a. Using the information below, calculate the cyclotron period of an electron that is launched into a magnetic field of strength 1 Gauss with a speed 200 m/s.

Electron Mass = 9.11 x 10^-31 kg
Proton Mass = 1.67 x 10^-27 kg
Elementary Charge = 1.602 x10^9 Nm/C

b. Using the same information from above, calculate the net work done on the charged particle by the magnetic field as it makes one full rotation.

Answers

Answer 1

Answer:

Explanation:

In cyclotron charged particle moves in a circular path in a magnetic field .

for rotation  

mv² / R = Bqv where m is mass and q be charge of the particle which moves on circular path of radius R with velocity v .

v = BqR / m  

Time period of rotation  

T = 2πR / v  

= 2πR m / BqR

= 2π m / Bq

For electron  

T = 2π x 9.1 x 10⁻³¹ / (1 x 10⁻⁴ x 1.602 x 10⁻¹⁹)

= 35.67 x 10⁻⁸ s  

b )  

work done on the charged particle will be zero because force on charged particle is perpendicular to its movement so work done will be zero


Related Questions

Stress is a factor that contributes to heart disease risk.true or false

Answers

The answer for this question would be True

A d'Arsonal meter with an internal resistance of 1 kohm requires 10 mA to produce full-scale deflection. Calculate thew value of a series

Answers

Question:

A d’Arsonval meter with an internal resistance of 1 kΩ requires 10 mA to produce full-scale deflection. Calculate the value of a series resistance needed to measure 50 V of full scale.

Answer:

4kΩ

Explanation:

Given;

internal resistance, r = 1kΩ

current, I = 10mA = 0.01A

Voltage of full scale, V = 50V

Since there is full scale voltage of 50V, then the combined or total resistance (R) of the circuit is given as follows;

From Ohm's law

V = IR

R = [tex]\frac{V}{I}[/tex]                 [substitute the values of V and I]

R = [tex]\frac{50}{0.01}[/tex]

R = 5000Ω = 5kΩ

The combined resistance (R) is actually the total resistance of the series arrangement of the series resistance([tex]R_{S}[/tex]) and the internal resistance (r) in the circuit. i.e

R = [tex]R_{S}[/tex] + r

[tex]R_{S}[/tex] = R - r                 [Substitute the values of R and r]

[tex]R_{S}[/tex] = 5kΩ - 1kΩ

[tex]R_{S}[/tex] = 4kΩ

Therefore the series resistance is 4kΩ

The Huka Falls on the Waikato River is one of New Zealand's most visited natural tourist attractions. On average, the river has a flow rate of about 300,000 L/s. At the gorge, the river narrows to 20-m wide and averages 20-m deep.
(a) What is the average speed of the river in the gorge?
(b) What is the average speed of the water in the river downstream of the falls when it widens to 60 m and its depth increases to an average of 40 m?

Answers

Answer:

(a) V = 0.75 m/s

(b) V = 0.125 m/s

Explanation:

The speed of the flow of the river can be given by following formula:

V = Q/A

V = Q/w d

where,

V = Speed of Flow of River

Q = Volume Flow Rate of River

w = width of river

d = depth of river

A = Area of Cross-Section of River = w d

(a)

Here,

Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s

w = 20 m

d = 20 m

Therefore,

V = (300 m³/s)/(20 m)(20 m)

V = 0.75 m/s

(b)

Here,

Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s

w = 60 m

d = 40 m

Therefore,

V = (300 m³/s)/(60 m)(40 m)

V = 0.125 m/s

C.
(11) in parallel
A potentiometer circuit consists of a
battery of e.m.f. 5 V and internal
resistance 1.0 12 connected in series with a
3.0 12 resistor and a potentiometer wire
AB of length 1.0 m and resistance 2.0 12.
Calculate:
(i) The total resistance of the circuit
The current flowing in the circuit
(iii) The lost volt from the internal
resistance of battery across the
battery terminals
(iv) The p.d. across the wire AB
(v) The e.m.f. of a dry cell which can be
balanced across 60 cm of the wire
AB.
Assume the wire has a uniform cross-
sectional area.​

Answers

Answer:

fggdfddvdghyhhhhggghh

A uniform electric field exists in the region between two oppositely charged plane parallel plates. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate, 1.60 cm distant from the first, in a time interval of 3.20×10−6s3.20×10 −6 s. (a) Find the magnitude of the electric field. (b) Find the speed of the proton when it strikes the negatively charged plate.

Answers

Answer:

E = 326.17 N/C

Explanation:

(a) In order to calculate the magnitude of the electric field between the parallel plates you first calculate the acceleration of the proton. You use the following formula:

[tex]x=v_ot+\frac{1}{2}at^2[/tex]         (1)

vo: initial speed of the proton = 0m/s

t: time that the proton takes to cross the space between the plates = 3.20*10^-6 s

a: acceleration of the proton = ?

x: distance traveled by the proton = 1.60cm = 0.016m

You solve the equation (1) for a, and replace the values of all parameters:

[tex]a=\frac{2x}{t^2}=\frac{2(0.016m)}{(3.20*10^{-6}s)^2}=3.125*10^{10}\frac{m}{s^2}[/tex]

Next, you use the Newton second law for the electric force, to find the magnitude of the electric field:

[tex]F_e=qE=ma[/tex]           (2)

q: charge of the proton = 1.6*10^-19C

m: mass of the proton = 1.77*10^-27kg

You solve the equation (2) for E:

[tex]E=\frac{ma}{q}=\frac{(1.67*10^{-27}kg)(3.125*10^{10}m/s^2)}{1.6*10^{-19}C}\\\\E=326.17\frac{N}{C}[/tex]

The magnitude of the electric field in between the parallel plates is 326.17N/C

If the person is shaking her hand up-and-down 12 times per second, what is the wave speed?

Answers

Welllll, first of all, it would take incredible muscular development and control to be able to do that, and I don't believe it's actually humanly possible.

But for Math and Physics problems, that's OK.  We don't mind suspending our disbelief, accepting a temporary alternate reality, and working with the hand that is dealt.

The speed of a wave doesn't depend on how the wave is created.  A puppy wagging its tail, a fly batting its wings, or a person shaking her hand up and down, are moving the air.  The wave that travels away from the vibration is a sound wave in air.  Its speed depends only on the characteristics of the air it travels through.

For some typical combination of temperature, pressure, and humidity, this speed (of sound) is taken to be 343 meters per second.

Notice that the 'sound' of shaking her hand up and down will not be 'heard' by anyone, no matter how close she stands to them.  12 Hz (12 per second) is not a fast-enough wiggle to be sensed as sound by human ears.  If the person senses the wave at all, it will only be as some kind of pulsating breeze.

In a ballistic pendulum experiment, a small marble is fired into a cup attached to the end of a pendulum. If the mass of the marble is 0.0215 kg and the mass of the pendulum is 0.250 kg, how high h will the pendulum swing if the marble has an initial speed of 5.15 m/s? Assume that the mass of the pendulum is concentrated at its end so that linear momentum is conserved during this collision.

Answers

Answer:

h = 8.48*10^-3m

Explanation:

In order to calculate the height reached by the pendulum with the marble, you first take into account the momentum conservation law, to calculate the speed of both pendulum and marble just after the collision.

The total momentum of the system before the collision is equal to the total momentum after:

[tex]m_1v_1+m_2v_2=(m_1+m_2)v[/tex]        (1)

Here you used the fact that the pendulum has its total mass concentrated at the end of the pendulum.

m1: mass of the marble = 0.0215kg

m2: mass of the pendulum concentrated at its end = 0.250kg

v1: horizontal speed of the arble before the collision = 5.15m/s

v2: horizontal speed of the pendulum before the collision = 0m/s

v: horizontal speed of both marble and pendulum after the collision = ?

You solve the equation (1) for v, and replace the values of the other parameters:

[tex]v=\frac{m_1v_1+m_2v_2}{m_1+m_2}\\\\v=\frac{(0.0215kg)(5.15m/s)+(0.250kg)(0m/s)}{0.0215kg+0.250kg}=0.40\frac{m}{s}[/tex]

Next, you use the energy conservation law. In this case the kinetic energy of both marble and pendulum (just after the collision) is equal to the potential energy of the system when both marble and pendulum reache a height h:

[tex]U=K\\\\(m_1+m_2)gh=\frac{1}{2}(m_1+m_2)v^2\\\\h=\frac{v^2}{2g}[/tex]

v = 0.40m/s

g: gravitational acceleration = 9,8m/s^2

[tex]h=\frac{(0.40m/s)^2}{2(9.8m/s^2)}=8.48*10^{-3}m[/tex]

Then, the height reached by marble and pendulum is 8.48*10^-3m

Approximately what applied force is needed to keep the box moving with a constant velocity that is twice as fast as before? Explain

Answers

Complete question:

A force F is applied to the block as shown (check attached image). With an applied force of 1.5 N, the block moves with a constant velocity.

Approximately what applied force is needed to keep the box moving with a constant velocity that is twice as fast as before? Explain

Answer:

The applied force that is needed to keep the box moving with a constant velocity that is twice as fast as before, is 3 N

Force is directly proportional to velocity, to keep the box moving at the double of initial constant velocity, we must also double the value of the initially applied force.

Explanation:

Given;

magnitude of applied force, F = 1.5 N

Apply Newton's second law of motion;

F = ma

[tex]F = m(\frac{v}{t} )\\\\F = \frac{m}{t} v\\\\Let \ \frac{m}{t} \ be \ constant = k\\F = kv\\\\k = \frac{F}{v} \\\\\frac{F_1}{v_1} = \frac{F_2}{v_2}[/tex]

The applied force needed to keep the box moving with a constant velocity that is twice as fast as before;

[tex]\frac{F_1}{v_1} = \frac{F_2}{v_2} \\\\(v_2 = 2v_1, \ and \ F_1 = 1.5N)\\\\\frac{1.5}{v_1} = \frac{F_2}{2v_1} \\\\1.5 = \frac{F_2}{2}\\\\F_2 = 2*1.5\\\\F_2 = 3 N[/tex]

Therefore, the applied force that is needed to keep the box moving with a constant velocity that is twice as fast as before, is 3 N

Force is directly proportional to velocity, to keep the box moving at the double of initial constant velocity, we must also double the value of the applied force.

gg The sound source of a ship’s sonar system operates at a frequency of 22.0 kHzkHz . The speed of sound in water (assumed to be at a uniform 20∘C∘C) is 1482 m/sm/s . What is the difference in frequency between the directly radiated waves and the waves reflected from a whale traveling straight toward the ship at 4.95 m/sm/s ? Assume that the ship is at rest in the water.

Answers

Answer:

Δf = 73.72Hz

Explanation:

In order to calculate the difference in frequency between the direct waves and the reflected waves, you first take into account the Doppler's effect for an observer getting closer to the source:

[tex]f'=f(\frac{v+v_o}{v-v_s})[/tex]         (1)

You can assume that the reflected waves come from a source "the whale". Then you have:

f': frequency of the reflected waves = ?

f: frequency of the source = 22.0*kHz = 22.0*10^3 Hz

v: speed of the sound in water = 1482m/s

vs: speed of the source = 4.95m/s

vo: speed of the observer = 0m/s

You replace the values of the parameters in the equation (1):

[tex]f'=(22.0*10^3Hz)(\frac{1482m/s}{1482m/s-4.95m/s})=22073.72Hz[/tex]

Then, the difference in frequency is:

[tex]\Delta f = f'-f=22000Hz-22073.72Hz=73.72Hz[/tex]

Bromine, a liquid at room temperature, has a boiling point

Answers

Yes it does !  The so-called "boiling point" is the temperature at which Bromine liquid can change state and become Bromine vapor, if enough additional thermal energy is provided.  The boiling point is higher than room temperature.

Check Your UnderstandingSuppose the radius of the loop-the-loop inExample 7.9is 15 cm and thetoy car starts from rest at a height of 45 cm above the bottom. What is its speed at the top of the loop

Answers

Answer:

v = 1.7 m/s

Explanation:

By applying conservation of energy principle in this situation, we know that:

Loss in Potential Energy of Car = Gain in Kinetic Energy of Car

mgΔh = (1/2)mv²

2gΔh = v²

v = √(2gΔh)

where,

v = velocity of car at top of the loop = ?

g = 9.8 m/s²

Δh = change in height = 45 cm - Diameter of Loop

Δh = 45 cm - 30 cm = 15 cm = 0.15 m

Therefore,

v = √(2)(9.8 m/s²)(0.15 m)

v = 1.7 m/s

A hollow conducting spherical shell has radii of 0.80 m and 1.20 m, The radial component of the electric field at a point that is 0.60 m from the center is closest to

Answers

Complete Question

The complete question is  shown on the first uploaded image  

 

Answer:

The electric field at that point is  [tex]E = 7500 \ N/C[/tex]

Explanation:

From the question we are told that  

       The  radius of the inner circle is [tex]r_i = 0.80 \ m[/tex]

        The  radius of the outer circle is  [tex]r_o = 1.20 \ m[/tex]

       The  charge on the spherical shell [tex]q_n = -500nC = -500*10^{-9} \ C[/tex]

      The magnitude of the point charge at the center is  [tex]q_c = + 300 nC = + 300 * 10^{-9} \ C[/tex]

        The  position we are considering is  x =  0.60 m  from the center

Generally  the  electric field  at the distance x =  0.60 m  from the center  is mathematically represented as

                 [tex]E = \frac{k * q_c }{x^2}[/tex]

substituting values  

                  [tex]E = \frac{k * q_c }{x^2}[/tex]

where  k is  the coulomb constant with value [tex]k = 9*10^{9} \ kg\cdot m^3\cdot s^{-4} \cdot A^{-2}.[/tex]

     substituting values

                  [tex]E = \frac{9*10^9 * 300 *10^{-9}}{0.6^2}[/tex]

                 [tex]E = 7500 \ N/C[/tex]

A sunbather stands waist deep in the ocean and observes that six crests of periodic surface waves pass each minute. The crests are 16.00 meters apart. What is the wavelength, frequency, period, and speed of the waves

Answers

Answer:

Wavelength = 16 m

Frequency = 0.1 Hz

Period = 10 s^-1

speed of the wave = 1.6 m/s

Explanation:

The crests of the wave is 16.00 m apart

Also, 6 crests pass per minute

The wavelength of this wave is the distance between consecutive corresponding troughs or crests. This means that the wavelength λ is 16 m

Frequency is defined as a number of cycles per seconds.

A minute has 60 sec, therefore, the frequency of this wave is

==> f =  6/60 = 0.1 Hz

Period is the inverse of the frequency, therefore period of the wave is

==> T = 1/0.1 = 10 s^-1

Speed of the wave is the frequency times the wavelength

v = λf = 16 x 0.1 = 1.6 m/s

A 25.0 kg block is initially at rest on a horizontal surface. A horizontal force of 75 N is required to set the block in motion, after which a horizontal force of 60 N is required to keep the block in moving with constant speed. Find the coefficient of static and kinetic friction between the block and the surface.

Answers

Answer:

μs = 0.30

μk = 0.24

Explanation:

In order to calculate the kinetic friction and static friction between the block and the surface, you take into account that the kinetic friction is important when the block is moving and the static friction when the block is at rest.

You use the following formula to find the coefficient of static friction:

[tex]F_1=\mu_s Mg[/tex]       (1)

F1 = 75N

μs: coefficient of static friction = ?

M: mass of the block = 25.0kg

g: gravitational acceleration = 9.8m/s^2

You solve for μs in the equation (1):

[tex]\mu_s=\frac{F_1}{Mg}=\frac{75N}{(25.0kg)(9.8m/s^2)}=0.30[/tex]

For the coefficient of kinetic friction you have:

[tex]F_2=\mu_k Mg[/tex]       (2)

F2 = 60N

μk: coefficient of kinetic friction = ?

You solve for μk in the equation (2):

[tex]\mu_k=\frac{F_2}{Mg}=\frac{60N}{(25.0kg)(9.8m/s^2)}=0.24[/tex]

Then, you have:

coefficient of static friction = 0.30

coefficient of kinetic friction = 0.24

Which of the following biotic organisms makes its own energy from inorganic substances?
producers
consumers
decomposers
minerals

Answers

Answer:

producers make its own energy frominorganic substances.

what tools use cut wood

Answers

Answer:

hand saws

power saws

Circular Saw

Explanation:

that is all that i know

The resonance tube used in this experiment produced only one resonance tone. What length of tube would be required to produce a second tone under the same experimental conditions? Explain your answer.

Answers

Answer:

the length that would produce a sound tone under the same experimental contditions must be increased by  Δl = [tex]\frac{v}{2f}[/tex]

Explanation:

Recall

V = f ×λ

where λ is ⁴/₃l₂ for second resonance

f = [tex]\frac{3v}{4l_{2} }[/tex]

l₂ = [tex]\frac{3v}{4f}[/tex]

where λ is 4l₁ for 1st resonance

f = [tex]\frac{v}{4l_{1} }[/tex]

l₁ = [tex]\frac{v}{4f}[/tex]

∴ Δl = l₂ - l₁ =  [tex]\frac{3v}{4f}[/tex] ⁻  [tex]\frac{v}{4f}[/tex]

Δl=  [tex]\frac{2v}{4f}[/tex]

Δl = [tex]\frac{v}{2f}[/tex]

Therefore, the length should increase by [tex]\frac{v}{2f}[/tex]


3. Which is a general chemical equation for an endothermic, double-replacement reaction?

O AB+ CD + energy-> AD+ CB
O AB+ CD AD + CB + energy
O AB+ C + energy - A+ CB
O AB+C- A+ CB + energy

Answers

The correct answer is A.  AB+ CD + energy-> AD+ CB

Explanation:

In chemistry, a reaction is endothermic if the reaction involves absorption of heat or energy and this is necessary for the reaction to start. In terms of the chemical equation, this implies energy is part of the reactants or initial substances. Besides this, if the reaction is a double-replacement reaction this means two ions of the original substances are swapped or replaced, which means new substances in the products.

According to this, option A is the correct chemical equation because energy is part of the reactants, which shows the reaction is endothermic and the reactants AB + CD lead to the products AD + CB which shows two ions of the compounds were replaced (double replacement).

Answer:

The proper Answer is A) AB+CD + Energy --> AD + CB

Explanation:


An ac circuit consist of a pure resistance of 10ohms is connected across an ae supply
230V 50Hz Calculate the:
(i)Current flowing in the circuit.

(ii)Power dissipated

Answers

Plz check attachment for answer.

Hope it's helpful

A particle of charge = 50 µC moves in a region where the only force on it is an electric force. As the particle moves 25 cm, its kinetic energy increases by 1.5 mJ. Determine the electric potential difference acting on the partice​

Answers

Answer:

nvbnncbmkghbbbvvvvvvbvbhgggghhhhb

What is the relationship between the magnitudes of the collision forces of two vehicles, if one of them travels at a higher speed?

Answers

Explanation:

The collision forces are equal and opposite.  Therefore, the magnitudes are equal.

For the last part of the lab, you should have found the mass of the meter stick. So if a mass of 85 g was placed at the 2 cm MARK and the pivot point was moved to the 38.6 cm MARK, what would have been the mass of the meter stick

Answers

Answer:

272.89g

Explanation:

Find the diagram to the question in the attachment below;.

Using the principle of moment to solve the question which states that the sum of clockwise moment is equal to the sum of anticlockwise moment.

Moment = Force * Perpendicular distance

Taking the moment of force about the pivot.

Anticlockwise moment:

The 85g mass will move in the anticlockwise

Moment of 85g mass = 85×36.6

= 3111gcm

Clockwise moment.

The mass of the metre stick M situated at the centre (50cm from each end) will move in the clockwise direction towards the pivot.

CW moment = 11.4×M = 11.4M

Equating CW moment to the ACW moment we will have;

11.4M = 3111

M = 3111/11.4

M = 272.89g

The mass of the metre stick is 272.89g

Two identical loudspeakers 2.30 m apart are emitting sound waves into a room where the speed of sound is 340 m/s. Abby is standing 3.00 m in front of one of the speakers, perpendicular to the line joining the speakers, and hears a maximum in the intensity of the sound. Part A What is the lowest possible frequency of sound for which this is possible

Answers

Answer:

1089.74 Hz

Explanation:

Using Pythagoras theorem, we can find the distance from the point to the second speaker.

Thus;

d2 = √(3² + 2.3²)

d2 = √(9 + 5.29)

d2 = √14.29

d2 = 3.78 m

Then, the path distance which is the extra distance travelled would be;

Δd = d2 - d1

Δd = 3.78 - 3

Δd = 0.78 m

Now, the destructive interference condition is given by the formula;

Δd = (m + ½)λ

λ is the wavelength

m is a non - negative integer.

In this case, m = 2

Thus;

0.78 = (2 + ½)λ

λ = 0.78/(2½)

λ = 0.312 m

Now the formula for frequency of a wave is given by;

f = v/λ

Where v is speed of sound.

Thus;

f = 340/0.312

f = 1089.74 Hz

When moving to a new apartment, you rent a truck and create a ramp with a 244 cm long piece of plywood. The top of the moving ramp lies on the edge of the truck bed at a height of 115 cm. You load your textbooks into a wooden box at the bottom of the ramp (the coefficient of kinetic friction between the box and ramp is = 0.2). Then you and a few friends give the box a quick push and it starts to slide up the ramp. A) What angle is made by the ramp and the ground?B) Unfortunately, after letting go, the box only tables 80cm up the ramp before it starts coming back down! What speed was the box initially traveling with just after you stopped pushing it?

Answers

Answer:

A)    θ = 28.1º , B)         v = 2.47 m / s

Explanation:

A) The angle of the ramp can be found using trigonometry

         sin θ = y / L

         Φ = sin⁻¹ y / L

         θ = sin⁻¹ (115/244)

         θ = 28.1º

B) For this pate we can use the relationship between work and kinetic energy

       W =ΔK

where the work is

       W = -fr x

the negative sign is due to the fact that the friction force closes against the movement

Lavariacion of energy cineta is

         ΔEm = ½ m v² - mgh

        -fr x = ½ m v² - m gh

the friction force has the equation

         fr = very N

           

at the highest part there is no speed and we take the origin from the lowest part of the ramp

To find the friction force we use Newton's second law. Where one axis is parallel to the ramp and the other is perpendicular

             

Axis y . perpendicular

            N- Wy = 0

            cos tea = Wy / W

            Wy = W cos treaa

             N = mg cos tea

we substitute

   

- (very mg cos tea) x = ½ m v²2 - mgh

            v2 = m (gh- very g cos tea x)

   let's calculate

           v = Ra (9.8 0.80 - 0.2 9.8 0.0 cos 28.1)

           v = RA (7.84 -1.729)

           v = 2.47 m / s

A student has made the statement that the electric flux through one half of a Gaussian surface is always equal and opposite to the flux through the other half of the Gaussian surface. This is:_______.

a. never true.

b. never false.

c. true whenever enclosed charge is symmetrically located at a center point, or on a center line or centrally placed plane

d. true whenever no charge is enclosed within the Gaussian surface.

e. true only when no charge is enclosed within the Gaussian surface.

Answers

Answer:

E.true only when no charge is enclosed within the Gaussian surface.

Explanation:

Because Gauss’s law states that the net flux of an electric field in a closed surface is directly proportional to the enclosed electric charge.

Assume the angular momentum of a diatomic molecule is quantized according to the relation . What are the allowed rotational kinetic energies

Answers

Answer:

The answer to this question can be defined as follows:

Explanation:

In the given question, an equation is missing which can be defined as follows:

[tex]I \omega =\sqrt{J(J+1)}h[/tex]

solution:

Angular momentum:

[tex]L=I \omega =\sqrt{J(J+1)}h[/tex]

Convert Angular momentum in terms of kinetic energy:

[tex]K = \frac{L^2}{2I}[/tex]

    [tex]= \frac{h^2(J(J+1))}{2I}[/tex]

Based on what you know about electricity, hypothesize about how series resistors would affect current flow. What would you expect the effective resistance of two equal resistors in series to be, compared to the resistance of a single resistor?

Answers

Answer:

Effective resistance of two equal resistors in series is twice that of a single resistor and in essence will reduce the amount of current flowing in the circuit.

Explanation:

When two resistors are connected in series, their effective resistance is the sum of their individual resistances. For example, given two resistors of resistance values R₁ and R₂, their effective resistance, Rₓ is given by;

Rₓ = R₁ + R₂            --------------(1)

If these resistors have equal resistance values, say R, then equation 1 becomes;

Rₓ = R + R

Rₓ = 2R

This means that their effective resistance is twice of their individual resistances. In other words, when two equal resistors are in series, their effective resistance is twice the resistance of each single one of those resistors.

Now, according to Ohm's law, voltage(V) is the product of current (I) and resistance (R). i.e

V = IR

I = [tex]\frac{V}{R}[/tex]

We can deduce that current increases as resistance decreases and vice-versa.

So, if the two equal resistors described above are connected in series, the amount of current flowing will be reduced compared to having just a single resistor.

When the charges in the rod are in equilibrium, what is the magnitude of the electric field within the rod?

Answers

Answer: If we have equilibrium, the magnitude must be zero.

Explanation:

If the charges are in equilibrium, this means that the total charge is equal to zero.

And as the charges must be homogeneously distributed in the rod, we can conclude that the electric field within the rod must be zero, so the magnitude of the electric field must be zero

A passenger jet flies from one airport to another 1,233 miles away in 2.4 h. Find its average speed. = ____ m/s

Answers

Speed = (distance) / (time)

Speed = (1,233 mile) / (2.4 hour)

Speed = 513.75 mile/hour

Speed = (513.75 mi/hr) x (1609.344 meter/mi) x (1 hr / 3600 sec)

Speed = (513.75 x 1609.344 / 3600) (mile-meter-hour/hour-mile-second)

Speed = 229.7 meter/second

You illuminate a slit with a width of 77.7 μm with a light of wavelength 721 nm and observe the resulting diffraction pattern on a screen that is situated 2.83 m from the slit. What is the width, in centimeters, of the pattern's central maximum

Answers

Answer:

The width is  [tex]Z = 0.0424 \ m[/tex]

Explanation:

From the question we are told that

    The width of the slit is [tex]d = 77.7 \mu m = 77.7 *10^{-6} \ m[/tex]

    The wavelength of the light is  [tex]\lambda = 721 \ nm[/tex]

      The position of the screen is  [tex]D = 2.83 \ m[/tex]

Generally angle at which the first minimum  of the interference pattern the  light occurs  is mathematically  represented as

        [tex]\theta = sin ^{-1}[\frac{m \lambda}{d} ][/tex]

Where m which is the order of the interference is 1

substituting values

       [tex]\theta = sin ^{-1}[\frac{1 *721*10^{-9}}{ 77.7*10^{-6}} ][/tex]

      [tex]\theta = 0.5317 ^o[/tex]

 Now the width of first minimum  of the interference pattern is mathematically evaluated as

       [tex]Y = D sin \theta[/tex]

substituting values

       [tex]Y = 2.283 * sin (0.5317)[/tex]

       [tex]Y = 0.02 12 \ m[/tex]

 Now the width of  the  pattern's central maximum is mathematically evaluated as

        [tex]Z = 2 * Y[/tex]

substituting values

      [tex]Z = 2 * 0.0212[/tex]

     [tex]Z = 0.0424 \ m[/tex]

Other Questions
mutually exclusive.. When did the French begin to settle colonies in North America?1400s1500s1700s1600s which of the following is considered aggression in the preschool years? Which event is an example of sexual reproduction in plants?O A. Pine trees produce seeds in cones.B. A kalanchoe produces plantlets on its leaves.C. Mosses form spores in capsules.D. A potato has buds that can grow into new stems. Please help me, and only provide with the given answers so I am not confused. The curve on the left shows the height of a population of penguins. The curve on the right shows the population five years later. What has happened to this population? (Available answers are in photo) Will mark best answer BRAINLIEST Calculate the moment of inertia of a skater given the following information. (a) The 60.0-kg skater is approximated as a cylinder that has a 0.110-m radius. (b) The skater with arms extended is approximately a cylinder that is 74.0 kg, has a 0.150 m radius, and has two 0.750 m long arms which are 3.00 kg each and extend straight out from the cylinder like rods rotated about their ends. 1. A point on the ground is 50 feet from my house. The angle of elevation to the top of the house is 48 Find the height of the house to the nearest tenth2. A bird is flying at a height of 2 meters above the sea level. The angle of depression from the bird to the fish it sees on the surface of the ocean is 15^c irc. Find the distance the bird must fly to be directly above the fish. Round to the nearest tenthPlease help me as soon as possible! I have to get this done before tomorrow! Please helpppp 17. A gardener is installing a fence around his garden. Let x represent the width ofthe garden, in feet. The perimeter of the graden is 8x + 8. Which expressionrepresents the length of the garden?a. 2x + 2b. 3x +4c. 6x + 8d. 8x + 8 - 2x Read this excerpt from Chapter 1 of / Know Why the Caged Bird Sings by Maya Angelou and answer the question.When I was three and Bailey four, we had arrived in the musty little town, wearing tags on our wrists whichInstructed - 'To Whom It May Concern' - that we were Marguerite and Bailey Johnson Jr. ... Negropassengers, who always traveled with loaded lunch boxes, felt sorry for the poor little motherless darlings'and plied us with cold fried chicken and potato salad.Which of the following best describes the cultural context of this memoir?train travel in 1940s American rural Southlife of African-Americans in rural South of 1940svoting traditions of African-Americans in 1940s American rural Southcotton-picking methods in 1940s American rural South decreasing grades in schoolusing illegal drugsinability to control angersudden mood swingshope of impressing coachdisappointment in not making the team Hola! Mi nombre es Rosita y vivo en Cartagena, Colombia. Tengo 16 aos y estoy en la escuela superior. Todas las escuelas superiores en Colombia tienen cuatro rutas diferentes, desde un ao a cinco aos de estudios: programas tcnicos, tecnolgicos, docentes y profesionales. Los programas docentes y tecnolgicos son los ms largos. Yo estudio en el programa tcnico. Quiero ser jardinera. Cuando terminas los dos aos del programa tcnico, puedes comenzar a trabajar inmediatamente sin ir a la universidad. En las carreras profesionales necesitas estudiar ms que en las carreras tcnicas y necesitas ir a la universidad. En los Estados Unidos hay carreras tcnicas, pero no en todas las escuelas. En Estados Unidos, despus de terminar los estudios tcnicos o generales en cuatro aos, puedes ir a la universidad para los estudios profesionales. Based on the text and what you learned in the lesson, what is a similarity between high schools in Colombia versus the United States? Both countries offer technical programs in all high schools. Both countries offer general programs in all high schools. Both countries require university studies for technical programs. Both countries require at least two complete years in school. Please help me asapppppp Until the rain stops, business in the restaurant will be slow. a. Simplec. Complex b. Compound d. Compound-Complex Which word best compleates the statement below look at the diagram to help 10) Financial intermediaries can substantially reduce transaction costs per dollar of transactionsbecause their large size allows them to take advantage of Currently, California has 55 electors, this number equals the number members in the House of Representative and the number of senators in theSenate. How many members do they have in the House?50515253 Which function is negative for the interval [-1,1] ? The total number of students enrolled in MATH 123 this semester is 5,780. If itincreases by 0.35% for the next semester, what will be the enrollment nextsemester? Round to a whole person. How to decide which foreign language should I pick? Laura tiene las tres sptimas partes de la edad de su mam dentro de 5 aos la edad de su mam ser el doble que la edad de ella Cuntos aos tiene cada una?