Answer:
v = 6.28 m/s
Explanation:
It is given that,
A windmill on a farm rotates at a constant speed and completes one-half of a rotation in 0.5 seconds,
Number of revolution is half. It means angular velocity is 3.14 radians.
Let v is the angular speed. So,
[tex]v=\dfrac{\omega}{t}\\\\v=\dfrac{3.14}{0.5}\\\\v=6.28\ m/s[/tex]
So, the rotation speed is 6.28 m/s.
The angular velocity is the rotation speed, which is the angle of rotation
of the windmill per second, which is 2·π radians.
Response:
The rotation speed is 2·π rad/sHow can the rotational speed of the windmill be calculated?The given parameter are;
The angle of rotation the windmill rotates in 0.5 seconds = One-half a
rotation.
Required:
The rotational speed (angular velocity)
Solution:
The angle of one rotation = 2·π radians
Angle of one-half ration = [tex]\frac{1}{2}[/tex] × 2·π radians = π radians
[tex]Rotational \ speed = \mathbf{\dfrac{Angle \ of \ rotation}{Time}}[/tex]
Which gives;
[tex]Rotational \ speed, \omega = \dfrac{\pi}{0.5 \ s} = \mathbf{2 \cdot \pi \ rad/s}[/tex]
The rotation speed is 2·π rad/sLearn more about rotational speed here:
https://brainly.com/question/6969329
It's nighttime, and you've dropped your goggles into a 3.2-m-deep swimming pool. If you hold a laser pointer 1.2 m above the edge of the pool, you can illuminate the goggles if the laser beam enters the water 2.0 m from the edge.
How far are the goggles from the edge of the pool?
Answer:
Explanation:
Laser angle with water surface is given by: Tan α = 1/2.0= 0.5/
α = 26.56°
Laser angle with Normal = 90 - 26.56 = 63.44 °
Assuming a red laser, refractive index in water is 1.331.
Angle of refraction in water is given by:
Ref Ind = Sin i / Sin r
1.331 = Sin 63.44 / Sin r
Sin r = 0.8945 / 1.331 = 0.6721
Angle r = 42.22°
For the path in water:
Tan 42.22 = x / 3.2
x = 2.9m where x is the lateral displacement of the laser ince it hits the water
So the goggles are 2.0 + 2.9 = 4.9 m from edge of pool
A simple series circuit consists of a 120 Ω resistor, a 21.0 V battery, a switch, and a 3.50 pF parallel-plate capacitor (initially uncharged) with plates 5.0 mm apart. The switch is closed at t =0s .
Required:
a. After the switch is closed, find the maximum electric flux through the capacitor.
b. After the switch is closed, find the maximum displacement current through the capacitor.
c. Find the electric flux at t =0.50ns.
d. Find the displacement current at t =0.50ns.
Answer
Integral EdA = Q/εo =C*Vc(t)/εo = 3.5e-12*21/εo = 4.74 V∙m <----- A)
Vc(t) = 21(1-e^-t/RC) because an uncharged capacitor is modeled as a short.
ic(t) = (21/120)e^-t/RC -----> ic(0) = 21/120 = 0.175A <----- B)
Q(0.5ns) = CVc(0.5ns) = 2e-12*21*(1-e^-t/RC) = 30.7pC
30.7pC/εo = 3.47 V∙m <----- C)
ic(0.5ns) = 29.7ma <----- D)
Equal currents of magnitude I travel into the page in wire M and out of the page in wire N. The direction of the magnetic field at point P which is at the same distance from both wires is
Answer:
The direction of the magnetic field on point P, equidistant from both wires, and having equal magnitude of current flowing through them will be pointed perpendicularly away from the direction of the wires.
Explanation:
Using the right hand grip, the direction of the magnet field on the wire M is counterclockwise, and the direction of the magnetic field on wire N is clockwise. Using this ideas, we can see that the magnetic flux of both field due to the currents of the same magnitude through both wires, acting on a particle P equidistant from both wires will act in a direction perpendicularly away from both wires.
Suppose there are only two charged particles in a particular region. Particle 1 carries a charge of +q and is located on the positive x-axis a distance d from the origin. Particle 2 carries a charge of +2q and is located on the negative x-axis a distance d from the origin.
Required:
Where is it possible to have the net field caused by these two charges equal to zero?
1. At the origin.
2. Somewhere on the x-axis between the two charges, but not at the origin.
3. Somewhere on the x-axis to the right of q2.
4. Somewhere on the y-axis.
5. Somewhere on the x-axis to the left of q1.
Answer:
x₂ = 0.1715 d
1) false
2) True
3) True
4) false
5) True
Explanation:
The field electrifies a vector quantity, so we can add the creative field by these two charges
E₂-E₁ = 0
k q₂ / r₂² - k q₁ / r1₁²= 0
q₂ / r₂² = q₁ / r₁²
suppose the sum of the fields is zero at a place x to the right of zero
r₂ = d + x
r₁ = d -x
we substitute
q₂ / (d + x)² = q₁ / (d-x)²
we solve the equation
q₂ / q₁ (d-x)² = (d + x) ²
let's replace the value of the charges
q₂ / q₁ = + 2q / + q = 2
2 (d²- 2xd + x²) = d² + 2xd + x²
x² -6xd + d² = 0
we solve the quadratic equation
x = [6d ± √ (36d² - 4 d²)] / 2
x = [6d ± 5,657 d] / 2
x₁ = 5.8285 d
x₂ = 0.1715 d
with the total field value zero it is between the two loads the correct solution is x₂ = 0.1715 d
this value remains on the positive part of the x axis, that is, near charge 1
now let's examine the different proposed outcomes
1) false
2) True
3) True
4) false
5) True
If a ray of light traveling in the liquid has an angle of incidence at the interface of 33.0 ∘, what angle does the refracted ray in the air make with the normal?
Answer:
29°
Explanation:
because the refracted ray angle is small than angle of incidence
An electron in a vacuum chamber is fired with a speed of 7400 km/s toward a large, uniformly charged plate 75 cm away. The electron reaches a closest distance of 15 cm before being repelled.
What is the plate's surface charge density?
Answer:
2.29e-9C/m²
Explanation:
Using E = σ/ε₀ means the force on the electron is F = eE = eσ/ε₀.
The work done on the electron is W = Fd = deσ/ε₀. This equals the kinetic energy lost, ½mv².
½mv² = deσ/ε₀
d = 75cm – 15cm = 60cm = 0.6m
σ = mv²ε₀/(2de)
. .= 9.11e-31 * (7.4e6)² * 8.85e-12 / (2 * 0.6 * 1.6e-19)
. .= 2.29e-9 C/m² (i.e. 2.29x10^-9 C/m²)
When a monochromatic light of wavelength 433 nm incident on a double slit of slit separation 6 µm, there are 5 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.9 nm for the same double slit?
Answer:
The number of interference fringes is [tex]n = 3[/tex]
Explanation:
From the question we are told that
The wavelength is [tex]\lambda = 433 \ nm = 433 *10^{-9} \ m[/tex]
The distance of separation is [tex]d = 6 \mu m = 6 *10^{-6} \ m[/tex]
The order of maxima is m = 5
The condition for constructive interference is
[tex]d sin \theta = n \lambda[/tex]
=> [tex]\theta = sin^{-1} [\frac{5 * 433 *10^{-9}}{ 6 *10^{-6}} ][/tex]
=> [tex]\theta = 21.16^o[/tex]
So at
[tex]\lambda_1 = 632.9 nm = 632.9*10^{-9} \ m[/tex]
[tex]6 * 10^{-6} * sin (21.16) = n * 632.9 *10^{-9}[/tex]
=> [tex]n = 3[/tex]
If the mass of an object is 10 kg and the
velocity is -4 m/s, what is the momentum?
A. 4 kgm/s
B. -40 kgm/s
C.-4 kgm/s
D. 40 kgm/s
Answer:
B. -40 kgm/s is the answer
An archer practicing with an arrow bow shoots an arrow straight up two times. The first time the initial speed is vi and second
time he increases the initial sped to 4v. How would you compare the maximum height in the second trial to that in the first trial?
Answer:
The maximum height reached in the second trial is 16times the maximum height reached in the first trial.
Explanation:
The following data were obtained from the question:
First trial
Initial speed (u) = v
Final speed (v) = 0
Second trial
Initial speed (u) = 4v
Final speed (v) = 0
Next, we shall obtain the expression for the maximum height reached in each case.
This is illustrated below:
First trial:
Initial speed (u) = v
Final speed (v) = 0
Acceleration due to gravity (g) = 9.8 m/s²
Height (h₁) =.?
v² = u² – 2gh₁ (going against gravity)
0 = (v)² – 2 × 9.8 × h₁
0 = v² – 19.6 × h₁
Rearrange
19.6 × h₁ = v²
Divide both side by 19.6
h₁ = v²/19.6
Second trial
Initial speed (u) = 4v
Final speed (v) = 0
Acceleration due to gravity (g) = 9.8 m/s²
Height (h₂) =.?
v² = u² – 2gh₂ (going against gravity)
0 = (4v)² – 2 × 9.8 × h₂
0 = 16v² – 19.6 × h₂
Rearrange
19.6 × h₂ =16v²
Divide both side by 19.6
h₂ = 16v²/19.6
Now, we shall determine the ratio of the maximum height reached in the second trial to that of the first trial.
This is illustrated below:
Second trial:
h₂ = 16v²/19.6
First trial:
h₁ = v²/19.6
Second trial : First trial
h₂ : h₁
h₂ / h₁ = 16v²/19.6 ÷ v²/19.6
h₂ / h₁ = 16v²/19.6 × 19.6/v²
h₂ / h₁ = 16
h₂ = 16 × h₁
From the above illustrations, we can see that the maximum height reached in the second trial is 16times the maximum height reached in the first trial.
What is the magnitude of the applied electric field inside an aluminum wire of radius 1.4 mm that carries a 4.5-A current
Answer:
Explanation:
From the question we are told that
The radius is [tex]r = 1.4 \ mm = 1.4 *10^{-3} \ m[/tex]
The current is [tex]I = 4.5 \ A[/tex]
Generally the electric field is mathematically represented as
[tex]E = \frac{J}{\sigma }[/tex]
Where [tex]\sigma[/tex] is the conductivity of aluminum with value [tex]\sigma = 3.5 *10^{7} \ s/m[/tex]
J is the current density which mathematically represented as
[tex]J = \frac{I}{A}[/tex]
Here A is the cross-sectional area which is mathematically represented as
[tex]A = \pi r^2[/tex]
[tex]A = 3.142 * (1.4*10^{-3})^2[/tex]
[tex]A = 6.158*10^{-6} \ m^2[/tex]
So
[tex]J = \frac{ 4.5 }{6.158*10^{-6}}[/tex]
[tex]J = 730757 A/m^2[/tex]
So
[tex]E = \frac{ 730757}{3.5*10^{7} }[/tex]
[tex]E = 0.021 \ N/C[/tex]
An L-R-C series circuit is connected to a 120 Hz ac source that has Vrms = 82.0 V. The circuit has a resistance of 71.0 Ω and an impedance at this frequency of 107 Ω and an impedance at this frequency of 105Ω. What average power is delivered to the circuit by the source?
Explanation:
Given that,
Frequency of LCR circuit is 120 Hz
RMS voltage, [tex]V_{rms}=82\ V[/tex]
Resistance of circuit, R = 71 Ω
Impedance, Z = 107 Ω
We need to find the average power is delivered to the circuit by the source. Firstly, finding the rms value of current,
[tex]I_{rms}=\dfrac{V_{rms}}{Z}\\\\I_{rms}=\dfrac{82}{105}\\\\I_{rms}=0.78\ A[/tex]
Power is given by :
[tex]P=I_{rms}V_{rms}\cos\phi[/tex]
[tex]\cos\phi = \dfrac{R}{Z}\\\\\cos\phi = \dfrac{71}{105}\\\\\cos\phi =0.676[/tex]
Now, power,
[tex]P=0.78\times 82\times 0.676\\\\P=43.23\ W[/tex]
So, the average power of 43.23 watts is delivered to the circuit by the source.
White light is spread out into spectral hues by a diffraction grating. If the grating has 1000 lines per cm, at what angle will red light (λ = 640 nm) appear in first order?
Answer:
3.67°
Explanation: Given that λ=640nm , m = 1
Considering the slit separation
d = 1cm/1000
= 1.000×10^-3cm
= 1.000×10-5m
We then have
Sinθ = mλ/d
Sinθ= (1×640×10^-9)/1.000×10-5m
Sinθ = 0.064
θ= sin-1 0.064
θ= 3.669°
= 3.67°
A rollercoaster is not moving and has 50,000 J of GPE at the top of a hill. How much kinetic energy will it have halfway down the hill, assuming there is no friction
Answer:
The kinetic energy is 25000 J
Explanation:
At the top of the hill, the potential energy = 50000 J
the potential energy = mgh
where m is the mass
g is the acceleration due to gravity
h is the vertical height at the top of the hill
Note the mass of the roller coaster and acceleration due to gravity will always remain constant, so that halfway down the hill, only the height changes by half its initial value.
This means that at halfway down the hill, the potential energy of the roller coaster is
PE = [tex]mg\frac{h}{2}[/tex] = 50000/2 = 25,000 J
We also know that the total mechanical energy of a system is given as
ME = KE + PE = constant
where
ME is the mechanical energy of the system
PE is the potential energy of the system
KE is the kinetic energy of the system
Let us now analyse.
At the top of the hill, all the mechanical energy of the roller coaster is equal to its potential energy due to the height on the hill above ground, since the roller coaster is not moving (kinetic energy is energy due to motion). Halfway down, the mechanical energy of the roller coaster is due to both the kinetic energy and the potential energy, since the roller coaster is moving down, and is still at a given height above the ground. Having all these in mind, we can proceed and say that at halfway down the hill, ignoring friction,
ME = KE + PE = constant
50000 = KE + 25000
therefore
KE = 25000 J
Consult Interactive Solution 27.18 to review a model for solving this problem. A film of oil lies on wet pavement. The refractive index of the oil exceeds that of the water. The film has the minimum nonzero thickness such that it appears dark due to destructive interference when viewed in visible light with wavelength 653 nm in vacuum. Assuming that the visible spectrum extends from 380 to 750 nm, what is the longest visible wavelength (in vacuum) for which the film will appear bright due to constructive interference
Answer:
Explanation:
In the given case for destructive interference , the condition is,
path difference = (2n+1)λ /2 where n is an integer and λ is wavelength
2 μ d = (2n+1)λ /2
Putting λ = 653 nm
for minimum thickness n = 0
2 μ d = 653 / 2 nm
= 326.5 nm
For constructive interference the condition is
2 μ d = n λ₁
326.5 nm = n λ₁
λ₁ = 326.5 / n
For n = 1
λ₁ = 326.5 nm ,
or , 326.5nm .
Longest wavelength possible is 326.5
Our system is a block attached to a horizontal spring on a frictionless table. The spring has a spring constant of 4.0 N/m and a rest length of 1.0 m, and the block has a mass of 0.25 kg.
Compute the PE when the spring is compressed by 0.50 m.
Answer
E - 1/2 K x^2 potential energy of compressed spring
E = 1/2 * 4 N / m * (.5 m)^2 = 2 * .5^2 N-m = .5 N-m
In a LRC circuit, a second capacitor is connected in parallel with the capacitor previously in the circuit. What is the effect of this change on the impedance of the circuit
Answer:
Impedance increases for frequencies below resonance and decreases for the frequencies above resonance
Explanation:
See attached file
Explanation:
a. Describe the relationship between the number of batteries and the voltage and explain what you think might be happening
Answer:
Their is a direct relationship between the number of batteries and the increase in power. The voltage is the product of the number of batteries and the voltage which is 9 volts. As the batteries touch ends the voltages of all three combines.
Explanation:
What is the answer?
Answer: i think it is d. none of them.
Explanation: The speed of light in a vacuum is 186,282 miles per second and so when you look and the answer choices and the question it doesnt make any since.
A 10-cm-long thin glass rod uniformly charged to 6.00 nC and a 10-cm-long thin plastic rod uniformly charged to - 6.00 nC are placed side by side, 4.4 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods?
A. Specify the electric field strength E1
B. Specify the electric field strength E2
C. Specify the electric field strength E3
Answer:
A) E(r) = 1.3957 × 10^(5) N/C
B) E(r) = 9.8864 × 10⁴ N/C
C) E(r) = 1.13 × 10^(5) N/C
Explanation:
We are given;
q = 6 nc = 6 × 10^(-9) C
L = 10 cm = 0.1 m
d = 4.4 cm = 0.044 m
r1 = 1 cm = 0.01 m
r2 = 2 cm = 0.02 m
r3 = 3 cm = 0.03 m
Formula for the electric field strength in this question is given as;
E(r) = q/(2π(ε_o)rL) + q/(2π(ε_o)(d - r)L)
When factorized, we have;
E(r) = q/(2π(ε_o)L) × [(1/r) + (1/(d - r))]
Plugging in the relevant values for q/(2π(ε_o)L)
We know that (ε_o) has a constant value of 8.854 × 10^(−12) C²/N².m
Thus; q/(2π(ε_o)L) = (6 × 10^(-9))/(2π(8.854 × 10^(−12)0.1) = 1078.53
Thus;
E(r) = 1078.52 [1/r + 1/(d - r)]
A) E1 is at r = 1 cm = 0.01m
Thus;
E(r) = 1078.52 (1/0.01 + (1/(0.044 - 0.01))
E(r) = 1.3957 × 10^(5) N/C
B) E2 is at r = 2 cm = 0.02 m
Thus;
E(r) = 1078.52 (1/0.02 + (1/(0.044 - 0.02))
E(r) = 9.8864 × 10⁴ N/C
C) E2 is at r = 3 cm = 0.03 m
Thus;
E(r) = 1078.52 (1/0.03 + (1/(0.044 - 0.03))
E(r) = 1.13 × 10^(5) N/C
how many electrons do calcium have in their outer shell
Answer:
Calcium has two electrons in its outer shell.
Explanation:
Calcium is defined as a metal due to its physical and chemical traits. The two outer electrons are very reactive. Calcium has a valence of 2.
what effect does decreasing the field current below its nominal value have on the speed versus voltage characteristic of a separately excited dc motor
Answer
The effect is that it Decreases the field current IF and increases slope K1
You are performing an experiment that requires the highest-possible magnetic energy density in the interior of a very long current-carrying solenoid. Which of the following adjustments increases the energy density?a. Increasing only the length of the solenold while keeping the turns per unit lengh flxed. b. Increasing the number of turns per unit length on the solenold. c. Increasing the cross-sectional area of the solenoid. d. None of these. e. Increasing the current in the solenoid.
Answer:
The correct choice is B & E.
Explanation:
A solenoid is a coil of wire (usually copper) which is used as an electromagnet. Solenoids are used to convert electrical energy to mechanical energy. When this type of device is created it is also called a solenoid. One can increase the energy density within the solenoid or the coil by upping the electric current in the coil.
Cheers!
Suppose a 1300 kg car is traveling around a circular curve in a road at a constant
9.0 m/sec. If the curve in the road has a radius of 25 m, then what is the
magnitude of the unbalanced force that steers the car out of its natural straight-
line path?
Answer:
F = 4212 N
Explanation:
Given that,
Mass of a car, m = 1300 kg
Speed of car on the road is 9 m/s
Radius of curve, r = 25 m
We need to find the magnitude of the unbalanced force that steers the car out of its natural straight- line path. The force is called centripetal force. It can be given by :
[tex]F=\dfrac{mv^2}{r}\\\\F=\dfrac{1300\times 9^2}{25}\\\\F=4212\ N[/tex]
So, the force has a magnitude of 4212 N
Suppose that a sound source is emitting waves uniformly in all directions. If you move to a point twice as far away from the source, the frequency of the sound will be:________.
a. one-fourth as great.
b. half as great.
c. twice as great.
d. unchanged.
Answer:
d. unchanged.
Explanation:
The frequency of a wave is dependent on the speed of the wave and the wavelength of the wave. The frequency is characteristic for a wave, and does not change with distance. This is unlike the amplitude which determines the intensity, which decreases with distance.
In a wave, the velocity of propagation of a wave is the product of its wavelength and its frequency. The speed of sound does not change with distance, except when entering from one medium to another, and we can see from
v = fλ
that the frequency is tied to the wave, and does not change throughout the waveform.
where v is the speed of the sound wave
f is the frequency
λ is the wavelength of the sound wave.
g A solenoid 63.5 cm long has 960 turns and a radius of 2.77 cm. If it carries a current of 2.28 A, find the magnetic field along the axis at its center.Find the magnetic field on the solenoidal axis at the end of the solenoid.
Answer:
The value is [tex]B = 0.0043 \ T[/tex]
Explanation:
From the question we are told that
The length of the solenoid is [tex]l = 63.5 = 0.635 \ m[/tex]
The number of turns is [tex]N = 960 \ turns[/tex]
The current is [tex]I = 2.28 \ A[/tex]
Generally the magnetic field is mathematically represented as
[tex]B = \mu _o * n * I[/tex]
Where n is the number of turn per unit length which is mathematically evaluated as
[tex]n = \frac{N}{l}[/tex]
[tex]n = \frac{960}{0.635}[/tex]
[tex]n = 1512 \ turns /m[/tex]
and [tex]\mu_o[/tex] is the permeability of free space with value [tex]\mu_o = 4\pi * 10^{-7} N/A^2[/tex]
So
[tex]B = 4\pi * 10^{-7} * 1512 * 2.28[/tex]
[tex]B = 0.0043 \ T[/tex]
A person with a near point of 85 cm, but excellent distance vision normally wears corrective glasses. But he loses them while travelling. Fortunately he has his old pair as a spare. (a) If the lenses of the old pair have a power of 2.25 diopters, what is his near point (measured from the eye) when wearing the old glasses, if they rest 2.0 cm in front of the eye
Answer:
30.93 cm
Explanation:
Given that:
A person with a near point of 85 cm, but excellent distance vision normally wears corrective glasses
The power of the old pair of lens p = 2.25 diopters
The focal point length = 1/p
The focal point length = 1/2.25
The focal point length = 0.444 m
The focal point length = 44.4 cm
The near point of the person from the glass = (85 -2)cm , This is because the glasses are usually 2 cm from the lens
The near point of the person from the glass = 83 cm
Let consider s' to be the image on the same sides of the lens,
∴ s' = -83 cm
We known that:
the focal length of a mirror image 1/f =1/u +1/v
Assume the near point is at an excellent distance s from the glass where the person wears the corrective glasses.
Then:
1/f = 1/s + 1/s'
1/s = 1/f - 1/s'
1/s = (s' -f)/fs'
s = fs'/(s'-f)
s =( 44.4× -83)/(-83 - 44.4)
s = - 3685.2 / - 127.4
s = 28.93 cm
Thus , the near distance point measured from the eye wearing the old glasses, if they rest 2.0 cm in front of the eye = (28.93 +2.0)cm
= 30.93 cm
During the data transmission there are chances that the data bits in the frame might get corrupted. This will require the sender to re-transmit the frame and hence it will increase the re-transmission overhead. By considering the scenarios given below, you have to choose whether the packets should be encapsulated in a single frame or multiple frames in order to minimize the re-transmission overhead.
Justify your answer with one valid reason for both the scenarios given below.
Scenario A: Suppose you are using a network which is very prone to errors.
Scenario B: Suppose you are using a network with high reliability and accuracy.
1. Based on Scenario A, multiple frames will minimize re-transmission overhead and should be preferred in the encapsulation of packets.
2. Based on Scenario B, the encapsulation of packets should be in a single frame because of the high level of network reliability and accuracy.
Justification:
There will not be further need to re-transmit the packets in a highly reliable and accurate network environment, unlike in an environment that is very prone to errors. The reliable and accurate network environment makes a single frame economically better.
Encapsulation involves the process of wrapping code and data together within a class so that data is protected and access to code is restricted.
With encapsulation, each layer:
provides a service to the layer above itcommunicates with a corresponding receiving nodeThus, in a reliable and accurate network environment, single frames should be used to enhance transmission and minimize re-transmission overhead. This is unlike in an environment that is very prone to errors, where multiple frames should rather be used to minimize re-transmission overhead.
Learn more about encapsulation of packets here: https://brainly.com/question/22471914
For a transverse wave, what is a wavefront?
A a line joining all points on the same crest of a wave
B a line showing the displacement of a wave
C the energy content of a wave
D the first part of a wave to reach a point
wavefront is the long edge that moves, for example, the crest or the trough
A city of Punjab has a 15 percent chance of wet weather on any given day. What is the probability that it will take a week for it three wet weather on 3 separate days? Also find its Standard Deviation
Answer:
so the probability will be = 0.062
Standard deviation = 0.8925
Explanation:
The probability of rain = 15% = 15/100= 0.15
and the probability of no rain=q = 1-p= 1-0.15= 0.85
The number of trials = 7
so the probability will be
7C3 * ( 0.15)^3 (0.85)^4= 35* 0.003375 * 0.52200 =0.06166= 0.062
Taking this as binomial as the p and q are constant and also the trials are independent .
For a binomial distribution
Standard deviation = npq= 0.15 *0.85 *7= 0.8925
light bulb is connected to a 110-V source. What is the resistance of this bulb if it is a 100-W bulb
Answer:
121ohmsExplanation:
Formula used for calculating power P = current * voltage
P = IV
From ohms law, V = IR where R is the resistance. Substituting V = IR into the formula for calculating power, we will have;
P = IV
P =(V/R)V
P = V²/R
Given parameters
Power rating of the bulb P = 100 Watts
Source voltage V = 110V
Required
Resistance of the bulb R
Substituting the given parameters into the formula for calculating power to get Resistance R;
P = V²/R
100 = 110²/R
R = 110²/100
R = 110 * 110/100
R = 12100/100
R = 121 ohms
Hence, the resistance of this bulb is 121 ohms