Answer:
11.7°
Explanation:
See attached file
You’re standing at the highest point on the Moon, 10,786 mm above the level of the Moon’s mean radius. You’ve got a golf club and a golf ball.
Part A
(How fast would you need to hit the ball horizontally so it goes into a circular orbit?)
Express your answer with the appropriate units.
Part B
(If you hit the ball vertically with the same speed, to what height above you would it rise?)
Express your answer with the appropriate units.
Answer:
A) v = 1,675 10³ m / s , B) r₂ = 11,673 10⁶ m
Explanation:
A) This exercise we must use Newton's second law, where the forces of gravity are the Moon
F = m a
acceleration is centripetal
a = v² / r
force is the force of universal attraction
F = G m M / r²
we substitute
G m M / r² = m v² / r
v² = G M / r
distance
r = R_moon + h
r = 1.74 10⁶ +1.0786 10⁴
r = 1,750786 10⁶ m
we calculate
v = √ (6.67 10⁻¹¹ 7.36 10²² / 1.75 10⁶)
v = √ (2,8052 10⁶)
v = 1,675 10³ m / s
B) let's use energy conservation
Starting point. In the mountain
Em₀ = K + U = ½ m v² + G m M / r
Final point. Where the speed is zero
[tex]Em_{f}[/tex] = U = G mM / r₂
Em₀ = Em_{f}
½ m v² + G m M / r = G mM / r₂
1 / r₂ = (½ v₂ + G M / r) / GM
let's calculate
1 / r₂ = (½ (1,675 10³)² + 6.67 10⁻¹¹ 7.36 10²² / 1.75 10⁶) /(6.67 10⁻¹¹ 7.36 10²²)
1 / r₂ = (1,4028 10⁶ + 2,805 10⁶) / 49.12 10¹¹
1 / r₂ = 8.5664 10⁻⁷
r₂ = 11,673 10⁶ m
A slender rod of length L has a varying mass-per-unit-length from the left end (x=0) according to dm/dx=Cx where C has units kg/m2. Find the total mass in terms of C and L, and then calculate the moment of inertia of the rod for an axis at the left end note: you need the total mass in order to get the answer in terms of ML^2
Answer:
ML²/6
Explanation:
Pls see attached file
The total mass is M = CL²/2, and the moment of inertia is I = ML²/2,
Moment of inertia:The length of the rod is L. It has a non-uniform distribution of mass given by:
dm/dx = Cx
where C has units kg/m²
dm = Cxdx
the total mass M of the rod can be calculated by integrating the above relation over the length:
[tex]M =\int\limits^L_0 {} \, dm\\\\M=\int\limits^L_0 {Cx} \, dx\\\\M=C[x^2/2]^L_0\\\\M=C[L^2/2]\\\\[/tex]
Thus,
C = 2M/L²
Now, the moment of inertia of the small element dx of the rod is given by:
dI = dm.x²
dI = Cx.x²dx
[tex]dI = \frac{2M}{L^2}x^3dx\\\\I= \frac{2M}{L^2}\int\limits^L_0 {x^3} \, dx \\\\I= \frac{2M}{L^2}[\frac{L^4}{4}][/tex]
I = ML²/2
Learn more about moment of inertia:
https://brainly.com/question/6953943?referrer=searchResults
We observe that a small sample of material placed in a non-uniform magnetic field accelerates toward a region of stronger field. What can we say about the material?
Answer:
C) It is either ferromagnetic or paramagnetic
Explanation:
The complete question is given below
We observe that a small sample of material placed in a non-uniform magnetic field accelerates toward a region of stronger field. What can we say about the material?
A) It must be ferromagnetic.
B) It must be paramagnetic.
C) It is either ferromagnetic or paramagnetic.
D) It must be diamagnetic.
A ferromagnetic material will respond towards a magnetic field. They are those materials that are attracted to a magnet. Ferromagnetism is associated with our everyday magnets and is the strongest form of magnetism in nature. Iron and its alloys is very good example of a material that readily demonstrate ferromagnetism.
Paramagnetic materials are weakly attracted to an externally applied magnetic field. They usually accelerate towards an electric field, and form internal induced magnetic field in the direction of the external magnetic field.
The difference is that ferromagnetic materials can retain their magnetization when the externally applied magnetic field is removed, unlike paramagnetic materials that do not retain their magnetization.
In contrast, a diamagnetic material is repelled away from an externally applied magnetic field.
f the mass of the block is 2 kg, the radius of the circle is 0.8 m, and the speed of the block is 3 m/s, what is the tension in the string at the top of the circle
Answer:
the size are components relative to the whole.
Explanation:
they are particularly good at showing percentage or proportional data
An ideal gas in a cubical box having sides of length L exerts a pressure p on the walls of the box. If all of this gas is put into a box having sides of length 0.5L without changing its temperature, the pressure it exerts on the walls of the larger box will be...
p.
2p.
4p.
8p.
12p.
Answer:
2P
Explanation:
See attached file
Determine the magnitude of the force between two 11 m-long parallel wires separated by 0.033 m, both carrying 5.2 A in the same direction.
Answer:
[tex]F=1.8\times 10^{-3}\ N[/tex]
Explanation:
We have,
Length of wires is 11 m
Separation between wires is 0.033 m
Current in both the wires is 5.2 A
It is required to find the magnitude of force between two wires. The force between wires is given by :
[tex]F=\dfrac{\mu_o I_1I_2l}{2\pi r}\\\\F=\dfrac{4\pi \times 10^{-7}\times 5.2\times 5.2\times 11}{2\pi \times 0.033}\\\\F=1.8\times 10^{-3}\ N[/tex]
So, the magnitude of force between wires is [tex]1.8\times 10^{-3}\ N[/tex]
A 2kg block is sitting on a hinged ramp such that you can increase the angle of the incline. The coefficient of static friction between the block and the ramp is 0.67 and the coefficient of kinetic friction is 0.25.
a. What angle do you have to tilt the ramp to get the block to slide?
b. What acceleration does the block experience at this angle when kinetic friction takes over?
Answer:
θ = 33.8
a = 3.42 m/s²
Explanation:
given data
mass m = 2 kg
coefficient of static friction μs = 0.67
coefficient of kinetic friction μk = 0.25
solution
when block start slide
N = mg cosθ .............1
fs = mg sinθ ...............2
now we divide equation 2 by equation 1 we get
[tex]\frsc{fs}{N} = \frac{sin \theta }{cos \theta }[/tex]
[tex]\frac{\mu s N }{N}[/tex] = tanθ
put here value we get
tan θ = 0.67
θ = 33.8
and
when block will slide then we apply newton 2nd law
mg sinθ - fk = ma ...............3
here fk = μk N = μk mg cosθ
so from equation 3 we get
mg sinθ - μk mg cosθ = ma
so a will be
a = (sinθ - μk cosθ)g
put here value and we get
a = (sin33.8 - 0.25 cos33.8) 9.8
a = 3.42 m/s²
A spherical shell rolls without sliding along the floor. The ratio of its rotational kinetic energy (about an axis through its center of mass) to its translational kinetic energy is:
Answer:
The ratio is [tex]\frac{RE}{TE} = \frac{2}{3}[/tex]
Explanation:
Generally the Moment of inertia of a spherical object (shell) is mathematically represented as
[tex]I = \frac{2}{3} * m r^2[/tex]
Where m is the mass of the spherical object
and r is the radius
Now the the rotational kinetic energy can be mathematically represented as
[tex]RE = \frac{1}{2}* I * w^2[/tex]
Where [tex]w[/tex] is the angular velocity which is mathematically represented as
[tex]w = \frac{v}{r}[/tex]
=> [tex]w^2 = [\frac{v}{r}] ^2[/tex]
So
[tex]RE = \frac{1}{2}* [\frac{2}{3} *mr^2] * [\frac{v}{r} ]^2[/tex]
[tex]RE = \frac{1}{3} * mv^2[/tex]
Generally the transnational kinetic energy of this motion is mathematically represented as
[tex]TE = \frac{1}{2} mv^2[/tex]
So
[tex]\frac{RE}{TE} = \frac{\frac{1}{3} * mv^2}{\frac{1}{2} * m*v^2}[/tex]
[tex]\frac{RE}{TE} = \frac{2}{3}[/tex]
key points that can be found in the realist philosophical position
Answer:
Key points that can be found in the realist philosophical position are as follows:
The view that we observe or identify is real, truly out there.The objects which are identified are independent of someone's perceptions, linguistic practices, conceptual scheme, and beliefs.Quantum mechanics is an example of philosophical realism that claims world is mind-independent.An airplane flies in a horizontal circle of radius 500 m at a speed of 150 m/s. If the radius were changed to 1000 m, but the speed remained the same, by what factor would its centripetal acceleration change?
Answer:
The centripetal acceleration changed by a factor of 0.5
Explanation:
Given;
first radius of the horizontal circle, r₁ = 500 m
speed of the airplane, v = 150 m/s
second radius of the airplane, r₂ = 1000 m
Centripetal acceleration is given as;
[tex]a = \frac{v^2}{r}[/tex]
At constant speed, we will have;
[tex]v^2 =ar\\\\v = \sqrt{ar}\\\\at \ constant\ v;\\\sqrt{a_1r_1} = \sqrt{a_2r_2}\\\\a_1r_1 = a_2r_2\\\\a_2 = \frac{a_1r_1}{r_2} \\\\a_2 = \frac{a_1*500}{1000}\\\\a_2 = \frac{a_1}{2} \\\\a_2 = \frac{1}{2} a_1[/tex]
a₂ = 0.5a₁
Therefore, the centripetal acceleration changed by a factor of 0.5
A 1.20 kg water balloon will break if it experiences more than 530 N of force. Your 'friend' whips the water balloon toward you at 13.0 m/s. The maximum force you apply in catching the water balloon is twice the average force. How long must the interaction time of your catch be to make sure the water balloon doesn't soak you
Answer:
t = 0.029s
Explanation:
In order to calculate the interaction time at the moment of catching the ball, you take into account that the force exerted on an object is also given by the change, on time, of its linear momentum:
[tex]F=\frac{\Delta p}{\Delta t}=m\frac{\Delta v}{\Delta t}[/tex] (1)
m: mass of the water balloon = 1.20kg
Δv: change in the speed of the balloon = v2 - v1
v2: final speed = 0m/s (the balloon stops in my hands)
v1: initial speed = 13.0m/s
Δt: interaction time = ?
The water balloon brakes if the force is more than 530N. You solve the equation (1) for Δt and replace the values of the other parameters:
[tex]|F|=|530N|= |m\frac{v_2-v_1}{\Delta t}|\\\\|530N|=| (1.20kg)\frac{0m/s-13.0m/s}{\Delta t}|\\\\\Delta t=0.029s[/tex]
The interaction time to avoid that the water balloon breaks is 0.029s
In which direction does a bag at rest move when a force of 20 newtons is applied from the right?
ОА.
in the direction of the applied force
OB.
in the direction opposite of the direction of the applied force
OC. perpendicular to the direction of the applied force
OD
in a circular motion
Answer:
in the direction of the applied force
Explanation:
What fundamental frequency would you expect from blowing across the top of an empty soda bottle that is 24 cm deep, if you assumed it was a closed tube
Answer:
f = 357.29Hz
Explanation:
In order to calculate the fundamental frequency in the closed tube, you use the following formula:
[tex]f_n=\frac{nv}{4L}[/tex] (1)
n: order of the mode = 1
v: speed of sound = 343m/s
L: length of the tube = 24cm = 0.24m
You replace the values of the parameters in the equation (1):
[tex]f_1=\frac{(1)(343m/s)}{4(0.24m)}=357.29Hz[/tex]
The fundamental frequency of in the tube is 357.29Hz
Value of g in CGS system
Answer:
in CGS system G is denoted as gram
1. In Newton’s ring experiment, the diameter of the 5th ring is 0.30 cm and diameter of 15th the ring is 0.62 cm. Find the diameter of the 25th ring.
Answer:
Diameter of Newton’s 5th ring = 0.30 cm
Diameter of Newton’s 15th ring = 0.62 cm
Diameter of Newton’s 25th ring = ?
From Newton’s rings experiment we infer that
D2n+m − D2n = 4λmR
For the 5th and 15th rings we have
D215 − D25 = 4λ * 10 * R _______ (1) (m = 10)
For 15th and 25th rings
D225 − D215 = 4λ * 10 * R _______ (2) (m = 10)
We equate the two derivatives
Equation (2) = Equation (1)
D225 − D215 = D215 − D25
D225 = 2D215 – D25
Substituting the values into the equation
D225 = 2 * 0.62 * 0.62 – 0.3 * 0.3 =0.6788 cm2
D25 = 0.8239 cm
Diameter of [tex]25^{th}[/tex] Newton Ring = 0.97 cm
Newton Rings is an experiment based on principle of thin film interference
In Newton Rings Experiment the Diameter of [tex]n^{th}[/tex] dark ring is given by equation (1)
[tex]\rm D_n= 2\sqrt{n\lambda R} ......(1)\\where \; \\D_n = Diameter\; of \; n^{th} \; dark \; ring }\\n = Number \; of \; Ring\\\lambda = Wavelength \\R = Radius \; of \; Curvature \; of\; the \; lens[/tex]
From the condition given
[tex]\rm D_5 = 0.3 \; cm \\D_{15} = 0.62 \; cm\\\\D_{25} = To \; be \; determined \\[/tex]
Putting the values in equation (1) for fifth diameter we get
[tex]\rm D_5 = 0.3=2\sqrt{5\lambda R}.......(2) \\D_{15} = 0.62 = 2\sqrt{15\lambda R}.......(3) \\\\Equation \; (3) - Equation (2) \\\\0.32 = 2\sqrt{\lambda R} ( \sqrt{15} -\sqrt{5})\\\\2\sqrt{\lambda R } = 0.1954....(4)\\[/tex]
So From equation (1) and (4)
[tex]\rm Diameter \; of \; 25^{th} Ring =D_{25} = 2\sqrt{\lambda R } \times \sqrt{25} \\\\D_{25} = 0.1954\times 5 \\\\D_{25} = 0.97 \; cm[/tex]
https://brainly.com/question/18038939
At what minimum speed must a roller coaster be traveling when upside down at the top of a 7.4 m radius loop-the-loop circle so the passengers will not fall out?
Answer:
v = 8.5 m/s
Explanation:
In order for the passengers not to fall out of the loop circle, the centripetal force must be equal to the weight of the passenger. Therefore,
Weight = Centripetal Force
but,
Weight = mg
Centripetal Force = mv²/r
Therefore,
mg = mv²/r
g = v²/r
v² = gr
v = √gr
where,
v = minimum speed required = ?
g = 9.8 m/s²
r = radius = 7.4 m
Therefore,
v = √(9.8 m/s²)(7.4 m)
v = 8.5 m/s
Minimum speed for a roller coaster while travelling upside down so that the person will not fall out = 8.5 m/s
For a roller coaster be traveling when upside down the Force balance equation can be written for a person of mass m.
In the given condition the weight of the person must be balanced by the centrifugal force.
and for the person not to fall out centrifugal force must be greater than or equal to the weight of the person
According to the Newton's Second Law of motion we can write force balance
[tex]\rm mv^2/r -mg =0 \\\\mg = mv^2 /r (Same\; mass) \\\\\\g = v^2/r\\\\v = \sqrt {gr}......(1)[/tex]
Given Radius of loop = r = 7.4 m
Putting the value of r = 7.4 m in equation (1) we get
[tex]\sqrt{9.8\times 7.4 } = \sqrt{72.594} = 8.5\; m/s[/tex]
For more information please refer to the link below
https://brainly.com/question/13259103
Consider a loop of wire placed in a uniform magnetic field. Which factors affect the magnetic flux Φm through the loop?
Answer:
* The value of the magnetic field changes either in time or space
* The waxed area changes, the bow is fitting in size
* The angle between the field and the area changes
Explanation:
Magnetic flux is the scalar product of the magnetic field over the area
Ф = ∫ B. dA
where B is the magnetic field and A is the area
Let's look at stationary, for which factors affect flow
* The value of the magnetic field changes either in time or space
* The waxed area changes, the bow is fitting in size
* The angle between the field and the area changes
6a. A special lamp can produce UV radiation. Which two statements
describe the electromagnetic waves emitted by a UV lamp? *
They have a higher frequency than X-rays.
They have the same wave speed as visible light
They have a longer wavelength than microwaves.
They have a lower frequency than gamma rays.
They have a greater wave speed than radio waves.
Answer:
The correct options are:
B) They have the same wave speed as visible light
D) They have a lower frequency than gamma rays.
Explanation:
B) Ultraviolet rays, commonly known as UV rays, are a type of electromagnetic ways. As electromagnetic waves, in the layman's term, are all kinds of life that can be identified, all electromagnetic waves (UV rays, visible light, infrared, radio etc) all travel with the same velocity, that is the speed of light, given as v = 3 × 10⁸ m/s
D) The frequency of all electromagnetic rays can be found by electromagnetic spectrum (picture attached below).
We can clearly see in the picture that the frequencies of UV rays lie at about 10¹⁵ - 10¹⁶ Hz which is lower than the frequency of Gamma ray, which lie at about 10²⁰ Hz.
7. Which statement is true about teens that are in Marcia’s final state of identity formation?
Answer:
D. All of the above
Explanation:
The last stage in the Marcia's identity formation theory is Identity achievement. In this last stage, teens have made a thorough search or exploration about their identity and have made a commitment to that identity. This identity represents their values, beliefs, and desired goals. At this point, they know want they want in life, and can now make informed decisions based on their belief and ideology.
James Marcia is a psychologist known mainly for his research and theories in human identity. Identity according to him is the sum total of a person's beliefs, values, and ideologies that shape what a person actually becomes and is known for. Occupation and Ideologies primarily determine identity. The four stages of Identity status include, Identity diffusion, foreclosure, moratorium, and achievement.
two 200 pound lead balls are separated by a distance 1m. both balls have the same positive charge q. what charge will produce an electrostatic force.between the balls that is of the same order of magnitude as the weight of one ball?
Answer:
The charge is [tex]q = 3.14 *10^{-4} \ C[/tex]
Explanation:
From the question we are told that
The mass of each ball is [tex]m = 200 \ lb = \frac{200}{2.205} = 90.70 \ kg[/tex]
The distance of separation is [tex]d = 1 \ m[/tex]
Generally the weight of the each ball is mathematically represented as
[tex]W = m * g[/tex]
where g is the acceleration due to gravity with a value [tex]g = 9.8 m/s^2[/tex]
substituting values
[tex]W = 90.70 * 9.8[/tex]
[tex]W = 889 \ N[/tex]
Generally the electrostatic force between this balls is mathematically represented as
[tex]F_e = \frac{k * q_1* q_2 }{d^2}[/tex]
given that the the charges are equal we have
[tex]q_1= q_2 = q[/tex]
So
[tex]F_e = \frac{k * q^2 }{d^2}[/tex]
Now from the question we are told to find the charge when the weight of one ball is equal to the electrostatic force
So we have
[tex]889 = \frac{9*10^9 * q^2}{1^2}[/tex]
=> [tex]q = 3.14 *10^{-4} \ C[/tex]
The magnitude of charge on the balls is [tex]3.14 \times 10^{-4} \;\rm C[/tex].
Given data:
The masses of two lead balls are, m = 200 lb = 200/2.205 = 90.70 kg.
The distance of separation of two balls is, d = 1 m.
First of all we need to obtain the weight of ball. The weight of the ball is expressed as,
W = mg
Here,
g is the gravitational acceleration.
Solving as,
W = 90.70 × 9.8
W = 888.86 N
The expression for the electrostatic force between this balls is mathematically represented as,
[tex]F = \dfrac{k \times q_{1} \times q_{2}}{d^{2}}[/tex]
Since, the charges are equal then,
[tex]q_{1} =q_{2}=q[/tex]
Also, the magnitude of force between the balls is same as the weight of one ball. Then,
F = W
Solving as,
[tex]F =W= \dfrac{(9 \times 10^{9}) \times q^{2}}{1^{2}}\\\\889= \dfrac{(9 \times 10^{9}) \times q^{2}}{1^{2}}\\\\q = 3.14 \times 10^{-4} \;\rm C[/tex]
Thus, we can conclude that the magnitude of charge on the balls is [tex]3.14 \times 10^{-4} \;\rm C[/tex].
Learn more about the Coulomb's law here:
https://brainly.com/question/23202809
A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of
8 m/s to the east. What is the recoil velocity of the launcher?
Answer:
1.6 m/s west
Explanation:
The recoil velocity of the launcher is 1.6 m/s west.
What is conservation of momentum principle?When two bodies of different masses move together each other and have head on collision, they travel to same or different direction after collision.
A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of 8 m/s to the east.
Final momentum will be zero, so
m₁u₁ +m₂u₂ =0
Substitute the values for m₁ = 5kg, m₂ =1kg and u₂ =8 m/s, then the recoil velocity will be
5 x v +1x8 = 0
v = - 1.6 m/s
Thus, the recoil velocity of the launcher is 1.6 m/s (West)
Learn more about conservation of momentum principle
https://brainly.com/question/14033058
#SPJ2
A proton moves at a speed 1.4 × 10^7 m/s perpendicular to a magnetic field. The field causes the proton to travel in a circular path of radius 0.85 m. What is the field strength?
0.17T
Explanation:
When a charged particle moves into a magnetic field perpendicularly, it experiences a magnetic force [tex]F_{M}[/tex] which is perpendicular to the magnetic field and direction of the velocity. This motion is circular and hence there is a balance between the centripetal force [tex]F_{C}[/tex] and the magnetic force. i.e
[tex]F_{C}[/tex] = [tex]F_{M}[/tex] --------------(i)
But;
[tex]F_{C}[/tex] = [tex]\frac{mv^2}{r}[/tex] [m = mass of the particle, r = radius of the path, v = velocity of the charge]
[tex]F_{M}[/tex] = qvB [q = charge on the particle, B = magnetic field strength, v = velocity of the charge ]
Substitute these into equation (i) as follows;
[tex]\frac{mv^2}{r}[/tex] = qvB
Make B subject of the formula;
B = [tex]\frac{mV}{qr}[/tex] ---------------(ii)
Known constants
m = 1.67 x 10⁻²⁷kg
q = 1.6 x 10⁻¹⁹C
From the question;
v = 1.4 x 10⁷m/s
r = 0.85m
Substitute these values into equation(ii) as follows;
B = [tex]\frac{1.67 * 10 ^{-27} * 1.4 * 10^{7}}{1.6 * 10^{-19} * 0.85}[/tex]
B = 0.17T
Therefore, the magnetic field strength is 0.17T
A total electric charge of 2.00 nC is distributed uniformly over the surface of a metal sphere with a radius of 26.0 cm . The potential is zero at a point at infinity.
a) Find the value of the potential at 45.0 cm from the center of the sphere.
b) Find the value of the potential at 26.0 cm from the center of the sphere.
c) Find the value of the potential at 16.0 cm from the center of the sphere.
Answer:
a) 40 V
b) 69.23 V
c) 69.23 V
Explanation:
See attachment for solution
A force of only 150 N can lift a 600 N sack of flour to a height of 0.50 m when using a lever as shown in the diagram below. a. Find the work done on the sack of flour (in J). b. Find the distance you must push with the 150 N force-on the left side (in m). c. Briefly explain the benefit of using a lever to lift a heavy object.
A student stretches an elastic band by 0.8 m in 0.5 seconds. The spring constant of the elastic band is 40 N/m. What was the power exerted by the student
Answer:
The power exerted by the student is 51.2 W
Explanation:
Given;
extension of the elastic band, x = 0.8 m
time taken to stretch this distance, t = 0.5 seconds
the spring constant, k = 40 N/m
Apply Hook's law;
F = kx
where;
F is the force applied to the elastic band
k is the spring constant
x is the extension of the elastic band
F = 40 x 0.8
F = 32 N
The power exerted by the student is calculated as;
P = Fv
where;
F is the applied force
v is velocity = d/t
P = F x (d/t)
P = 32 x (0.8 /0.5)
P = 32 x 1.6
P = 51.2 W
Therefore, the power exerted by the student is 51.2 W
4. Chloe has a vertical velocity of 3 m/s when she leaves the 1 m diving board. At this instant, her center of gravity is 2.5 m above the water. How high above the water will Chloe go
Answer:
2.95m
Explanation:
Using h= 2.5+ v²/2g
Where v= 3m/s
g= 9.8m/s²
h= 2.95m
⦁ A 68 kg crate is dragged across a floor by pulling on a rope attached to the crate and inclined 15° above the horizontal. (a) If the coefficient of static friction is 0.5, what minimum force magnitude is required from the rope to start the crate moving? (b) If µk= 0.35, what is the magnitude of the initial acceleration of the crate?
Answer:
303.29N and 1.44m/s^2
Explanation:
Make sure to label each vector with none, mg, fk, a, FN or T
Given
Mass m = 68.0 kg
Angle θ = 15.0°
g = 9.8m/s^2
Coefficient of static friction μs = 0.50
Coefficient of kinetic friction μk =0.35
Solution
Vertically
N = mg - Fsinθ
Horizontally
Fs = F cos θ
μsN = Fcos θ
μs( mg- Fsinθ) = Fcos θ
μsmg - μsFsinθ = Fcos θ
μsmg = Fcos θ + μsFsinθ
F = μsmg/ cos θ + μs sinθ
F = 0.5×68×9.8/cos 15×0.5×sin15
F = 332.2/0.9659+0.5×0.2588
F =332.2/1.0953
F = 303.29N
Fnet = F - Fk
ma = F - μkN
a = F - μk( mg - Fsinθ)
a = 303.29 - 0.35(68.0 * 9.8- 303.29*sin15)/68.0
303.29-0.35( 666.4 - 303.29*0.2588)/68.0
303.29-0.35(666.4-78.491)/68.0
303.29-0.35(587.90)/68.0
(303.29-205.45)/68.0
97.83/68.0
a = 1.438m/s^2
a = 1.44m/s^2
in a certain region of space, the gravitational field is given by -k/r,where r=distance,k=const.if gravitational potential at r=r0 be v0,then what is the expression for the gravitational potential v?
options
1)k log(r/ro)
2)k log(ro/r)
3)vo+k log(r/ro)
4)vo+k log(ro/r)
plz help me out
I will mark u as brainliest if u answer correct
Answer:
The correct answer is option 3 .
Please check the answer once :)
A 100 cm length of nichrome wire has a radius of 0.50 mm, a resistivity LaTeX: \rho_0ρ 0= 1.0 × 10-6 Ω ∙ m , and a temperature coefficient LaTeX: \alphaα = 0.4 × 10-3 (oC)-1. At T0 = 20 oC the wire carries current of 0.50 A. How much power does the wire dissipate at a temperature T = 350 oC? Assume the potential difference across the ends of the wire remains constant. Group of answer choices
Answer:
P₃₅₀ = 0.28 watt
Explanation:
First we find the resistance of the wire at 20°C:
R₀ = ρL/A
where,
ρ = resistivity = 1 x 10⁻⁶ Ωm
L = Length of wire = 100 cm = 1 m
A = cross-sectional area of wire = πr² = π(0.5 x 10⁻³ m)² = 0.785 x 10⁻⁶ m²
Therefore,
R₀ = (1 x 10⁻⁶ Ωm)(1 m)/(0.785 x 10⁻⁶ m²)
R₀ = 1.27 Ω
Now, from Ohm's Law:
V = I₀R₀
where,
V = Potential Difference = ?
I₀ = Current Passing at 20°C = 0.5 A
Therefore,
V = (0.5 A)(1.27 Ω)
V = 0.64 volts
Now, we need to find the resistance at 350°C:
R₃₅₀ = R₀(1 + αΔT)
where,
R₃₅₀ = Resistance at 350°C = ?
α = temperature coefficient of resistance = 0.4 x 10⁻³ °C⁻¹
ΔT = Difference in Temperature = 350°C - 20°C = 330°C
Therefore,
R₃₅₀ = (1.27 Ω)[1 + (0.4 x 10⁻³ °C⁻¹)(330°C)]
R₃₅₀ = 1.44 Ω
Now, for power at 350°C:
P₃₅₀ = VI₃₅₀
where,
P₃₅₀ = Power dissipation at 350°C = ?
V = constant potential difference = 0.64 volts
I₃₅₀ = Current at 350°C = V/R₃₅₀ (From Ohm's Law)
Therefore,
P₃₅₀ = V²/R₃₅₉
P₃₅₀ = (0.64 volts)²/(1.44 Ω)
P₃₅₀ = 0.28 watt
If you were to experimentally determine the length of the pendulum, why would you not get the same length in Iowa?
Answer:
The length of the pendulum depends on acceleration due to gravity (g) which varies in different Earth's location beacuse Earth is not perfectly spherical.
Explanation:
The period of oscillation is calculated as;
[tex]T = 2\pi\sqrt{\frac{l}{g} }[/tex]
where;
L is the length of the pendulum bob
g is acceleration due to gravity
If we make L the subject of the formula in the equation above, we will have;
[tex]T = 2\pi\sqrt{\frac{l}{g}}\\\\\sqrt{\frac{l}{g} } = \frac{T}{2\pi} \\\\\frac{l}{g} = (\frac{T}{2\pi} \)^2\\\\\frac{l}{g} =\frac{T^2}{4\pi^2}\\\\L = \frac{gT^2}{4\pi^2}[/tex]
The length of the pendulum depends on acceleration due to gravity (g).
Acceleration due to gravity is often assumed to be the same everywhere on Earth, but it varies because Earth is not perfectly spherical. The variation of acceleration due to gravity (g) as a result of Earth's geometry, will also cause the length of the pendulum to vary.