A uniform electric field is present in the region between infinite parallel plane plates A and B and a uniform electric field is present in the region between infinite parallel plane plates B and C. When the plates are vertical, is directed to the right and to the left. The signs of the charges on plates A, B and C may be

Answers

Answer 1

Answer:

the signs on the plates are      A +    B-    C +

Explanation:

The electric field for an infinite plate is perpendicular to it, this field is outgoing if the charge on the plate is positive and incoming if the charge on the plate is negative.

Let's analyze the situation presented, we have two infinite plates A and B with the elective field directed to the right, therefore the charge of the plate must be

            plate A    positive charge

           plate B     Negative charge

We also have a third plate C and they indicate that the field between B and C is directed to the left, therefore

           plate B     negative charged

            plate C   positive charged

in short the signs on the plates are

    A +    B-    C +


Related Questions

F=9 N, a=3 m/s², m=?

Answers

Answer:

3kg

Explanation:

Given parameters:

Force  = 9N

Acceleration  = 3m/s²

Unknown:

Mass = ?

Solution:

From Newton's second law of motion:

        Force  = mass x acceleration

So;

             9  = mass x 3

             mass  = 3kg

For a flourish at the end of her act, a juggler tosses a single ball high in the air. She catches the ball 3.2 s later at the same height from which it was thrown. What was the initial upward speed of the ball?

Answers

Answer:

15.68 m/s

Explanation:

Given that,

She catches the ball 3.2 s later at the same height from which it was thrown.

When it reaches the maximum height, its height is equal to 0.

It will move under the action of gravity.

[tex]t=\dfrac{2u}{g}[/tex]

2 here comes for the time of ascent and descent.

So,

[tex]u=\dfrac{tg}{2}\\\\u=\dfrac{3.2\times 9.8}{2}\\\\u=15.68\ m/s[/tex]

So, the initial upward speed of the ball is 15.68 m/s.

The radius of the Sun is 6.96 x 108 m and the distance between the Sun and the Earth is roughtly 1.50 x 1011 m. You may assume that the Sun is a perfect sphere and that the irradiance arriving on the Earth is the value for AMO, 1,350 W/m2. Calculate the temperature at the surface of the Sun.

Answers

Answer:

5766.7 K

Explanation:

We are given that

Radius of Sun , R=[tex]6.96\times 10^{8} m[/tex]

Distance between the Sun and the Earth, D=[tex]1.50\times 10^{11}m[/tex]

Irradiance arriving on the Earth is the value for AMO=[tex]1350W/m^2[/tex]

We have to find the temperature at the surface of the Sun.

We know that

Temperature ,T=[tex](\frac{K_{sc}D^2}{\sigma R^2})^{\frac{1}{4}}[/tex]

Where [tex]K_{sc}=1350 W/m^2[/tex]

[tex]\sigma=5.67\times 10^{-8}watt/m^2k^4[/tex]

Using the formula

[tex]T=(\frac{1350\times (1.5\times 10^{11})^2}{5.67\times 10^{-8}\times (6.96\times 10^{8})^2})^{\frac{1}{4}}[/tex]

T=5766.7 K

Hence, the temperature at the surface of the sun=5766.7 K

An object of height 2.7 cm is placed 29 cm in front of a diverging lens of focal length 16 cm. Behind the diverging lens, and 12 cm from it, there is a converging lens of the same focal length.
A. Find the location of the final image, in centimeters beyond the converging lens.
B. What is the magnification of the final image?

Answers

Answer:

A)  q = -8.488 cm ,  B)  m = 0.29

Explanation:

A) For this exercise in geometric optics, we will use the equation of the constructor

          [tex]\frac{1}{f} = \frac{1}{p} + \frac{1}{q}[/tex]

where p and q are the distance to the object and image, respectively and f is the focal length

in our case the distance the object is p = 29 cm the focal length of a diverging lens is negative and indicates that it is f = - 12 cm

         [tex]\frac{1}{q} = \frac{1}{f} - \frac{1}{p}[/tex]

     

we calculate

          [tex]\frac{1}{q} = - \frac{1}{12} - \frac{1}{29}[/tex]

          [tex]\frac{1}{q}[/tex] = - 0.1178

          q = -8.488 cm

the negative sign indicates that the image is virtual

B) the magnification is given

          [tex]m = \frac{h'}{h} = - \frac{q}{p}[/tex]

       

we substitute

          m = [tex]- \frac{-8.488}{29}[/tex]

          m = 0.29

the positive sign indicates that the image is right

A remote controlled airplane moves 7.2 m in 2.5seconds what is the plane’s velocity

Answers

Answer:

2.88m/s

Explanation:

Given parameters:

Displacement  = 7.2m

Time taken  = 2.5s

Unknown:

Velocity of the plane  = ?

Solution:

Velocity is the displacement divided by the time taken.

  Velocity  = [tex]\frac{displacement}{time taken}[/tex]  

 So;

   Velocity  = [tex]\frac{7.2}{2.5}[/tex]    = 2.88m/s

Un autobús en una autopista lleva una magnitud de la velocidad de 95 km/h, el conductor observa que debido a un derrumbe la carretera está cerrada, en ese instante acciona los frenos, deteniendo el autobús después de recorrer 60 m. a) ¿Cuál es el valor de la aceleración en el autobús?

Answers

Answer:

La aceleración del autobús es -5.80 m/s².

Explanation:

Podemos encontrar la aceleración del autobús usando la siguiente ecuación:

[tex] v_{f}^{2} = v_{0}^{2} + 2ad [/tex]

Where:

[tex]v_{f}[/tex]: es la velocidad final = 0 (se detiene al final)

[tex]v_{0}[/tex]: es la velocidad inicial = 95 km/h

d: es la distancia recorrida = 60 m

Por lo tanto, la aceleración es:

[tex] a = \frac{v_{f}^{2} - v_{0}^{2}}{2d} = \frac{0 - (95 \frac{km}{h}*\frac{1000 m}{1 km}*\frac{1 h}{3600 s})^{2}}{2*60 m} = -5.80 m/s^{2} [/tex]

El signo negativo se debe a que el autobús está desacelerando (hasta que se detiene).

Entonces, la aceleración del autobús es -5.80 m/s².

Espero que te sea de utilidad!                      

Statement A: 2.567 km, to two significant figures. Statement B: 2.567 km, to three significant figures. Determine the correct relationship between the statements. View Available Hint(s) Determine the correct relationship between the statements. Statement A is greater than Statement B. Statement A is less than Statement B. Statement A is equal to Statement B.

Answers

Answer:

Statement A is greater than Statement B.

Explanation:

Statement A: 2.567 km, to two significant figures..

To 2 sig figures means only 2 whole numbers should be left after approximation. Thus, 2.567 to 2 significant figures is 2.6 km

Statement B: 2.567 km, to three significant figures. To 3 sig figures means only 3 whole numbers should be left after approximation. Thus, 2.567 to 3 significant figures is 2.57 km

Comparing both values, statement A is obviously greater than Statement B

is 0.8 kilograms bigger then 80 grams

Answers

Answer:

Yes

Explanation:

0.8 kilograms is equal to 800 grams

Answer:

Yes, 0.8 kilograms is greater than 80 grams

Explanation:

0.8 kilograms is equal to 800 grams and 80 grams is equal to 0.08 kilogrmas.

Sorry if I'm wrong, correct me.

According to Newton's law of universal gravitation, which statements are true?
As we move to higher altitudes, the force of gravity on us decreases.
O As we move to higher altitudes, the force of gravity on us increases,
O As we gain mass, the force of gravity on us decreases.
O Aswe gain mass, the force of gravity on us increases.
DAs we move faster, the force of gravity on us increases.

Answers

I think the answers are a and c

6 A test of a driver's perception/reaction time is being conducted on a special testing track with level, wet pavement and a driving speed of 50 mi/h. When the driver is sober, a stop can be made just in time to avoid hitting an object that is first visible 385 ft ahead. After a few drinks under exactly the same conditions, the driver fails to stop in time and strikes the object at a speed of 30 mi/h. Determine the driver's perception/reaction time before and after drinking. (Assume practical stopping distance.)

Answers

Answer:

a. 10.5 s b. 6.6 s

Explanation:

a. The driver's perception/reaction time before drinking.

To find the driver's perception time before drinking, we first find his deceleration from

v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m

So, a = v² - u²/2s

substituting the values of the variables into the equation, we have

a = v² - u²/2s

a = (0 m/s)² - (22.35 m/s)²/2(117.35 m)

a =  - 499.52 m²/s²/234.7 m

a = -2.13 m/s²

Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver = -2.13 m/s² and t = reaction time

So, t = (v - u)/a

Substituting the values of the variables into the equation, we have

t = (0 m/s - 22.35 m/s)/-2.13 m/s²

t = - 22.35 m/s/-2.13 m/s²

t = 10.5 s

b. The driver's perception/reaction time after drinking.

To find the driver's perception time after drinking, we first find his deceleration from

v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m

So, a = v² - u²/2s

substituting the values of the variables into the equation, we have

a = v² - u²/2s

a = (13.41 m/s)² - (22.35 m/s)²/2(117.35 m)

a = 179.83 m²/s² - 499.52 m²/s²/234.7 m

a = -319.69 m²/s² ÷ 234.7 m

a = -1.36 m/s²

Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver = -1.36 m/s² and t = reaction time

So, t = (v - u)/a

Substituting the values of the variables into the equation, we have

t = (13.41 m/s - 22.35 m/s)/-1.36 m/s²

t = - 8.94 m/s/-1.36 m/s²

t = 6.6 s

what is momentum of a train that is 60,000 kg that is moving at velocity of 17m/s?
explain your answer​

Answers

momentum=mass x velocity
=60000 x 17
=1020kgm/s

Lenz’s Law allows us to find _______.

the direction of the induced current.
the magnitude of the induced emf.
the direction of the induced emf.
the magnitude of the induced current.

Answers

Answer:

Explanation:

a

g Incandescent bulbs generate visible light by heating up a thin metal filament to a very high temperature so that the thermal radiation from the filament becomes visible. One bulb filament has a surface area of 30 mm2 and emits 60 W when operating. If the bulb filament has an emissivity of 0.8, what is the operating temperature of the filament

Answers

Answer:

2577 K

Explanation:

Power radiated , P = σεAT⁴ where σ = Stefan-Boltzmann constant = 5.6704 × 10⁻⁸ W/m²K⁴, ε = emissivity of bulb filament = 0.8, A = surface area of bulb = 30 mm² = 30 × 10⁻⁶ m² and T = operating temperature of filament.

So, T = ⁴√(P/σεA)

Since P = 60 W, we substitute the vales of the variables into T. So,

T = ⁴√(P/σεA)

= ⁴√(60 W/(5.6704 × 10⁻⁸ W/m²K⁴ × 0.8 × 30 × 10⁻⁶ m²)

= ⁴√(60 W/(136.0896 × 10⁻¹⁴ W/K⁴)

= ⁴√(60 W/(13608.96 × 10⁻¹⁶ W/K⁴)

= ⁴√(0.00441 × 10¹⁶K⁴)

= 0.2577 × 10⁴ K

= 2577 K

When an object with an electric charge of is from an object with an electric charge of , the force between them has a strength of . Calculate the strength of the force between the two objects if they are apart. Round your answer to significant digits.

Answers

The question is incomplete, the complete question is;

When an object with an electric charge of −7.0μC is 5.0cm from an object with an electric charge of 4.0μC, the force between them has a strength of 100.7N. Calculate the strength of the force between the two objects if they are 1.7cm apart. Round your answer to 2 significant digits

Answer:

865.1 N

Explanation:

F1 = Kq1q2/r1^2 ---------1

F2 = Kq1q2/r2^2 -------2

We have that;

r1 = 5cm

r2 =1.7 cm

F1 = 100.7 N

Comparing equations 1 and 2

F2 = F1r1^2/r2^2

F2 = 100.7N[(5cm)^2/(1.7cm)^2]

F2= 865.1 N

How much kinetic energy does a 0.104 kg hamster have if it is moving at 24.0 m/s?

Answers

Answer:

30J

Explanation:

Given parameters:

Mass of hamster  = 0.104kg

Velocity  = 24m/s

Unknown:

Kinetic energy  = ?

Solution:

Kinetic energy is the energy due to the motion of a body. It is mathematically derived by;

  Kinetic energy  = [tex]\frac{1}{2}[/tex] m v²  

m is the mass

v is the velocity

  Kinetic energy  = [tex]\frac{1}{2}[/tex] x 0.104 x 24²   = 30J

Sandy is riding a bicycle with tires that have a diameter of 650 mm. A small twig, caught in the spokes, causes the tire to click once each revolution. Of Sandy hears 8 such clicks every 3 seconds then how fast is she cycling (to the nearest km/hr)

Answers

Answer:

Explanation:

Sandy hears 8 such clicks every 3 seconds and a small twig, caught in the spokes, causes the tire to click once each revolution that means the wheel of the cycle is rotating at 8 rotations every 3 seconds or 8/3 rotation per second . In each rotation , it moves distance equal to its circumference .

circumference = 2π r = 2 x 3.14 x .65 / 2 m

= 2.041 m

In 8/3 rotation , distance covered = 8/3 x 2.041 = 5.44 m

So speed of cycle is 5.44 m per second

5.44 x 60 x 60 m per hour

19584 m per hour

= 19.584 km per hour .

= 20 km per hour approx.

A three-phase line, which has an impedance of (2 + j4) ohm per phase, feeds two balanced three-phase loads that are connected in parallel. One of the loads is Y-connected with an impedance of (30 + j40) ohm per phase, and the other is connected with an impedance of (60 - j45) ohm per phase. The line is energized at the sending end from a 60-Hz, three-phase, balanced voltage source of 120 √3V (rms, line-to-line).

Determine:
a. the current, real power and reactive power delivered by the sending-end source
b. the line-to-line voltage at the load
c. the current per phase in each load
d. the total three-phase real and reactive powers absorbed by each load and by the

Answers

Answer:

hello your question has a missing information

The other is Δ-connected with an impedance of (60 - j45) ohm per phase.

answer : A) 5A ∠0° ,

               p( real power )  = 1800 and  Q ( reactive power ) = 0 VAR

 B) 193.64 v

C) current at load 1 = 2.236 A , current at load 2 = 4.472 A

 D) Load 1 : 450 watts(real power ) , 600 VAR ( reactive power )

      Load 2 : 1200 watts ( real power ), -900 VAR ( reactive power )

Explanation:

First convert the Δ-connection to Y- connection attached below is the conversion and pre-solution

A) determine the current, real power and reactive power delivered by the sending-end source

current power delivered (Is)  =  5A ∠0°

complex power delivered ( s ) = 3vs Is  

                                                  = 3 * 120∠0° * 5∠0° = 1800 + j0 ---- ( 1 )

also s = p + jQ  ------ ( 2 )

comparing equation 1 and 2

p( real power )  = 1800 and  Q ( reactive power ) = 0 VAR

B) determine Line-to-line voltage at the load

Vload = √3 * 111.8

           = 193.64 v

c) Determine current per phase in each load

[tex]I_{l1} = Vl1 / Zl1[/tex]

     = [tex]\frac{111.8<-10.3}{50<53.13}[/tex] = 2.236∠ 63.43° A   hence current at load 1 = 2.236 A

[tex]I_{l2} = V_{l2}/Z_{l2}[/tex]  

     = [tex]\frac{111.8<-10.3}{25<-36.87}[/tex]  = 4.472 ∠ 26.57° A hence current at load 2 = 4.472 A

D) Determine the Total three-phase real and reactive powers absorbed by each load

For load 1

3-phase real power = [tex]3I_{l1} ^{2} R_{l1}[/tex] = 3 * 2.236^2 * 30 = 450 watts

3-phase reactive power = [tex]3I_{l1} ^{2} X_{l1}[/tex] = 3 * 2.236^2 * 40 = 600 VAR

for load 2

3-phase real power = [tex]3I_{l1} ^{2} R_{l2}[/tex]  = 1200 watts

3-phase reactive power = [tex]3I_{l1} ^{2} X_{l2}[/tex] = -900 VAR

The sum of load powers and line losses, 1800 W+ j0 VAR and The line voltage magnitude at the load terminal is 193.64 V.

(a) The impedance per phase of the equivalent Y,

[tex]\bar{Z}_{2}=\frac{60-j 45}{3}=(20-j 15) \Omega[/tex]

The phase voltage,

[tex]\bold { V_{1}=\frac{120 \sqrt{3}}{\sqrt{3}}=120 VV }[/tex]

Total impedance from the input terminals,

[tex]\bold {\begin{aligned}&\bar{Z}=2+j 4+\frac{(30+j 40)(20-j 15)}{(30+j 40)+(20-j 15)}=2+j 4+22-j 4=24 \Omega \\&\bar{I}=\frac{\bar{V}_{1}}{\bar{Z}}=\frac{120 \angle 0^{\circ}}{24}=5 \angle 0^{\circ} A\end{aligned} }[/tex]

   

The three-phase complex power supplied  [tex]\bold {=\bar{S}=3 \bar{V}_{1} \bar{I}^{*}=1800 W}[/tex]  

P =1800 W and Q = 0 VAR delivered by the sending-end source.

 

(b) Phase voltage at load terminals will be,  

[tex]\bold {\begin{aligned}\bar{V}_{2} &=120 \angle 0^{\circ}-(2+j 4)\left(5 \angle 0^{\circ}\right) \\&=110-j 20=111.8 \angle-10.3^{\circ} V\end{aligned} }[/tex]  

The line voltage magnitude at the load terminal,  

[tex]\bold{\left(V_{ LOAD }\right)_{L-L}=\sqrt{3} 111.8=193.64 V(V }[/tex]    

 

(c) The current per phase in the Y-connected load,  

[tex]\bold {\begin{aligned}&\bar{I}_{1}=\frac{\bar{V}_{2}}{\bar{Z}_{1}}=1-j 2=2.236 \angle-63.4^{\circ} A \\&\bar{I}_{2}=\frac{\bar{V}_{2}}{\bar{Z}_{2}}=4+j 2=4.472 \angle 26.56^{\circ} A\end{aligned} ​}[/tex]

 

The phase current magnitude,  

[tex]\bold {\left(I_{p h}\right)_{\Delta}=\frac{I_{2}}{\sqrt{3}}=\frac{4.472}{\sqrt{3}}=2.582 }[/tex]

(d) The three-phase complex power absorbed by each load,

[tex]\bold {\begin{aligned}&\bar{S}_{1}=3 \bar{V}_{2} \bar{I}_{1}^{*}=430 W +j 600 VAR \\&\bar{S}_{2}=3 \bar{V}_{2} \bar{I}_{2}^{*}=1200 W -j 900 VAR\end{aligned}}[/tex]

 

The three-phase complex power absorbed by the line is  

[tex]\bold{\bar{S}_{L}=3\left(R_{L}+j X_{L}\right) I^{2}=3(2+j 4)(5)^{2}=150 W +j 300 VAR }[/tex]

 

Since, the sum of load powers and line losses,  

[tex]\bold {\begin{aligned}\bar{S}_{1}+\bar{S}_{2}+\bar{S}_{L} &=(450+j 600)+(1200-j 900)+(150+j 300) \\&=1800 W +j 0 VAR\end{aligned} }[/tex]

 

To know more about voltage,

https://brainly.com/question/2364325

 

When a drag strip vehicle reaches a velocity of 60 m/s, it begins a negative acceleration by releasing a drag chute and applying its brakes. While reducing its velocity back to zero, its acceleration along a straight line path is a constant -7.5 m/s2 . What displacement does it undergo during this deceleration period

Answers

Answer:

240 meters

Explanation:

The distance traveled by the vehicle can be calculated using the following equation:

[tex] v_{f}^{2} = v_{0}^{2} + 2ax [/tex]   (1)

Where:

x: is the displacement

[tex]v_{f}[/tex]: is the final speed = 0 (reduces its velocity back to zero)                    

[tex]v_{0}[/tex]: is the initial speed = 60 m/s

a: is the acceleration = -7.5 m/s²

By solving equation (1) for x we have:

[tex] x = \frac{v_{f}^{2} - v_{0}^{2}}{2a} = \frac{0 - (60 m/s)^{2}}{2*(-7.5 m/s^{2})} = 240 m [/tex]

Therefore, the vehicle undergoes 240 meters of displacement during the deceleration period.

           

I hope it helps you!

Anyone can help me out with this question ? Just number 2,

Answers

Answer:

- 21⁰C .

Explanation:

Speed of jet = 2.05 x 10³ km /h

= 2050 x 1000 / (60 x 60 ) m /s

= 569.44 m / s

Mach no represents times of speed of sound , the speed of jet

1.79 x speed of sound = 569.44

speed of sound = 318.12 m /s

speed of sound at 20⁰C = 343 m /s

Difference = 343 - 318.12 = 24.88⁰C

We know that 1 ⁰C change in temperature changes speed of sound

by .61 m /s

So a change in speed of 24.88 will be produced by a change in temperature of

24.88 / .61

= 41⁰C  

temperature = 20 - 41 = - 21⁰C .  

A flat circular mirror of radius 0.100 m is lying on the floor. Centered directly above the mirror, at a height of 0.920 m, is a small light source. Calculate the diameter of the bright circular spot formed on the 2.70 m high ceiling by the light reflected from the mirror.

Answers

Answer:

the diameter of the bright circular spot formed is 0.787 m  

Explanation:

Given that;

Radius of the flat circular mirror = 0.100 m

height of small ight source = 0.920 m

high ceiling = 2.70 m  

now;

Diameter(mirror) = 2×r = 2 × 0.100 = 0.2 m

D(spot) = [Diameter(mirror) × ( 2.70m + 0.920 m)] /  0.920 m

so

D(spot) = 0.2m × 3.62m /  0.920 m

D(spot) = 0.724 m / 0.920 m

D(spot) = 0.787 m  

Therefore, the diameter of the bright circular spot formed is 0.787 m  


A 5-kg object is moving with a speed of 4 m/s at a height of 2 m. The potential energy of the object is approximately
J.

Answers

Answer:

P.E = 98 Joules

Explanation:

Given the following data;

Mass = 5kg

Speed = 4m/s

Height = 2m

We know that acceleration due to gravity is equal to 9.8m/s²

To find the potential energy;

Potential energy can be defined as an energy possessed by an object or body due to its position.

Mathematically, potential energy is given by the formula;

[tex] P.E = mgh[/tex]

Where, P.E represents potential energy measured in Joules.

m represents the mass of an object.

g represents acceleration due to gravity measured in meters per seconds square.

h represents the height measured in meters.

Substituting into the equation, we have;

[tex] P.E = 5*9.8*2[/tex]

P.E = 98 Joules

A car is traveling on a straight road at a constant 35 m/sm/s, which is faster than the speed limit. Just as the car passes a police motorcycle that is stopped at the side of the road, the motorcycle accelerates forward in pursuit. The motorcycle passes the car 13.5 ss after starting from rest. What is the acceleration of the motorcycle (assumed to be constant)

Answers

Answer:

2.59m/s

Explanation:

Using the equation of motion

v = u+at

v is the final velocity = 35ms

u is the initially velocity = 9m/s

t is the time = 13.5s

a is the acceleration

Substitute into the formula

35 = 0+13.5a

a = 35/13.5

a = 2.59m/s²

Hence the acceleration of the motorcycle is 2.59m/s

A 2028 kg Oldsmobile traveling south on Abbott Road at 14.5 m/s is unable to stop on the ice covered intersection for a red light at Saginaw Street. The car collides with a 4146 kg truck hauling animal feed east on Saginaw at 9.7 m/s. The two vehicles remain locked together after the impact. Calculate the velocity of the wreckage immediately after the impact. Give the speed for your first answer and the compass heading for your second answer. (remember, the CAPA abbreviation for degrees is deg) -1.75

Answers

Answer:

v = 8.1 m/s

θ = -36.4º (36.4º South of East).

Explanation:

Assuming no external forces acting during the collision (due to the infinitesimal collision time) total momentum must be conserved.Since momentum is a vector, if we project it along two axes perpendicular each other, like the N-S axis (y-axis, positive aiming to the north) and W-E axis (x-axis, positive aiming to the east), momentum must be conserved for these components also.Since the collision is inelastic, we can write these two equations for the momentum conservation, for the x- and the y-axes:We can go with the x-axis first:

        [tex]p_{ox} = p_{fx} (1)[/tex]

         ⇒ [tex]m_{tr} * v_{tr}= (m_{olds} + m_{tr}) * v_{fx} (2)[/tex]

Replacing by the givens, we can find vfx as follows:

       [tex]v_{fx} = \frac{m_{tr}*v_{tr} }{(m_{tr} + m_{olds)} } = \frac{4146kg*9.7m/s}{2028kg+4146 kg} = 6.5 m/s (3)[/tex]

We can repeat the process for the y-axis:

        [tex]p_{oy} = p_{fy} (4)[/tex]

        ⇒[tex]m_{olds} * v_{olds}= (m_{olds} + m_{tr}) * v_{fy} (5)[/tex]

Replacing by the givens, we can find vfy as follows:

       [tex]v_{fy} = \frac{m_{olds}*v_{olds} }{(m_{tr} + m_{olds)} } = \frac{2028kg*(-14.5)m/s}{2028kg+4146 kg} = -4.8 m/s (6)[/tex]

The magnitude of the velocity vector of the wreckage immediately after the impact, can be found applying the Pythagorean Theorem to vfx and vfy, as follows:

       [tex]v_{f} = \sqrt{v_{fx} ^{2} +v_{fy} ^{2} }} = \sqrt{(6.5m/s)^{2} +(-4.8m/s)^{2}} = 8.1 m/s (7)[/tex]

In order to get the compass heading, we can apply the definition of tangent, as follows:

       [tex]\frac{v_{fy} }{v_{fx} } = tg \theta (8)[/tex]

      ⇒ tg θ = vfy/vfx = (-4.8m/s) / (6.5m/s) = -0.738 (9)

      ⇒ θ = tg⁻¹ (-0.738) = -36.4º

Since it's negative, it's counted clockwise from the positive x-axis, so this means that it's 36.4º South of East.

A group of 25 particles have the following speeds: two have speed 11 m/s, seven have 16 m/s , four have 19 m/s, three have 26 m/s, six have 31 m/s, one has 37 m/s, and two have 45 m/s.

Requiredd:
a. Determine the average speed.
b. Determine the rms speed.
c. Determine the most probable speed.

Answers

Answer:

a) Average speed is 24.04 m/s

b) the rms speed is 25.84 m/s

c) the most probable speed is 16 m/s

Explanation:

Given the data in the question;

a) Determine the average speed.

To determine the average speed, we simply divide total some of speed by number of particles;

Average speed =  [(2×11 m/s)+(7×16 m/s)+(4×19 m/s)+(3×26 m/s)+(6×31 m/s)+(1×37 m/s)+(2×45 m/s)] / 25    

= 601 / 25

= 24.04 m/s

Therefore, Average speed is 24.04 m/s

b) Determine the rms speed

we know that  (rms speed)² = sum of square speed / total number of particles

so

(rms speed)² =  [(2×11²)+(7×16²)+(4×19²)+(3×26²)+(6×31²)+(1×37²)+(2×45²)] / 25

(rms speed)² =  16691 / 25

(rms speed)² =  667.64

(rms speed) = √ 667.64

(rms speed) = 25.84 m/s

Therefore, the rms speed is 25.84 m/s

c) Determine the most probable speed.

Most particles (7) have velocity 16 m/s

i.e 7 is the maximum number of particle for a particular speed ,

Therefore, the most probable speed is 16 m/s

What is the period of an objects motion?

Answers

The time for an object to complete one full cycle. Can have a long period or short period.


Brainliest?

Four cylindrical wires of different sizes are made of the same material. Which of the following combinations of length and cross-sectional area of one of the wires will result in the smallest resistance?
a. Length Area
3L 3a
b. Length Area
3L 6a
c. Length Area
6L 3a
d. Length Area
6L 6a

Answers

Answer:

Explanation:

For resistance of a wire , the formula is as follows .

R = ρ L/S

where ρ is specific resistance , L is length and S is cross sectional area of wire .

for first wire resistance

R₁ =  ρ 3L/3a = ρ L/a

for second wire , resistance

R₂ = ρ 3L/6a

= .5 ρ L/a

For 3 rd wire resistance

R₃ = ρ 6L/3a

= 2ρ L/a

For fourth wire , resistance

R₄ = ρ 6L/6a

=  ρ L/a

So the smallest resistance is of second wire .

Its resistance is .5 ρ L/a

A compact car has a mass of 1310 kg . Assume that the car has one spring on each wheel, that the springs are identical, and that the mass is equally distributed over the four springs.

Required:
a. What is the spring constant of each spring if the empty car bounces up and down 2.0 times each second?
b. What will be the car’s oscillation frequency while carrying four 70 kg passengers?

Answers

Answer:

a) k= 3232.30 N / m,  b)  f = 4,410 Hz

Explanation:

In this exercise, the car + spring system is oscillating in the form of a simple harmonic motion, as the four springs are in parallel, the force is the sum of the 4 Hocke forces.

The expression for the angular velocity is

          w = √k/m

the angular velocity is related to the period

          w = 2π / T

we substitute

          T = 2[tex]\pi[/tex]  √m/ k

a) empty car

           k = 4π² m / T²

           k = 4 π² 1310/2 2

           k = 12929.18 N / m

This is the equivalent constant of the short springs

           F1 + F2 + F3 + F4 = k_eq x

           k x + kx + kx + kx = k_eq x

           k_eq = 4 k

           k = k_eq / 4

           k = 12 929.18 / 4

            k= 3232.30 N / m

b) the frequency of oscillation when carrying four passengers.

In this case the plus is the mass of the vehicle plus the masses of the passengers

            m_total = 1360 + 4 70

            m_total = 1640 kg

angular velocity and frequency are related

              w = 2pi f

we substitute

             2 pi f = Ra K / m

in this case the spring constant changes us

             k_eq = 12929.18 N / m

           

             f = 1 / 2π √ 12929.18 / 1640

             f = π / 2 2.80778

             f = 4,410 Hz

Which of the following is a mixture?
a air
biron
Chydrogen
d nickel

Answers

The answer is to this is b

Answer:

it will option option A hope it helps

Cathode ray tubes (CRTs) used in old-style televisions have been replaced by modern LCD and LED screens. Part of the CRT included a set of accelerating plates separated by a distance of about 1.54 cm. If the potential difference across the plates was 26.5 kV, find the magnitude of the electric field (in V/m) in the region between the plates.

Answers

Answer:

E = 1,720,779.221 or 1.720779221 * 10^ 6V/m

Explanation:

The electric field between the parallel conducting plates is given by

E =V / d

where V is the potential difference and d is the distance between the plates.

E = 26.5 kV/ 1.54 cm

Now we have to convert into proper units

26.5 kv= 26.5 * 1000 v=  26500 volts

1  kv= 1000 volts

1.54 cm = 1.54/ 100 m= 0.0154m

1m = 100cm

Now putting the values

E= 26500/0.0154 = 1,720,779.221 V/m

The Electric field is equal to E= 1,720,799.221 or 1.7220799221 * 10 ^6 Volts per meter.

In scientific notation this can be written as 1.7220799221 *10^6 V/m

What energy store is in the human
BEFORE he/she lifts the hammer?​

Answers

I believe the answer would be protentional because they have the potential energy in them to lift the hammer.

Other Questions
This quotation has most in common with which set of principles?A)"MarxismB)"FederalismC)"National SocialismD)"Social Contract Theory What is the point in the plot structure after which nothing is ever the same?A. Rising ActionB. Falling ActionC. ResolutionD. Climax DNA is made up of monomers called nucleotides. How many does mono- represent? Help PlsSteve is writing about this excerpt from The Jungle Book.Akela raised his old head wearily:"Free People, and ye too, jackals of Shere Khan, for twelve seasons I have led ye to and from the kill, and in all that time not one has been trapped or maimed. Now I have missed my kill. Ye know how that plot was made. Ye know how ye brought me up to an untried buck to make my weakness known. It was cleverly done. Your right is to kill me here on the Council Rock now. Therefore I ask, 'Who comes to make an end of the Lone Wolf?' For it is my right, by the Law of the Jungle, that ye come one by one."There was a long hush, for no single wolf cared to fight Akela to the death. Then Shere Khan roared: "Bah! What have we to do with this toothless fool? He is doomed to die! It is the man-cub who has lived too long. Free People, he was my meat from the first. Give him to me. I am weary of this man-wolf folly. He has troubled the jungle for ten seasons. Give me the man-cub, or I will hunt here always, and not give you one bone! He is a mana man's child, and from the marrow of my bones I hate him!"Steve makes the claim "Akela is willing to give his life for the Law of the Jungle.Which evidence from the text best supports this claim?Akela is willing to die because he missed the kill.Akela is willing to die because he is old and toothless.Akela is willing to die because Shere Khan makes a better leaderAkela is willing to die because he was tricked. Ehhhh...?I dont understand this the rest I semi know but uh .,. Baseball: If a batter hits a ball to the outfield and is caught by an outfielder, this is called a: apop out bgrounder out cfly out dNone of the above Recalling the specter of the Great Depression (192940), America now advocated open trade for two reasons: to create markets for American agricultural and industrial products, and to ensure the ability of Western European nations to export as a means of rebuilding their economies. Reduced trade barriers, American policy makers believed, would promote economic growth at home and abroad, bolstering U.S. friends and allies in the process. Outline of United States History, US State Department This passage most clearly relates to the creation of the If anyone is good at Spanish please help me Q 1. Pick the option that correctly matches the reviewers to the features of the reviews.(1) Pullman (2) Coupland (3) Coe During the Renaissance, there was a rebirth of interest ina.art and learning.c.military strategies.b.science and medicine.d.getting to heaven. RS=6y+2, ST=3y+7 and RT=54a. what is the value of y?b. find RS and STplease answer asap A 16-oz bottle of parmesan cheese costs $5.78, while an 8-oz bottle costs $3.97. Which is the better buy? Roundyour answer to the nearest cent if necessary. The multiplicative inverse of 7^-2 is1/71/7^27^27 [tex]\alpha[/tex]Decide whether the following sources are reliable or unreliable.information from your credit union about car loans: unreliablewww.fueleconomy.gov: reliablea Web site selling financial services: reliablea book written in 1978 about tax laws: reliabletelevision show that features financial experts: unreliableperson on the IRS-sponsored tax hotline: unreliable A certain chemical contains 46.30% chlorine, 47.05% carbon, 6.63% hydrogen. What is the molecular formula of the compound? The molar mass of the compound was determined to be 153.052g/mol.C6H10CI2C6H8CI2C3H5CIC4H4CIC8H8CI2 The colonized island country has deepwater ports for refueling the mother country's navy and merchant marine. It also has an airfield. The punnett square below shows a cross between two tall plants TT and TT. The labeled boxes represent the offspring produced from the cross. What will be the genotype of offspring in box 2? Help find the answer? Need help asap please and thank you What did Jupnpero Serra do?