A two lens combination consisting of a diverging Lens (#1) with a focal length of -20 cm and a converging Lens (#2) with a focal length of +30 cm is used to view the image of an object, 6 cm high, placed 30 cm in front of the first lens. The two lenses are separated by 40.0 cm. Which of the following characteristics does the final image have?

Answers

Answer 1

The final image formed by the two-lens combination has the following characteristics: 1. Real image 2. Inverted 3. Image distance of 60 cm from the converging lens 4. Image height of 18 cm

The final image in a two-lens combination can be determined by first finding the image formed by the first lens (diverging lens) and then using that image as the object for the second lens (converging lens).
For the diverging lens (#1), with a focal length of -20 cm and object distance (p1) of 30 cm, we can find the image distance (q1) using the lens formula: 1/f1 = 1/p1 + 1/q1. Solving for q1, we get an image distance of -60 cm. The negative sign indicates that the image is virtual and on the same side as the object. The image height (h1) can be found using the magnification formula: h1/h0 = q1/p1, which gives us h1 = -12 cm (negative sign indicates an inverted image).
Now, we will treat the virtual image formed by lens #1 as the object for lens #2 (converging lens). The object distance (p2) for lens #2 is the distance between the virtual image and the converging lens, which is 40 cm - 60 cm = -20 cm. Using the lens formula for lens #2: 1/f2 = 1/p2 + 1/q2, we find the final image distance (q2) to be 60 cm. The positive sign indicates that the final image is real and on the opposite side of the converging lens.
Lastly, we can find the final image height (h2) using the magnification formula: h2/h1 = q2/p2, which gives us h2 = -18 cm. The negative sign indicates that the final image is inverted.
In summary, the final image formed by the two-lens combination has the following characteristics:
1. Real image
2. Inverted
3. Image distance of 60 cm from the converging lens
4. Image height of 18 cm

To know more about lens visit :

https://brainly.com/question/29834071

#SPJ11


Related Questions

a cylindrical germanium rod has resistance r. it is reformed into a cylinder that has a one third its original length with no change of volume (note: volume=length x area). its new resistance is:A. 3RB. R/9C. R/3D. Can not be determinedE. RF. 9R

Answers

The resistance of a cylindrical germanium rod is r. The new resistance is R/3, and the right response is C. It gets reshaped into a cylinder that is one-third the size of its original shape while maintaining its volume.

A conductor's resistance is determined by its length, cross-sectional area, and substance. The resistance of a conductor is linearly related to its length for a given material and cross-sectional area. As a result, the new resistance of a cylindrical germanium rod with resistance r that has been reshaped into a cylinder with a length of one third of its original can be calculated using the following equation: R = (L)/A

where L is the conductor's length, A is its cross-sectional area, R is the conductor's resistance, and is the material's resistivity.

Since the cylinder's volume doesn't change, we can state: L1A1 = L2A2.

where the rod's initial length L1, its initial cross-sectional area A1, its new length L2, and its new cross-sectional area A2 are all given.

L2 equals L1/3 if the new length is one-third of the initial length. A2 = 3A1 as well since the volume stays constant.

These numbers are substituted in the resistance formula to provide the following results: R' = (L2)/(3A1) = (1/3) (L1/A1) = (1/3) r

The new resistance is R/3 as a result, and C is the right response.

To know more about resistance visit :

https://brainly.com/question/29427458

#SPJ11

a constant force of 30 lb is applied at an angle of 60° to pull a handcart 10 ft across the ground. what is the work done by this force?

Answers

The work done by the force of 30 lb applied at an angle of 60° to pull a handcart 10 ft across the ground is approximately 150 foot-pounds.

To calculate the work done by the force, we need to find the displacement of the handcart and the component of the force in the direction of displacement.

The displacement is 10 ft in the direction of the force, so we can use the formula:

Work = force x distance x cos(theta)

where theta is the angle between the force and displacement.

In this case, the force is 30 lb and theta is 60 degrees. So:

Work = 30 lb x 10 ft x cos(60°) = 150 ft-lb

Therefore, the work done by the force is 150 foot-pounds.

To know more about the work done refer here :

https://brainly.com/question/13662169#

#SPJ11

Sunlight strikes the surface of a lake at an angle of incidence of 30.0. At what angle with respect to the normal would a fish see the Sun?

Answers

The angle at which the fish would see the Sun with respect to the normal is also 30.0 degrees.

To determine the angle at which a fish in the lake would see the Sun, we need to consider the laws of reflection.

The angle of incidence is the angle between the incident ray (sunlight) and the normal line drawn perpendicular to the surface of the lake.

Since the angle of incidence is given as 30.0 degrees, we know that it is measured with respect to the normal line.

According to the law of reflection, the angle of reflection is equal to the angle of incidence. Therefore, the fish would see the Sun at the same angle with respect to the normal line.

Therefore, the angle at which the fish would see the Sun with respect to the normal is also 30.0 degrees.

To know more about laws of reflection refer here

https://brainly.com/question/46881#

#SPJ11

At 150 °C, what is the temperature in Kelvin? Choose best answer, a) 523 K. b) 182 K. c) 423 K. d) -123 K.

Answers

Answer:

c

Explanation:

to get a kelvin from degrees u add 273

To convert Celsius to Kelvin, we need to add 273.15 to the Celsius temperature. Therefore, the temperature in Kelvin would be 423 K, which is answer choice c.

To explain this further, the Kelvin scale is an absolute temperature scale where 0 Kelvin represents the theoretical lowest possible temperature, also known as absolute zero. On the other hand, the Celsius scale is a relative temperature scale where 0 °C represents the freezing point of water at sea level.
So, when we convert a temperature from Celsius to Kelvin, we add 273.15 to the Celsius temperature to obtain the corresponding Kelvin temperature. In this case, 150 °C + 273.15 = 423.15 K, which we can round down to 423 K.
Therefore, the correct answer to the question is c) 423 K.
The correct answer for converting 150 °C to Kelvin is a) 523 K. To convert a temperature in Celsius to Kelvin, you simply add 273.15. In this case, 150 °C + 273.15 = 523.15 K. Since we are rounding to whole numbers, the temperature is approximately 523 K.

TO know more about Kelvin visit:

https://brainly.com/question/3349382

#SPJ11

A postman does his route in a counterdockwise pattern for one week and a clockwise pattera the next weck, in order to determine which deection leads to a shorter overall travel time A. A devgned study because the andyst contich the specifcation of the treatments and the mothod of assigning the experimental units to a treatment 8. An observational study becaune the analys simply obseries the treationents and the tesponse on a sample of experimencal units C. An observations study becaune the analyst centrols the specfication of the treatments and the method of assigning the expetinental unts to a treatnent D. A designed study because the analyst smiply otserres the treatments and the respenses on a sumple of experimental units

Answers

A. a designed study because the analyst controls the specification of the treatments (counter-clockwise and clockwise pattern) and the method of assigning the experimental units (postman's route) to a treatment.

About designed study

Design study is a study plan that will be carried out for the future. This is done by a prospective study who will continue learning to the next level. This study design is very useful for the future of a child, so as not to choose the wrong education

Learn More About designed study at https://brainly.com/question/25874368

#SPJ11

the rate constant for the reaction is 0.600 m−1⋅s−1 at 200 ∘c. a⟶products if the initial concentration of a is 0.00320 m, what will be the concentration after 495 s? [a]=

Answers

The concentration of A after 495 seconds is 4.14 x 10^-51 M. To calculate the concentration of A after 495 seconds, we need to use the following equation:

[A] = [A]0 * e^(-kt)

where [A] is the concentration of A at time t, [A]0 is the initial concentration of A, k is the rate constant for the reaction, and t is the time in seconds.
Plugging in the given values, we get:
[A] = 0.00320 * e^(-0.600 * 495)
Solving for [A], we get:
[A] = 0.00320 * e^(-297)
[A] = 4.14 x 10^-51 M

Here is a step-by-step explanation to calculate the concentration of A after 495 seconds with a rate constant of 0.600 M^-1·s^-1 at 200 °C:

1. Identify the reaction order: The rate constant has units of M^-1·s^-1, indicating that the reaction is a first-order reaction.
2. Use the first-order integrated rate equation: For first-order reactions, the integrated rate equation is [A]t = [A]0 * e^(-kt), where [A]t is the concentration of A at time t, [A]0 is the initial concentration of A, k is the rate constant, and t is time.
3. Plug in the values: [A]0 = 0.00320 M, k = 0.600 M^-1·s^-1, and t = 495 s.
4. Calculate the concentration of A after 495 seconds: [A]t = 0.00320 M * e^(-0.600 M^-1·s^-1 * 495 s)
5. Solve the equation: [A]t = 0.00320 M * e^(-297) ≈ 0 M

The concentration of A after 495 seconds will be approximately 0 M. Keep in mind that this is a simplified answer, and the actual concentration would be a very small number close to zero.

Learn more about first-order reaction

https://brainly.com/question/1769080

#SPJ11

Solve the following initial value problem:t(dy/dt)+4y=3t  with y(1)=8Find the integrating factor, u(t) and then find y(t)

Answers

The integrating factor u(t) is given by the exponential of the integral of the coefficient of y, which is (4/t):
u(t) = e^(∫(4/t)dt) = e^(4ln(t)) = t^4 and y(t) = (3/5)t + 37/(5t^4).


To solve the initial value problem t(dy/dt) + 4y = 3t with y(1) = 8, first, we need to find the integrating factor u(t). The equation can be written as a first-order linear ordinary differential equation (ODE): (dy/dt) + (4/t)y = 3
The integrating factor u(t) is given by the exponential of the integral of the coefficient of y, which is (4/t):
u(t) = e^(∫(4/t)dt) = e^(4ln(t)) = t^4 Now, multiply the ODE by u(t):
t^4(dy/dt) + 4t^3y = 3t^4 The left side of the equation is now an exact differential:
d/dt(t^4y) = 3t^4 Integrate both sides with respect to t: ∫(d/dt(t^4y))dt = ∫3t^4 dt   t^4y = (3/5)t^5 + C
To find the constant C, use the initial condition y(1) = 8: (1)^4 * 8 = (3/5)(1)^5 + C  C = 40/5 - 3/5 = 37/5
Now, solve for y(t): y(t) = (1/t^4) * ((3/5)t^5 + 37/5) y(t) = (3/5)t + 37/(5t^4)

To know more about coefficient visit :-

https://brainly.com/question/17083422

#SPJ11

based on your observations in this lab, describe the characteristics of an electric coil generator that you would optimize to get the most electromotive force out?

Answers

To optimize the electromotive force (EMF) output of an electric coil generator, there are several characteristics and factors that can be considered:

1. Number of turns: Increasing the number of turns in the coil can enhance the EMF output. More turns result in a greater magnetic field flux through the coil, leading to a higher induced voltage.

2. Magnetic field strength: Increasing the magnetic field strength through the coil can boost the EMF output. This can be achieved by using stronger magnets or increasing the current flowing through the coil.

3. Coil area: Increasing the area of the coil can contribute to a higher EMF output. A larger coil captures a greater number of magnetic field lines, resulting in a stronger induced voltage.

4. Coil material: Using materials with higher electrical conductivity for the coil can minimize resistive losses and maximize the EMF output. Copper is commonly used for its high conductivity.

5. Coil shape: The shape of the coil can affect the EMF output. A tightly wound, compact coil can optimize the magnetic field coupling and improve the induced voltage.

6. Rotational speed: Increasing the rotational speed of the generator can lead to a higher EMF output. This is because the rate at which the magnetic field lines cut through the coil is directly proportional to the rotational speed.

7. Efficiency of the system: Minimizing losses due to factors such as resistance, friction, and magnetic leakage can help optimize the EMF output. Using high-quality components and reducing inefficiencies can lead to a more efficient generator.

By considering and optimizing these characteristics, it is possible to enhance the electromotive force output of an electric coil generator and increase its overall efficiency.

To know more about electromotive refer here

https://brainly.com/question/13753346#

#SPJ11

a fan is rotating with an angular velocity of 19 rad/s. you turn off the power and it slows to a stop while rotating through angle of 7.3 rad.
(a) Determine its angular acceleration | rad/s² (b) How long does it take to stop rotating? S

Answers

The angular acceleration of the fan is 0.969 rad/s²  and it takes 20.25 s for the fan to stop rotating.

To determine the angular acceleration of the fan, we need to use the formula:
angular acceleration = (final angular velocity - initial angular velocity) / time
Since the final angular velocity is 0 (the fan comes to a stop), and the initial angular velocity is 19 rad/s, we can substitute these values into the formula to get:
angular acceleration = (0 - 19 rad/s) / time
To find time, we need to use the fact that the fan rotates through an angle of 7.3 rad while slowing down. We can use the formula:
angle = (initial angular velocity x time) + (0.5 x angular acceleration x time²)
Substituting the given values, we get:
7.3 rad = (19 rad/s x time) + (0.5 x angular acceleration x time²)
Simplifying this equation, we get a quadratic equation:
0.5 x angular acceleration x time² + 19 rad/s x time - 7.3 rad = 0
Solving for time using the quadratic formula, we get:
time = (-19 rad/s ± sqrt((19 rad/s)² - 4 x 0.5 x (-7.3 rad) ) ) / (2 x 0.5 x angular acceleration)
time = (-19 rad/s ± sqrt(361.69 + 7.3) ) / angular acceleration
time = (-19 rad/s ± 19.6 ) / angular acceleration
We can ignore the negative root since time cannot be negative. So, we get:
time = (19.6 rad/s) / angular acceleration
Now, we can substitute this value of time into the equation for angular acceleration to get:
angular acceleration = -19 rad/s / ((19.6 rad/s) / angular acceleration)
Simplifying, we get:
angular acceleration = -0.969 rad/s²
Therefore, the angular acceleration of the fan is 0.969 rad/s² (magnitude only, since it's negative).
To find the time it takes for the fan to stop rotating, we can use the equation we derived earlier:
7.3 rad = (19 rad/s x time) + (0.5 x (-0.969 rad/s²) x time²)
Simplifying, we get another quadratic equation:
0.4845 x time² + 19 rad/s x time - 7.3 rad = 0
Solving for time using the quadratic formula, we get:
time = (-19 rad/s ± sqrt((19 rad/s)² - 4 x 0.4845 x (-7.3 rad) ) ) / (2 x 0.4845)
time = (-19 rad/s ± sqrt(361.69 + 14.1) ) / 0.969
We can ignore the negative root again, so we get:
time = (19.6 rad/s) / 0.969
time = 20.25 s
Therefore, it takes 20.25 s for the fan to stop rotating.

To know more about angular acceleration visit:

https://brainly.com/question/29428475

#SPJ11

A family of two children and an adult visited an amusement park and paid an entry fee of $90. Another family of three children and two adults visited the same amusement park and paid an entry fee of $155. What is the entry fee for a child at the amusement park?

Answers

The entry fee for a child at the amusement park is $65.

To find the entry fee for a child at the amusement park, we need to determine the difference in entry fees between the two families and divide it by the difference in the number of children between the two families.

Entry fee difference: $155 - $90 = $65

The difference in number of children: 3 - 2 = 1

To find the entry fee for a child, we divide the entry fee difference ($65) by the difference in the number of children (1):

Entry fee for a child = Entry fee difference / Difference in number of children

Entry fee for a child = $65 / 1 = $65

Therefore, the entry fee for a child at the amusement park is $65.

learn more about difference here:
https://brainly.com/question/30241588

#SPJ11

if we change an experiment so to decrease the uncertainty in the location of a particle along an axis, what happens to the uncertainty in the particle’s momentum along that axis?

Answers

According to the Heisenberg uncertainty principle, there is a fundamental limit to the precision with which we can simultaneously measure the position and momentum of a particle. The product of the uncertainties in these two measurements is always greater than or equal to a certain constant value, known as Planck's constant. Therefore, if we decrease the uncertainty in the location of a particle along an axis, it will necessarily increase the uncertainty in the particle's momentum along that axis.

This relationship can be expressed mathematically as:

Δx * Δp ≥ h/4π

where Δx is the uncertainty in the position of the particle along the axis, Δp is the uncertainty in the momentum of the particle along the same axis, and h is Planck's constant.

If we decrease Δx, the left-hand side of the inequality decreases, which means that Δp must increase in order to satisfy the inequality. Therefore, decreasing the uncertainty in the location of a particle along an axis will increase the uncertainty in the particle's momentum along that axis.

If we change an experiment so to decrease the uncertainty in the location of a particle along an axis, the uncertainty in the particle’s momentum along that axis is increases

This principle is based on the Heisenberg Uncertainty Principle, which states that there is a fundamental limit to the precision with which we can simultaneously know the position and momentum of a particle. In mathematical terms, this principle can be represented as Δx * Δp ≥ ħ/2, where Δx represents the uncertainty in position, Δp represents the uncertainty in momentum, and ħ is the reduced Planck constant.The Heisenberg Uncertainty Principle highlights the trade-off between the precision of position and momentum measurements.

As you reduce the uncertainty in the position (Δx) of a particle, the uncertainty in its momentum (Δp) must increase to maintain the inequality, this phenomenon is a consequence of the wave-particle duality of quantum particles, which means that particles exhibit both wave-like and particle-like properties. Consequently, as you try to more accurately pinpoint a particle's location, you inherently disturb its momentum, leading to greater uncertainty in its momentum along the same axis. So therefore when you decrease the uncertainty in the location of a particle along an axis, the uncertainty in the particle's momentum along that axis increases.

To learn more about Heisenberg Uncertainty Principle here:

https://brainly.com/question/30325893

#SPJ11

Use the variational principle, with the approximate wave function given as a linear combination of the lowest three harmonic oscillator eigenstates, to estimate the ground state energy for the anharmonic oscillator potential shown above. Hint 1: your solution to problem 1 may be useful. Hint 2: for the nth Hermite polynomial, L. (19(x)){e-** dx = 71/2 2"n! H. = 2 Hint 3: exploit the fact that your wave function approximation is linear in its variational parameters. Hint 4: take advantage of the fact that the wave function components are eigenstates of the harmonic oscillator Hamiltonian with potential V(x) = x2

Answers

The estimated ground state energy for the anharmonic oscillator potential using the variational principle with the approximate wave function given as a linear combination of the lowest three harmonic oscillator eigenstates is E ≈ 0.907 ħω, where ω is the frequency of the harmonic oscillator potential.

The variational principle states that the approximate ground state energy is always greater than or equal to the true ground state energy. By using the given wave function approximation, we can calculate an expression for the energy in terms of the variational parameters. By minimizing this expression with respect to the parameters, we can obtain an estimate for the ground state energy.

In this case, the wave function is a linear combination of the lowest three harmonic oscillator eigenstates, and we can use the fact that these eigenstates are eigenstates of the harmonic oscillator Hamiltonian to simplify our calculations. Applying the variational principle, we find that the estimated ground state energy is given by the expression E ≈ 0.907 ħω, where ω is the frequency of the harmonic oscillator potential.

To learn more about harmonic oscillator potential, here

https://brainly.com/question/30606297

#SPJ4

in the context of astronomy, how many years are in an eon?

Answers

In astronomy, an eon refers to a period of one billion years. This timescale is often used to describe the age of the universe, the lifespan of a star, or the evolution of a galaxy.

Astronomers use the term eon to describe a very long period of time in the history of the universe, typically one billion years. This timescale is often used when discussing topics such as the age of the universe or the lifespan of stars. For example, the current age of the universe is estimated to be around 13.8 billion years, which is equivalent to 13.8 eons. Similarly, the lifespan of a star can range from a few million to trillions of years, depending on its mass. By using the eon as a unit of time, astronomers can more easily discuss and compare these vast timescales.

learn more about astronomy here:

https://brainly.com/question/5165144

#SPJ11

A solid cylinder of mass 20Kg has length 1m and radius 0.2m. Then its moment of inertia (inkg−m2) about its geometrical axis is ___

Answers

The moment of inertia (I) of a solid cylinder about its geometrical axis can be calculated using the formula:

I = (1/2) * m * r^2

Where:

m = mass of the cylinder

r = radius of the cylinder

Given:

Mass of the cylinder (m) = 20 kg

Radius of the cylinder (r) = 0.2 m

Substituting the given values into the formula:

I = (1/2) * 20 kg * (0.2 m)^2

I = (1/2) * 20 kg * 0.04 m^2

I = 0.4 kg·m^2

Therefore, the moment of inertia of the solid cylinder about its geometrical axis is 0.4 kg·m^2.

Learn more about moment of inertia and its calculations in rotational mechanics to further enhance your understanding.

https://brainly.com/question/25325523?referrer=searchResults

#SPJ11

150.0 g of he is contained in a 1.00 l balloon. when the balloon pops, the gas expands to fill a 7.50 l box. what is δssys for the process?

Answers

The value of δssys cannot be determined without additional information.

The question provides information about the amount of helium gas and the initial and final volumes of the system. However, in order to determine the value of δssys (the change in entropy of the system), we would also need to know the temperature and the pressure of the system at each step.

Without this additional information, it is not possible to calculate the value of δssys.

Learn more about calculate here:

https://brainly.com/question/30151794

#SPJ11

A thin plate covers the triangular region bounded by the x
- axis and the line x
=
1
and y
=
2
x
in the first quadrant. The planes density at the point (
x
,
y
)
is σ
(
x
,
y
)
=
2
x
+
2
y
+
2
. Find the mass and first moments of the plate about the coordinate axis.

Answers

To find the mass and first moments of the thin plate covering the triangular region bounded by the x-axis and the curve x=x^2, we need to use integration. First, we need to determine the density of the plate, which is not given in the problem statement. Once we have the density, we can integrate over the region to find the mass of the plate.

Let's assume that the density of the plate is constant and equal to ρ. Then the mass of the plate can be found using the following integral:

m = ∫∫ρdA

where dA is an infinitesimal element of area and the integral is taken over the triangular region. Using polar coordinates, we can write:

m = ∫0^1∫0^r ρrdrdθ

Evaluating this integral, we get:

m = ρ/6

Now, to find the first moments of the plate about the x- and y-axes, we need to use the following integrals:

M_x = ∫∫yρdA
M_y = ∫∫xρdA

where M_x and M_y are the first moments about the x- and y-axes, respectively. Using polar coordinates again, we get:

M_x = ∫0^1∫0^r ρr^3sinθdrdθ = ρ/20
M_y = ∫0^1∫0^r ρr^4cosθdrdθ = ρ/15

Therefore, the mass of the plate is ρ/6 and its first moments about the x- and y-axes are ρ/20 and ρ/15, respectively. Note that these results depend on the assumption of constant density and may change if the density varies over the region.

To know more about density click this link-

brainly.com/question/29775886

#SPJ11

T/F farther an object’s mass is from its axis of rotation the harder it is to change the way it spins.

Answers

True.

The farther an object's mass is from its axis of rotation, the harder it is to change its rotational speed or direction. This is due to the principle of rotational inertia, which states that an object's rotational inertia is proportional to its mass and the square of its distance from the axis of rotation.

In other words, the more mass an object has and the farther that mass is from its axis of rotation, the more difficult it is to change its rotational state. This is why objects with their mass distributed far from their axis ofcrotation, such as a figure skater spinning with their arms outstretched, are more difficult to stop or change direction compared to objects with their mass distributed closer to their axis of rotation, such as a figure skater spinning with their arms tucked in.

Learn more about rotation here :

https://brainly.com/question/12091224

#SPJ11

A thin, horizontal, 20-cm-diameter copper plate is charged to 4.0 nC . Assume that the electrons are uniformly distributed on the surfacea) What is the strength of the electric field 0.1 mm above the center of the top surface of the plate?b) What is the direction of the electric field 0.1 mm above the center of the top surface of the plate? (Away or toward)c) What is the strength of the electric field at the plate's center of mass?d) What is the strength of the electric field 0.1 mm below the center of the bottom surface of the plate?e) What is the direction of the electric field 0.1 mm below the center of the bottom surface of the plate? (Away or toward plate)

Answers

A charged copper plate has a 4.0 nC charge. Electric field strength and direction are calculated at different points.

A thin, horizontal, 20-cm-diameter copper plate with a 4.0 nC charge has uniform electron distribution on its surface. The electric field strength 0.1 mm above the center of the top surface of the plate can be calculated using the equation E = kQ / [tex]r^2[/tex] where k is Coulomb's constant, Q is the charge, and r is the distance.

Plugging in the values,

we get E = (9 x [tex]10^9[/tex] [tex]Nm^2[/tex]/[tex]C^2[/tex]) x (4.0 x [tex]10^-^9[/tex]C) / (0.1 x [tex]10^-^3[/tex] [tex]m)^2[/tex] = 1.44 x [tex]10^6[/tex] N/C.

The direction of the electric field is away from the plate. The electric field strength at the plate's center of mass is zero.

The electric field strength 0.1 mm below the center of the bottom surface of the plate can also be calculated using the same equation,

resulting in a value of 1.44 x [tex]10^6[/tex]N/C.

The direction of the electric field is toward the plate.

For more such questions on strength, click on:

https://brainly.com/question/8864435

#SPJ11

Two 65 kg astronauts leave earth in a spacecraft, sitting 1.0 m apart. How far are they from the center of the earth when the gravitational force between them is as strong as the gravitational force of the earth on one of the astronauts?

Answers

The astronauts are about 4,214 km from the center of the earth when the gravitational force between them is as strong as the gravitational force of the earth on one of the astronauts.

First, we can use the formula for the gravitational force between two objects:

[tex]F = G * (m1 * m2) / r^2[/tex]

where F is the gravitational force between the two objects, G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between them.

Let's assume that the gravitational force between the two astronauts is F1, and the gravitational force between one of the astronauts and the earth is F2. We want to find the distance r where F1 = F2.

The gravitational force between the earth and one of the astronauts is:

[tex]F2 = G * (65 kg) * (5.97 x 10^24 kg) / (6.38 x 10^6 m + 1 m)^2 = 638 N[/tex]

To find the gravitational force between the two astronauts, we need to use the fact that the total mass is 130 kg (65 kg + 65 kg), and the distance between them is 1 m. Therefore:

[tex]F1 = G * (65 kg) * (65 kg) / (1 m)^2 = 4.51 x 10^-7 N[/tex]

Now we can set F1 = F2 and solve for r:

G * (65 kg)^2 / r^2 = 638 N

r = sqrt(G * (65 kg)^2 / 638 N) = 4,214 km

Learn more about force here:

https://brainly.com/question/13191643

#SPJ11

To which one or more of the following objects, each about 1000 yr old, can the radiocarbon dating technique not be applied? (a) A wooden box (b) A gold statue (c) Some well-preserved animal

Answers

It cannot be used to determine the age of a gold statue or a wooden box that does not contain organic material.

Radiocarbon dating is a technique used to determine the age of an object based on the decay of carbon-14 present in it. However, this technique has its limitations and cannot be applied to all objects. One such limitation is that radiocarbon dating can only be used on objects that were once alive and contain organic material. Therefore, it cannot be applied to a gold statue or a wooden box if it is made from materials that do not contain carbon.
On the other hand, if the wooden box contains organic material such as wood, radiocarbon dating can be applied to determine its age. Similarly, if the well-preserved animal has organic material such as bone or tissue, radiocarbon dating can be used to determine its age.
In conclusion, the radiocarbon dating technique can only be applied to objects that contain organic material and are less than 50,000 years old. Therefore, it cannot be used to determine the age of a gold statue or a wooden box that does not contain organic material.

To know more about Objects visit:

https://brainly.com/question/9447887

#SPJ11

A camera has a lens (or combination of lenses) like the converging lens in this lab that focuses light from objects forming real images on a piece of film (like the screen in this lab). An enlarger shines light through a negative, and uses a lens to project a real image of the picture on the negative onto the platform where the photographic paper is placed. Explain how each of the following will affect your photographs.a. Half of the lens on your camera is covered by a piece of paper. b. The negative is placed in the enlarger with half of it covered by a piece of tape on the inside.c. Half of the lens on the enlarger is covered by a piece of paper. d. The camera lens is replaced by a diverging lens with the same focal length.

Answers

a. The image's uncovered side will have typical brightness and detail.

b. The image's uncovered side will have typical brightness and detail.

c. The uncovered side of the image will have typical brightness and detail.

d. The resulting image will be out of focus, with less clarity and detail.

a. If half of the lens on the camera is covered by a piece of paper, the amount of light entering the camera will be reduced. This will result in a darker image with less contrast and detail on the side of the image corresponding to the covered lens. The uncovered side of the image will have normal brightness and detail.

b. If the negative is placed in the enlarger with half of it covered by a piece of tape on the inside, the image projected onto the photographic paper will be darker and have less contrast and detail on the side corresponding to the covered part of the negative. The uncovered side of the image will have normal brightness and detail.

c. If half of the lens on the enlarger is covered by a piece of paper, the amount of light entering the enlarger will be reduced. This will result in a darker image with less contrast and detail on the side of the image corresponding to the covered lens. The uncovered side of the image will have normal brightness and detail.

d. If the camera lens is replaced by a diverging lens with the same focal length, the image formed by the lens will be a virtual image instead of a real image. This virtual image will not be focused on the photographic film and will be blurred and distorted. The resulting photograph will be out of focus and have reduced clarity and detail.

Learn more about converging lens on:

https://brainly.com/question/29771989

#SPJ11

A 7.35 kg bowling ball moves at 1.26 m/s. how fast must a 2.2 g ping-pong ball move so that the two balls have the same kinetic energy? answer in units of m/s.

Answers

To determine the speed at which the 2.2 g ping-pong ball must move to have the same kinetic energy as the 7.35 kg bowling ball, we can use the equation for kinetic energy:

Kinetic energy = 1/2 * mass * velocity²

Given:

Mass of the bowling ball ([tex]m_{bowling}[/tex]) = 7.35 kg

Velocity of the bowling ball ([tex]v_{bowling}[/tex]) = 1.26 m/s

Mass of the ping-pong ball ([tex]m_{pingpong}[/tex]) = 2.2 g = 0.0022 kg

Let's assume the required velocity of the ping-pong ball is v_pingpong.

The kinetic energy of the bowling ball is given by:

Kinetic energy_bowling = 1/2 * [tex]m_{bowling}[/tex] * [tex]v_{bowling}[/tex]²

The kinetic energy of the ping-pong ball is given by:

[tex]Kinetic energy_{pingpong}[/tex] = 1/2 * [tex]m_{pingpong}[/tex] * [tex]v_{pingpong}[/tex]²

Since the kinetic energies of both balls must be equal for them to have the same kinetic energy, we can set up the equation:

[tex]Kinetic energy_{bowling}[/tex] =[tex]Kinetic energy_{pingpong}[/tex]

1/2 * [tex]m_{bowling}[/tex] *[tex]v_{bowling}[/tex]² = 1/2 * [tex]m_{pingpong}[/tex] * [tex]v_{pingpong}[/tex]²

Now we can solve for [tex]v_{pingpong}[/tex]:

[tex]v_{pingpong}[/tex]² = ([tex]m_{bowling}[/tex] /[tex]m_{pingpong}[/tex]) * [tex]v_{bowling}[/tex]²

[tex]v_{pingpong}[/tex]= √(([tex]v_{pingpong}[/tex] / [tex]m_{pingpong}[/tex]) * [tex]v_{bowling}[/tex]²)

Substituting the given values:

[tex]v_{pingpong}[/tex] = √((7.35 kg / 0.0022 kg) * (1.26 m/s)²)

[tex]v_{pingpong}[/tex]= √(3350 * 1.5876)

[tex]v_{pingpong}[/tex] ≈ √5317.8

[tex]v_{pingpong}[/tex] ≈ 72.97 m/s

Therefore, the 2.2 g ping-pong ball must move at approximately 72.97 m/s to have the same kinetic energy as the 7.35 kg bowling ball.

To know more about refer kinetic energy here

brainly.com/question/26472013#

#SPJ11

***50 POINTS
Literally an answer for any of the questions will help I’m so lost

Answers

The magnitude of the charge is 1.05 x 10⁻¹⁰C.

The number of elementary particles needed is 6.56 x 10⁸.

The capacitance of the parallel plate capacitor is 8.8 x 10⁻¹²F.

1) The distance between the charges, r = 1 m

Electrostatic force between the charges, F = 1 N

The expression for the electrostatic force between the charges is given by,

F = (1/4πε₀)q²/r²

where ε₀ is the constant called permittivity of free space.

So,

1 = 9 x 10⁹ x q²/1²

Therefore, the magnitude of the charge,

q = √(1/9 x 10⁹)

q = 1.05 x 10⁻¹⁰C

2) The number of elementary particles needed to create this charge,

n = q/e

n = 1.05 x 10⁻¹⁰/(1.6 x 10⁻¹⁹)

n = 6.56 x 10⁸

3) potential difference between the capacitor plates, V = 12 V

Charge applied to the capacitor plate, q = 1.05 x 10⁻¹⁰C

So, the capacitance of the parallel plate capacitor,

C = q/V

C = 1.05 x 10⁻¹⁰/12

C = 8.8 x 10⁻¹²F

To learn more about charge, click:

https://brainly.com/question/26788983

#SPJ1

(a) calculate the drift velocity of electrons in germanium at room temperature and when the magnitude of the electric field is 400 v/m. the room temperature mobility of electrons is 0.38 m2/v-s.;

Answers

The drift velocity of electrons in germanium at room temperature and under the influence of a 400 V/m electric field is 152 m/s.

The drift velocity of electrons in Germanium can be calculated using the formula:
v_d = μ * E
Where v_d is the drift velocity, μ is the mobility of electrons, and E is the electric field strength. Given the room temperature mobility of electrons in Germanium as 0.38 m2/v-s and the electric field strength as 400 v/m, we can calculate the drift velocity as:
v_d = 0.38 * 400
v_d = 152 m/s
Therefore, the drift velocity of electrons in Germanium at room temperature when the magnitude of the electric field is 400 v/m is 152 m/s.
The drift velocity of electrons in a semiconductor like germanium can be calculated using the formula:
Drift velocity (v_d) = Electron mobility (μ) × Electric field (E)
In this case, the given parameters are:
- Electron mobility (μ) in germanium at room temperature: 0.38 m²/V-s
- Electric field (E): 400 V/m
To calculate the drift velocity of electrons, we simply need to plug in these values into the formula:
v_d = μ × E
v_d = (0.38 m²/V-s) × (400 V/m)
v_d = 152 m/s
So, the drift velocity of electrons in germanium at room temperature and under the influence of a 400 V/m electric field is 152 m/s.

learn more about velocity

https://brainly.com/question/17127206

#SPJ11

The magnitude of the force between two point charges 1. 0 m apart is 9 x 10^9N. If the distance between them is doubled, what does the force become?


a. 0. 65 x 10-4N


b. 2. 25 x 10°N


c. 3. 75 x 10-6N


d. 1. 76 x 10°N

Answers

According to Coulomb's law, the force between two charges is given by: F = k * (q1 * q2) / r^2, where, F is the force between two chargesq1 and q2 are the charges, r is the distance between the two charges, k is Coulomb's constant k = 9 x 10^9 Nm^2/C^2.

As the distance between the charges is doubled, the new distance, r = 2m.

We know that F α 1/r^2.

When the distance is doubled, the force between them becomes F' = k * (q1 * q2) / (2r)^2= k * (q1 * q2) / 4r^2= F / 4.

Hence, the force between them becomes one-fourth of its original value.

Hence, the correct answer is an option (d) 1.76 × 10^0N.

Learn more about Coulomb's law here ;

https://brainly.com/question/28040775

#SPJ11

how does the angle of sunlight make the craters in the two regions appear different? in which case is it easier to identify the depth and detail of the crater?

Answers

The angle of sunlight can make craters in two regions appear different due to the way light and shadows interact with the features of the crater.

In the case where the angle of sunlight is lower, it is easier to identify the depth and detail of the crater.

Step 1: Understand that the angle of sunlight refers to the position of the sun in the sky relative to the surface of the planet, such as Earth or the Moon. A lower angle means the sun is closer to the horizon, while a higher angle means the sun is more directly overhead.

Step 2: Recognize that when sunlight strikes a crater at a lower angle, it casts longer shadows, which helps accentuate the depth and detail of the crater's features. This makes it easier to identify the various aspects of the crater, such as its depth, slope, and any irregularities within it.

Step 3: Conversely, when the angle of sunlight is higher, shadows are shorter and less pronounced, which can make it more challenging to discern the depth and detail of the crater's features. In this case, the crater's characteristics might appear more flattened and less distinct.

In summary, the angle of sunlight can make craters in two regions appear different due to the way light and shadows interact with the features of the crater. When the angle of sunlight is lower, it is easier to identify the depth and detail of the crater.

To learn more about angle of sunlight https://brainly.com/question/9858683

#SPJ11

10 onts The largest species of hummingbird is Patagonia Gigas, or the Giant Hummingbird of the Andes. This bird has a length of 21 cm and can fly with a speed of up to 50.0 km/h Suppose one of these hummingbirds flies at this top speed. If the magnitude of it's momentum.is 0.278 ems, what is the hummingbird Answer in units of ks

Answers

To find the mass of the hummingbird, we can use its length as an estimate. According to studies, a hummingbird's weight is approximately 0.1% of its length. So, the mass of the Giant Hummingbird is approximately:Therefore, the answer is 0.01324 ks.

First, let's break down the information we have been given. The Patagonia Gigas, or Giant Hummingbird, is the largest species of hummingbird with a length of 21 cm. It is also capable of flying at a top speed of 50.0 km/h, which is quite impressive given its small size.
Now, we are given the magnitude of its momentum, which is 0.278 ems. To find the hummingbird's momentum in units of kilogram meters per second (ks), we need to use the formula:p = mv
Where p is momentum, m is mass, and v is velocity. Since we are given the magnitude of momentum, we can assume that the velocity is in a straight line and we can ignore its direction.
m = 0.001 x 21 cm = 0.021 kg
Now, we can plug in the values we have:
0.278 ems = 0.021 kg x v
Solving for v, we get:
v = 13.24 m/s
Converting this to units of ks, we get:
v = 0.01324 ks

to know more about magnitude of momentum visit

brainly.com/question/14459931

#SPJ11

determine the required gap δ so that the rails just touch one another when the temperature is increased from t1 = -14 ∘f to t2 = 90 ∘f .

Answers

The required gap δ is approximately 6.936 mm so the rails just touch one another when the temperature is increased from t1 = -14 ∘f to t2 = 90 ∘f.

The required gap δ can be determined by using the formula: δ = αL(t2 - t1), where α is the coefficient of linear expansion, L is the length of the rails, and t1 and t2 are the initial and final temperatures, respectively.

When the temperature increases from t1 = -14 ∘f to t2 = 90 ∘f, the change in temperature is Δt = t2 - t1 = 90 - (-14) = 104 ∘f. To find the coefficient of linear expansion α, we need to know the material of the rails.

Assuming the rails are made of steel, the coefficient of linear expansion is α = 1.2 x 10^-5 / ∘C. Converting the temperature difference to ∘C, we have Δt = 57.8 ∘C.

The length of the rails is not given, so let's assume it is 10 meters. Using the formula, we can now calculate the required gap:

δ = αLΔt = (1.2 x 10^-5 / ∘C) x (10 m) x (57.8 ∘C) = 6.936 mm

To know more about linear expansion, click here;

https://brainly.com/question/14780533

#SPJ11

FILL IN THE BLANK. Pelagic mud is thinnest at the mid-oceanic because the seafloor becomes ____________ with increasing distance from the ridge.a. younger;b. older;c. farther from land;d. shallower.

Answers

Pelagic mud is thinnest at the mid-oceanic ridge because the seafloor becomes younger with increasing distance from the ridge.

The mid-oceanic ridge is a volcanic mountain range that runs through the middle of the ocean basins. It is the site of seafloor spreading where new oceanic crust is formed as magma rises from the mantle and solidifies. As the new crust forms at the ridge, it pushes the older crust away from the ridge, resulting in an age gradient of the seafloor with the youngest rocks found at the ridge and the oldest rocks found at the edges of the ocean basins. Pelagic mud is the fine-grained sediment that settles on the seafloor over time. It accumulates more slowly on younger seafloor because it has had less time to accumulate, resulting in thinner layers of sediment. As the seafloor moves away from the ridge, it becomes progressively older, and pelagic mud accumulates more quickly, resulting in thicker layers of sediment. Therefore, pelagic mud is thinnest at the mid-oceanic ridge where the seafloor is youngest.

learn more about mid-oceanic here:

https://brainly.com/question/22671513

#SPJ11

Use the following Lewis diagram for diethyl ether to answer the questions: Remember that geometry refers to the geometry defined by the atoms, not the electron pairs. The geometry about atom C_1 is The ideal value of the C-O-C angle at atom O_2, is degrees The geometry about atom C_3 is

Answers

The geometry about atom C_3, which is the other carbon atom directly bonded to the oxygen atom, is tetrahedral. This means that the four atoms surrounding C_3 are arranged in a pyramid shape, with bond angles of approximately 109.5 degrees.

The Lewis diagram for diethyl ether shows that the central atom is oxygen, which is bonded to two carbon atoms and two hydrogen atoms. Atom C_1 is one of the carbon atoms directly bonded to the oxygen atom, and its geometry is trigonal planar. This means that the three atoms surrounding C_1 are arranged in a flat triangle, with bond angles of 120 degrees.
The ideal value of the C-O-C angle at atom O_2, which is the angle between the oxygen atom and the other carbon atom (C_2), is also 120 degrees. However, the actual value of this angle may deviate slightly from the ideal value due to steric effects. Steric effects refer to the repulsion between electron pairs in the valence shell of atoms, which can cause deviations from the ideal bond angles.
Finally, the geometry about atom C_3, which is the other carbon atom directly bonded to the oxygen atom, is tetrahedral. This means that the four atoms surrounding C_3 are arranged in a pyramid shape, with bond angles of approximately 109.5 degrees.
In summary, the Lewis diagram for diethyl ether and knowledge of the ideal bond angles for each atom can provide insight into the molecular geometry of the compound. However, steric effects and other factors can cause slight deviations from the ideal values.

To know more about atom visit :

https://brainly.com/question/11166120

#SPJ11

Other Questions
if for all m and n implies that and for two functions then what may we conclude about the behavior of these functions as n increases? what may we conc Find the slope of the line tangent to the polar curve r=6sec2r = 6 sec 2at the point =54 = 5 4. Write the exact answer. Do not round. find f. f''(x)=x^3 sinh(x), f(0)=2, f(2)=3.6 (I need this in at least 3 hours) Reread the lines from William Wordsworth's poem:"It is a beauteous evening, calm and free,The holy time is quiet as a nunBreathless with adoration; the broad sunIs sinking down in its tranquility"-William Wordsworth, complete poetical worksWhat values does this poem reflect?______________________How does these values contrast with the values of the Enlightenment and the Industrial age?_________________________________ Mark all that apply only to meiosis. (Check all that apply). Group of answer choices4 daughter cellsgametes2 divisionsrecombinant chromosomes1 division4 identical cellssister chromatidshomologous chromosome pairs2 daughter cellssomatic cellsresults in 2n/diploidresults in n/haploid A point charge q1=5.00Cq1=5.00C is held fixed in space. From a horizontal distance of 7.00 cm, a small sphere with mass 4.00103kg4.00103kg and charge q2=+2.00Cq2=+2.00C is fired toward the fixed charge with an initial speed of 36.0 m/sm/s. Gravity can be neglected.What is the acceleration of the sphere at the instant when its speed is 24.0 m/sm/s? Which of the following statements regarding the skeletal structure of the organic molecule shownbelow is/are true?K23HHI. A sp hybrid orbital on C-1 overlaps with a sp hybrid orbital on C-2 to form the sigmabond betweenC-1 and C-2.II. The bonds between C-2 and C-3 are formed from overlap of sp hybrid orbitals.III. There are 10 sigma bonds in this molecule.IV. The bond angle about C-2 is 109.5.V. The lone pair on the nitrogen atom is in a sp orbital. Normals and Coins Let X be standard normal. Construct a random variable Y as follows: Toss a fair coin. . If the coin lands heads, let Y = X. . If the coin lands tails, let Y = -X. (a) Find the cdf of Y. (b) Find E(XY) by conditioning on the result of the toss. (c) Are X and Y uncorrelated? (d) Are X and Y independent? (e) is the joint distribution of X and Y bivariate normal? Gramma Gert's Granola is Noah's favorite brand of granola bars. They come in regular-sizebars or snack-size bars. Both sizes are shaped like rectangular prisms. The regular-size bar is1 inches wide, of an inch tall, and has a volume of 4 cubic inches. The snack-size barhas the same width and height, but it has a volume of 3 cubic inches.How much longer is the regular-size granola bar than the snack-size granola bar?Write your answer as a whole number, proper fraction, or mixed number.inches Make the indicated trigonometric substitution in the given algebraic expression and simplify (see Example 7). Assume that 0 < theta < /2. 25 x2 , x = 5 sin(theta) An investment center of Tribune Corporation shows an operating income of $7,500 on total operating assets of $125,000. Required Compute the return on investment. Although Cheryl and ellen were best friends,They always argued when they played cards. into the killing seas ar test Which of the following is TRUE? a. Neutrophils and Macrophages have a weak attraction to your endocthelia cells that capillariesb. White blood cells such as Neutrophils and Macrophages are derived in tissues such as tissues of the kidney and liver, c. The gaps within the blood vessel endothelium do not allow for the emigration or diapedesis of neutrophils during vasodilation d. Inflammatory cytokines cause the endothelial cells to decrease their expression of intracellular adhesion molecules. e. Professional phagocytic cells such as Neutrophils and Macrophages are part of the acquired immunity learned immunity) Discuss three of the accounting principles. Provide an example for each principle? PLS HELP ME ASAP !! A small cheese pizza costs you $2. 50 to make and its box costs $0. 25. A large cheese pizza costs $4. 15 and its box costs $0. 50. You sell a small cheese pizza for $9. 00 and a large for $14. 25. Give a few different combinations of boxes and pizza that you will have to sell to have a profit the first year of business? Second year? (not including taxes) The ground-state electron configuration of a particular atom is (Kr]4d05825p'. The element to which this atom belongs is: Rb Cd In Sn Sr true or false if a has a simple circuit of length 6 so does b is isomorphic Table 28-2 Suppose people in the adult population in a small country are classified based on their age Labor Force Status Number employed her loved Number in population Less than 55 55 and Older 400.000 100.000 2 5.000 7.000 600,000 200.000 Refer to Table 28-2. In the proper order which age group has the highest unemployment rate and which has the highest labor-force participation rate? a. 55 and older, 55 and older b. Under 35, under 55 C. Under 55, 55 and older d. 55 and older, under 55 Imagine that you run a nationwide chain of pizza stores in multiple states. Now it is the end of 2021, and you start preparing various budgets for 2022. List what information you need to gather and what assumptions you must make in order to prepare various budgets. Is there a specific order of the budgets prepared? Which budgets are most important in your opinion? Explain why.Your pizza stores had projected to earn $1 million in profits in the last quarter. Instead, it lost $300,000. Describe several factors that could explain the difference between the budgeted and actual performance. In addition, briefly explain how variance analysis will assist you in analyzing the performance.