the lens,

∴ s' = -83 cm

We known that:

the focal length of a mirror image 1/f =1/u +1/v

Assume the near point is at an excellent distance s from the glass where the person wears the corrective glasses.

Then:

1/f = 1/s + 1/s'

1/s = 1/f - 1/s'

1/s = (s' -f)/fs'

s = fs'/(s'-f)

s =( 44.4× -83)/(-83 - 44.4)

s = - 3685.2 / - 127.4

s = 28.93 cm

Thus , the near distance point measured from the eye wearing the old glasses, if they rest 2.0 cm in front of the eye = (28.93 +2.0)cm

= 30.93 cm

During the data transmission there are chances that the data bits in the frame might get corrupted. This will require the sender to re-transmit the frame and hence it will increase the re-transmission overhead. By considering the scenarios given below, you have to choose whether the packets should be encapsulated in a single frame or multiple frames in order to minimize the re-transmission overhead.


Justify your answer with one valid reason for both the scenarios given below.


Scenario A: Suppose you are using a network which is very prone to errors.


Scenario B: Suppose you are using a network with high reliability and accuracy.

Answers

1. Based on Scenario A, multiple frames will minimize re-transmission overhead and should be preferred in the encapsulation of packets.

2. Based on Scenario B, the encapsulation of packets should be in a single frame because of the high level of network reliability and accuracy.

 

Justification:

There will not be further need to re-transmit the packets in a highly reliable and accurate network environment, unlike in an environment that is very prone to errors.  The reliable and accurate network environment makes a single frame economically better.

Encapsulation involves the process of wrapping code and data together within a class so that data is protected and access to code is restricted.

With encapsulation, each layer:

provides a service to the layer above itcommunicates with a corresponding receiving node

Thus, in a reliable and accurate network environment, single frames should be used to enhance transmission and minimize re-transmission overhead.  This is unlike in an environment that is very prone to errors, where multiple frames should rather be used to minimize re-transmission overhead.

Learn more about encapsulation of packets here: https://brainly.com/question/22471914

For a transverse wave, what is a wavefront?
A a line joining all points on the same crest of a wave
B a line showing the displacement of a wave
C the energy content of a wave
D the first part of a wave to reach a point

Answers

 wavefront is the long edge that moves, for example, the crest or the trough

A city of Punjab has a 15 percent chance of wet weather on any given day. What is the probability that it will take a week for it three wet weather on 3 separate days? Also find its Standard Deviation

Answers

Answer:

so the probability will be = 0.062

Standard deviation =  0.8925

Explanation:

The probability of rain = 15% = 15/100= 0.15

and the probability of no rain=q = 1-p= 1-0.15= 0.85

The number of trials = 7

so the probability will be

7C3 * ( 0.15)^3 (0.85)^4= 35* 0.003375 * 0.52200 =0.06166= 0.062

Taking this as binomial as the p and q are constant and also the trials are independent .

For a binomial distribution

Standard deviation = npq= 0.15 *0.85 *7= 0.8925

light bulb is connected to a 110-V source. What is the resistance of this bulb if it is a 100-W bulb

Answers

Answer:

121ohms

Explanation:

Formula used for calculating power P = current * voltage

P = IV

From ohms law, V = IR where R is the resistance. Substituting V = IR into the formula for calculating power, we will have;

P = IV

P =(V/R)V

P = V²/R

Given parameters

Power rating of the bulb P = 100 Watts

Source voltage V = 110V

Required

Resistance of the bulb R

Substituting the given parameters into the formula for calculating power to get Resistance R;

P = V²/R

100 = 110²/R

R = 110²/100

R = 110 * 110/100

R = 12100/100

R = 121 ohms

Hence, the resistance of this bulb is 121 ohms

Other Questions
Three 3.0 g balls are tied to 80-cm-long threads and hung from a single fixed point. Each of the balls is given the same charge q. At equilibrium, the three balls form an equilateral triangle in a horizontal plane with 20 cm sides. What is q? Answer the following questions. 1. Why should you not light fireworks by yourself? 1. what is hard water. 2. Mention four sources of water.3. write down the chemical formula of water.4. What is purification of water.5. Mention two importance of purification of water. 6. Mention 4 method used ot purify water. 7. Mention 4 impurities found in water. 8. Explain the term contaminated of water.9. State two physical properties of water. 10. mention the names of of the elements that causes hardness in water. List 3 quotes (with page numbers) that show Globalization and Sustainability in, Dry by Neal Shusterman.IF YOU GET THIS CORRECT,You will get Brainliest Recall the equation that modeled the average number of non-defective refrigerators produced per hour in terms of x, the number of hours of production per day: Now, open the graphing tool and graph the equation. Use the pointer to determine how many hours of production there are in a day if the average number of non-defective refrigerators produced per hour is 15. Mr. Green purchased a property with the provision in the sale agreement that the seller would provide him with a warranty deed. At closing, the seller refused to provide better than a bargain and sale deed. If Mr. Green insists on buying the property and insists on the seller giving him a warranty deed he can attempt to force the seller to do so by filing a suit for:_________. what role did nightingale play at scutari hospital in turkey PLEASE HELP ME I NEED HELP Which statement about the Virginia Plan is accurate? It called for a unicameral legislature. It supported the interests of the smaller states. It proposed an executive staff instead of a single executive. It inspired the creation of the New Jersey Plan. Please help asap, will mark Brainliest xoxo A. 264B. 233C. 153D. 268 please help me answer these in variable and constant terms 7s + 8s - 6h Solve for v. 3v + 5v = 72 please simplify as much as possible! v = _ ? Find n for the arithmetic sequence for which sn=345, u1=12 and d = 5 . Given g(x) = -x - 2, find g(3). Homework help Dos pronombres. Re-write the following sentences by replacing the direct object with a pronoun.Ejemplos:Ella me sirve el plato. Ella me lo sirve.Ellos les leen el artculo. Ellos se lo leen.Tu novio te regala flores. Me regal ese reloj. Las nias nos cocinan el desayuno. Ella les da toallas limpias. Uds. nos da algo de beber. l me da un paraguas. El perro le trae el peridico. Me dieron esa bebida. El nio le da un juguete. El padre les regala juguetes. Mandatos con pronombres. Change the negative commands to affirmative commands, adding accents where necessary.Ejemplo: No la ponga PngalaNo me hable. No los escriban No me los d. No me lo lea. No lo diga. No la beba. what is a 200% increase of 50 What are the advantages and disadvantages of using price controls and subsidies to support American agriculture? 1. What does the acronym LASER stand for? What characteristic of a laser makes it suitable for today's experiment? The arrangement of leaves on a tree branch that reduces overlapping and overshadowingof leaves from sunlight is referred to as leaf This ensures exposure of most of the leaves to sunlight for maximum ..to take place in the of leaf cells. The grana contains numerousmolecules which trap light.for .of water, producing atoms required for the process of carbon (IV) oxidein the lightstage of photosynthesis which takes place in the..of the chloroplast.