Answer:
The conversion in the real reactor is = 88%
Explanation:
conversion = 98% = 0.98
process rate = 0.03 m^3/s
length of reactor = 3 m
cross sectional area of reactor = 25 dm^2
pulse tracer test results on the reactor :
mean residence time ( tm) = 10 s and variance (∝2) = 65 s^2
note: space time (t) =
t = [tex]\frac{A*L}{Vo}[/tex] Vo = flow metric flow rate , L = length of reactor , A = cross sectional area of the reactor
therefore (t) = [tex]\frac{25*3*10^{-2} }{0.03}[/tex] = 25 s
since the reaction is in first order
X = 1 - [tex]e^{-kt}[/tex]
[tex]e^{-kt}[/tex] = 1 - X
kt = In [tex]\frac{1}{1-X}[/tex]
k = In [tex]\frac{1}{1-X}[/tex] / t
X = 98% = 0.98 (conversion in PFR ) insert the value into the above equation then
K = 0.156 [tex]s^{-1}[/tex]
Calculating Da for a closed vessel
; Da = tk
= 25 * 0.156 = 3.9
calculate Peclet number Per using this equation
0.65 = [tex]\frac{2}{Per} - \frac{2}{Per^2} ( 1 - e^{-per})[/tex]
therefore
[tex]\frac{2}{Per} - \frac{2}{Per^2} (1 - e^{-per}) - 0.65 = 0[/tex]
solving the Non-linear equation above( Per = 1.5 )
Attached is the Remaining part of the solution
When using an alternative method of sizing with two vent connectors for draft hood-equipped water heaters, the effective area of the common vent connector or vent manifold and all junction fittings shall not be less than the area of the larger vent connector plus _____ percent of the areas of smaller flue collar outlets
Answer:
Fifty (50) percent. [50%]
Explanation:
Water heater is a home appliance that comprises of an electric or gas heating unit as well as a water-tank where water is heated and stored for use.
When using an alternative method of sizing with two vent connectors for draft hood-equipped water heaters, the effective area of the common vent connector or vent manifold and all junction fittings shall not be less than the area of the larger vent connector plus fifty (50) percent of the areas of smaller flue collar outlets.
A water heater is primarily vented with an approved and standardized plastic or metallic pipe such as flue or chimney, which allows gas to flow out of the water heater into the surrounding environment.
For a draft hood-equipped water heater, both the water heater and the barometric draft regulators must be installed in the same room. Also, the technician should ensure that the vent is through a concealed space such as conduit and should be labeled as Type L or Type B.
The minimum capacity of a water heater should be calculated based on the number of bathrooms, bedrooms and its first hour rating.
With a very precise volumetric measuring device, the volume of a liquid sample is determined to be 6.321 L (liters). Three students are asked to determine the volume of the same liquid sample using a less precise measuring instrument. How do you evaluate the following work of each student with regards to precision, and accuracy
Students
Trials A B C
1 6.35L 6.31L 6.38L
2 6.32L 6.31 L 6.32L
3 6.33L 6.32L 6.36L
4 6.36L 6.35L 6.36L
Answer:
See explanation
Explanation:
Solution:-
- Three students measure the volume of a liquid sample which is 6.321 L.
- Each student measured the liquid sample 4 times. The data is provided for each measurement taken by each student as follows:
Students
Trial A B C
1 6.35 6.31 6.38
2 6.32 6.31 6.32
3 6.33 6.32 6.36
4 6.36 6.35 6.36
- We will define the two terms stated in the question " precision " and "accuracy"
- Precision refers to how close the values are to the sample mean. The dense cluster of data is termed to be more precise. We will use the knowledge of statistics and determine the sample standard deviation for each student.
- The mean measurement taken by each student would be as follows:
[tex]E ( A ) = \frac{6.35 +6.32+6.33+6.36}{4} \\\\E ( A ) = 6.34\\\\E ( B ) = \frac{6.31 +6.31+6.32+6.35}{4} \\\\E ( B ) = 6.3225\\\\E ( C ) = \frac{6.38 +6.32+6.36+6.36}{4} \\\\E ( C ) = 6.355\\[/tex]
- The precision can be quantize in terms of variance or standard deviation of data. Therefore, we will calculate the variance of each data:
[tex]Var ( A ) = \frac{6.35^2+6.32^2+6.33^2+6.36^2}{4} - 6.34^2\\\\Var ( A ) = 0.00025\\\\Var ( B ) = \frac{6.31^2+6.31^2+6.32^2+6.35^2}{4} - 6.3225^2\\\\Var ( B ) = 0.00026875\\\\Var ( C ) = \frac{6.38^2+6.32^2+6.36^2+6.36^2}{4} - 6.355^2\\\\Var ( C ) = 0.000475\\[/tex]
- We will rank each student sample data in term sof precision by using the values of variance. The smallest spread or variance corresponds to highest precision. So we have:
Var ( A ) < Var ( B ) < Var ( C )
most precise Least precise
- Accuracy refers to how close the sample mean is to the actual data value. Where the actual volume of the liquid specimen was given to be 6.321 L. We will evaluate the percentage difference of sample values obtained by each student .
[tex]P ( A ) = \frac{6.34-6.321}{6.321}*100= 0.30058\\\\P ( B ) = \frac{6.3225-6.321}{6.321}*100= 0.02373\\\\P ( C ) = \frac{6.355-6.321}{6.321}*100= 0.53788\\[/tex]
- Now we will rank the sample means values obtained by each student relative to the actual value of the volume of liquid specimen with the help of percentage difference calculated above. The least percentage difference corresponds to the highest accuracy as follows:
P ( B ) < P ( A ) < P ( C )
most accurate least accurate
9. A Co has 500,000 total shares outstanding and each share is priced at 20$. B Co has 300,000 total shares outstanding and each share is priced at 40$. You have 100 shares in A Co and 200 shares in B Cos. After consolidation how many new shares you will own in consolidated AB Co?
Answer:
In consolidated AB Co 300 shares.
Explanation:
Consolidation is a process in which two different organizations are united. In this question A Co and B Co are consolidated and a new Co names AB Co is formed. The shares of both the companies will be combined and their total share capital will be increased.
A heavy ball with a weight of 110 N is hung from the ceiling of a lecture hall on a 4.9-m-long rope. The ball is pulled to one side and released to swing as a pendulum, reaching a speed of 5.0 m/s as it passes through the lowest point.
Required:
What is the tension in the rope at that point?
Answer:T = 167.3 N
Explanation:
Given that the
Weight mg = 110 N
The mass m of the ball will be
m = 110/9.8 = 11.22 kg
As the direction of the ball’s velocity is changing, the force responsible for this is centripetal force F. And
F = mV^2/r
Where
V = 5.0 m/s
r = L = 4.9 m
m = 11.22
Substitute all these parameters into the formula
F = (11.22 × 5^2)/4.9
F = 280.6/4.9
F = 57.27 N
Tension T = F + mg
Substitute F and mg into the formula
T = 57.27 + 110
T = 167.3 N
Therefore, the tension in the rope at that point is 167.3 N
A 2.75-kN tensile load is applied to a test coupon made from 1.6-mm flat steel plate (E = 200 GPa, ν = 0.30). Determine the resulting change in (a) the 50-mm gage length, (b) the width of portion AB of the test coupon, (c) the thickness of portion AB, (d) the cross- sectional area of portion AB.
Answer:
I have attached the diagram for this question below. Consult it for better understanding.
Find the cross sectional area AB:
A = (1.6mm)(12mm) = 19.2 mm² = 19.2 × 10⁻⁶m
Forces is given by:
F = 2.75 × 10³ N
Horizontal Stress can be found by:
σ (x) = F/A
σ (x) = 2.75 × 10³ / 19.2 × 10⁻⁶m
σ (x) = 143.23 × 10⁶ Pa
Horizontal Strain can be found by:
ε (x) = σ (x)/ E
ε (x) = 143.23 × 10⁶ / 200 × 10⁹
ε (x) = 716.15 × 10⁻⁶
Find Vertical Strain:
ε (y) = -v · ε (y)
ε (y) = -(0.3)(716.15 × 10⁻⁶)
ε (y) = -214.84 × 10⁻⁶
PART (a)For L = 0.05m
Change (x) = L · ε (x)
Change (x) = 35.808 × 10⁻⁶m
PART (b)
For W = 0.012m
Change (y) = W · ε (y)
Change (y) = -2.5781 × 10⁻⁶m
PART(c)
For t= 0.0016m
Change (z) = t · ε (z)
where
ε (z) = ε (y) ,so
Change (z) = t · ε (y)
Change (z) = -343.74 × 10⁻⁹m
PART (d)
A = A(final) - A(initial)
A = -8.25 × 10⁻⁹m²
(Consult second picture given below for understanding how to calculate area)
The resulting change in the 50-mm gauge length; the width of portion AB of the test coupon; the thickness of portion AB; the cross- sectional area of portion AB are respectively; Δx = 35.808 × 10⁻⁶ m; Δy = -2.5781 × 10⁻⁶m; Δ_z = -343.74 × 10⁻⁹m; A = -8.25 × 10⁻⁹m²
What is the stress and strain in the plate?Let us first find the cross sectional area of AB from the image attached;
A = (1.6mm)(12mm) = 19.2 mm² = 19.2 × 10⁻⁶m
We are given;
Tensile Load; F = 2.75 kN = 2.75 × 10³ N
Horizontal Stress is calculated from the formula;
σₓ = F/A
σₓ = (2.75 × 10³)/(19.2 × 10⁻⁶)m
σₓ = 143.23 × 10⁶ Pa
Horizontal Strain is calculated from;
εₓ = σₓ/E
We are given E = 200 GPa = 200 × 10⁹ Pa
Thus;
εₓ = (143.23 × 10⁶)/(200 × 10⁹)
εₓ = 716.15 × 10⁻⁶
Formula for Vertical Strain is;
ε_y = -ν * εₓ
We are given ν = 0.30. Thus;
ε_y = -(0.3) * (716.15 × 10⁻⁶)
ε_y = -214.84 × 10⁻⁶
A) We are given;
Gauge Length; L = 0.05m
Change in gauge length is gotten from;
Δx = L * εₓ
Δx = 0.05 × 716.15 × 10⁻⁶
Δx = 35.808 × 10⁻⁶ m
B) From the attached diagram, the width is;
W = 0.012m
Change in width is;
Δy = W * ε_y
Δy = 0.012 * -214.84 × 10⁻⁶
Δy = -2.5781 × 10⁻⁶m
C) We are given;
Thickness of plate; t = 1.6 mm = 0.0016m
Change in thickness;
Δ_z = t * ε_z
where;
ε_z = ε_y
Thus;
Δ_z = t * ε_y
Δ_z = 0.0016 * -214.84 × 10⁻⁶
Δ_z = -343.74 × 10⁻⁹m
D) The change in cross sectional area is gotten from;
ΔA = A_final - A_initial
From calculating the areas, we have;
A = -8.25 × 10⁻⁹ m²
Read more about stress and strain in steel plates at; https://brainly.com/question/1591712
An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500 mm. The gas enters the heating section of the duct at 100 kPa and 27 deg C with a volume flow rate of 15 m3/s. If heat is lost from the gas in the duct to the surroundings at a rate of 80 kW, Calculate the exit temperature of the gas in deg C. (Assume constant pressure, ideal gas, negligible change in kinetic and potential energies and constant specific heat; Cp =1000 J/kg K; R = 500 J/kg K
Answer:
The exit temperature of the gas = 32° C
Explanation:
Solution
Given that:
Inlet temperature T₁ = 27°C ≈ 300.15 K
Inlet pressure P₁ = 100 KPa = 100 * 10^3 Pa
Volume flow rate , V = 15 m/s³
Diameter of the deduct, D = 500 mm = 0.5 m
Electric heater power, W heater = 130 kW = 130 * 10^3 W
The heat lost Q = 80 kW = 80 * 10^3 W
Now,
From the ideal gas law, density of the air at the inlet is given as :
ρ₁ = P₁/RT₁ = 100 * 10^3/500 * 300
=0.6667 kg/m³
The mass flow rate through the duct is computed below:
m = ρ₁ V = 0.6667 * 15 = 10 kg/s
Thus
Applying the first law of thermodynamics to the process is shown below:
Q + m (h₁ + V₁²/2 + gz₁) = m (h₂ + V₂²/2 + gz₂) + W (Conservation energy)
So,
If we neglect the potential and kinetic energy changes of the air, the above equation can be written again as:
Q + m (h₁) = m (h₂) + W
or
Q - W heater =m (h₂ - h₁) or Q - W heater =m (T₂ - T₁)
Thus
h₂ - h₁ = Cp T₂ - T₁
Now by method of substitution the known values are:
(- 80 *10^3) - (-130 * 10^3) = 10 * 100 * (T₂ -27)
Note: The heat transfer is taken as negative because the heat is lost by the gas and work done is also taken as negative because the work is done on the gas
So,
Solving for T₂,
T₂ = 32° C
Therefore the exit temperature of the gas = 32° C
Mathematical modeling aids in technological design by simulating how.
1. A solution should be designed
2. A proposed system might behave
3. Physical models should be built
4. Designs should be used
Mathematical modeling aids in technological design by simulating how proposed system might behave. The correct option is 2.
What is mathematical modelling?Mathematical modelling describes a real world problem in mathematical terms or in the form of equations. This makes an engineer to discover new features about the problem and designer to alter his design for better function and output.
Mathematical models allow engineers and designers to understand how the proposed model and actual prototype will be produced.
Thus, the correct option is 2.
Learn more about mathematical modelling
https://brainly.com/question/731147
#SPJ2
You want to plate a steel part having a surface area of 160 with a 0.002--thick layer of lead. The atomic mass of lead is 207.19 . The density of lead is 11.36 . How many atoms of lead are required
Answer:
To answer this question we assumed that the area units and the thickness units are given in inches.
The number of atoms of lead required is 1.73x10²³.
Explanation:
To find the number of atoms of lead we need to find first the volume of the plate:
[tex] V = A*t [/tex]
Where:
A: is the surface area = 160
t: is the thickness = 0.002
Assuming that the units given above are in inches we proceed to calculate the volume:
[tex]V = A*t = 160 in^{2}*0.002 in = 0.32 in^{3}*(\frac{2.54 cm}{1 in})^{3} = 5.24 cm^{3}[/tex]
Now, using the density we can find the mass:
[tex] m = d*V = 11.36 g/cm^{3}*5.24 cm^{3} = 59.5 g [/tex]
Finally, with the Avogadros number ([tex]N_{A}[/tex]) and with the atomic mass (A) we can find the number of atoms (N):
[tex] N = \frac{m*N_{A}}{A} = \frac{59.5 g*6.022 \cdot 10^{23} atoms/mol}{207.19 g/mol} = 1.73 \cdot 10^{23} atoms [/tex]
Hence, the number of atoms of lead required is 1.73x10²³.
I hope it helps you!
An 60-m long wire of 5-mm diameter is made of steel with E = 200 GPa and ultimate tensile strength of 400 MPa. If a factor of safety of 3.2 is desired, determine (a) the allowable tension in the wire (b) the corresponding elongation of the wire
Answer:
a) 2.45 KN
b) 0.0375 m
Explanation:
[tex](a) \quad \sigma_{v}=400 \times 10^{6} \mathrm{Pa} \quad A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(5)^{2}=19.635 \mathrm{mm}^{2}=19.635 \times 10^{-6} \mathrm{m}^{2}[/tex]
[tex]P_{U}=\sigma_{U} A=\left(400 \times 10^{6}\right)\left(19.635 \times 10^{-6}\right)=7854 \mathrm{N}[/tex]
[tex]P_{\text {al }}=\frac{P_{U}}{F S}=\frac{7854}{3.2}=2454 \mathrm{N}[/tex]
(b) [tex]\quad \delta=\frac{P L}{A E}=\frac{(2454)(60)}{\left(19.635 \times 10^{-6}\right)\left(200 \times 10^{9}\right)}=37.5 \times 10^{-3} \mathrm{m}[/tex]
Consider a refrigerator that consumes 400 W of electric power when it is running. If the refrigerator runs only one-quarter of the time and the unit cost of electricity is $0.13/kWh, what is the electricity cost of this refrigerator per month (30 days)
Answer:
Electricity cost = $9.36
Explanation:
Given:
Electric power = 400 W = 0.4 KW
Unit cost of electricity = $0.13/kWh
Overall time = 1/4 (30 days) (24 hours) = 180 hours
Find:
Electricity cost
Computation:
Electricity cost = Electric power x Unit cost of electricity x Overall time
Electricity cost = 0.4 x $0.13 x 180
Electricity cost = $9.36
Given:
Electric power = 400 W = 0.4 KW
Over all Time = 30(1/4) = 7.5 days
Unit cost of electricity = $0.13/kWh
Find:
Electricity cost.
Computation:
Electricity cost = Electric power x Unit cost of electricity x Over all Time
Electricity cost = 0.4 x 0.13 x 7.5
Electricity cost = $
An airplane flies from San Francisco to Washington DC at an air speed of 800 km/hr. Assume Washington is due east of San Francisco at a distance of 6000 km. Use a Cartesian system of coordinates centered at San Francisco with Washington in the positive x-direction. At cruising altitude, there is a cross wind blowing from north to south of 100 km/hr.
Required:
a. What must be the direction of flight for the plane to actually arrive in Washington?
b. What is the speed in the San Francisco to Washington direction?
c. How long does it take to cover this distance?
d. What is the time difference compared to no crosswind?
Answer:
A.) 7.13 degree north east
B.) 806.23 km/h
C.) 7.44 hours
D.) 0.06 hours
Explanation:
Assume Washington is due east of San Francisco and Francisco with Washington in the positive x-direction
Also, the cross wind is blowing from north to south of 100 km/hr in y coordinate direction.
A.) Using Cartesian system of coordinates, the direction of flight for the plane to actually arrive in Washington can be calculated by using the formula
Tan Ø = y/x
Substitute y = 100 km/h and x = 800km/h
Tan Ø = 100/800
Tan Ø = 0.125
Ø = Tan^-1(0. 125)
Ø = 7.13 degrees north east.
Therefore, the direction of flight for the plane to actually arrive in Washington is 7.13 degree north east
B.) The speed in the San Francisco to Washington direction can be achieved by using pythagorean theorem
Speed = sqrt ( 800^2 + 100^2)
Speed = sqrt (650000)
Speed = 806.23 km/h
C.) Let us use the speed formula
Speed = distance / time
Substitute the speed and distance into the formula
806.23 = 6000/ time
Make Time the subject of formula
Time = 6000/806.23
Time = 7.44 hours
D.) If there is no cross wind,
Time = 6000/800
Time = 7.5 hour
Time difference = 7.5 - 7.44
Time difference = 0.06 hours
A very large thin plate is centered in a gap of width 0.06 m with a different oils of unknown viscosities above and below; one viscosity is twice the other. When the plate is pulled at a velocity of 0.3 m/s, the resulting force on one square meter of plate due to the viscous shear on both sides is 29 N. Assuming viscous flow and neglecting all end effects calculate the viscosities of the oils.
Answer:
The viscosities of the oils are 0.967 Pa.s and 1.933 Pa.s
Explanation:
Assuming the two oils are Newtonian fluids.
From Newton's law of viscosity for Newtonian fluids, we know that the shear stress is proportional to the velocity gradient with the viscosity serving as the constant of proportionality.
τ = μ (∂v/∂y)
There are oils above and below the plate, so we can write this expression for the both cases.
τ₁ = μ₁ (∂v/∂y)
τ₂ = μ₂ (∂v/∂y)
dv = 0.3 m/s
dy = (0.06/2) = 0.03 m (the plate is centered in a gap of width 0.06 m)
τ₁ = μ₁ (0.3/0.03) = 10μ₁
τ₂ = μ₂ (0.3/0.03) = 10μ₂
But the shear stress on the plate is given as 29 N per square meter.
τ = 29 N/m²
But this stress is a sum of stress due to both shear stress above and below the plate
τ = τ₁ + τ₂ = 10μ₁ + 10μ₂ = 29
But it is also given that one viscosity is twice the other
μ₁ = 2μ₂
10μ₁ + 10μ₂ = 29
10(2μ₂) + 10μ₂ = 29
30μ₂ = 29
μ₂ = (29/30) = 0.967 Pa.s
μ₁ = 2μ₂ = 2 × 0.967 = 1.933 Pa.s
Hope this Helps!!!
An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500 mm. The gas enters the heating section of the duct at 100 kPa and 27 deg C with a volume flow rate of 15 m3/s. If heat is lost from the gas in the duct to the surroundings at a rate of 80 kW, Calculate the exit temperature of the gas in deg C. (Assume constant pressure, ideal gas, negligible change in kinetic and potential energies and constant specific heat; Cp =1000 J/kg K; R = 500 J/kg K)
Answer:
Exit temperature = 32°C
Explanation:
We are given;
Initial Pressure;P1 = 100 KPa
Cp =1000 J/kg.K = 1 KJ/kg.k
R = 500 J/kg.K = 0.5 Kj/Kg.k
Initial temperature;T1 = 27°C = 273 + 27K = 300 K
volume flow rate;V' = 15 m³/s
W = 130 Kw
Q = 80 Kw
Using ideal gas equation,
PV' = m'RT
Where m' is mass flow rate.
Thus;making m' the subject, we have;
m' = PV'/RT
So at inlet,
m' = P1•V1'/(R•T1)
m' = (100 × 15)/(0.5 × 300)
m' = 10 kg/s
From steady flow energy equation, we know that;
m'•h1 + Q = m'h2 + W
Dividing through by m', we have;
h1 + Q/m' = h2 + W/m'
h = Cp•T
Thus,
Cp•T1 + Q/m' = Cp•T2 + W/m'
Plugging in the relevant values, we have;
(1*300) - (80/10) = (1*T2) - (130/10)
Q and M negative because heat is being lost.
300 - 8 + 13 = T2
T2 = 305 K = 305 - 273 °C = 32 °C
Cathy works in a welding shop. While working one day, a pipe falls from scaffolding above and lands on her head, injuring her. Cathy complains to OSHA, but the company argues that because it has a "watch out for falling pipe" sign in the workplace that it gave fair warning. It also says that if Cathy wasn’t wearing a hardhat that she is responsible for her own injury. Which of the following is true?1. Common law rules could hold Cathy responsible for her own injury.2. Cathy’s employer may not be held liable for her injury if it fulfilled compliance and general duty requirements.3. OSHA rules can hold Cathy’s employer responsible for not maintaining a hazard-free workplace.4. More than one answer is correct.
Answer:1 common law
Explanation:
It also says that if Cathy wasn’t wearing a hardhat hat she is responsible for her own injury, more than one answer is correct.
What are OSHA rules?In this case, if Cathy's employer completes compliance and general duty requirements then the organization may not be held liable and again, the law can generally hold Cathy responsible for the injuries as she was not wearing the proper kits for such work.
According to OSHA, Cathy’s employer may not be held liable for her injury if it fulfilled compliance and general duty requirements.
You are entitled to a secure workplace. To stop workers from being murdered or suffering other types of harm at work, the Occupational Safety and Health Act of 1970 (OSH Act) was passed. According to the legislation, companies are required to give their workers safe working environments.
Therefore, more than one answer is correct.
Learn more about OSHA, here:
https://brainly.com/question/13127795
#SPJ2
Technician A say's that The most two-stroke engines have a pressure type lubrication system. Technician be says that four stroke engines do not require the mixing of oil with gasoline
Question:Technician A say's that The most two-stroke engines have a pressure type lubrication system. Technician be says that four stroke engines do not require the mixing of oil with gasoline . Which of them is correct ?
Answer: Technician B is correct
Explanation: Two types of engines exist , the two stroke (example, used in chainsaws) is a type of engine that uses two strokes--a compression stroke and a return stroke to produce power in a crankshaft combustion cycle and the four stroke engines(eg lawnmowers) which uses four strokes, 2-strokes during compression and exhaustion accompanied by 2 return strokes for each of the initial process to produce power in a combustion cycle.
While a 2 stroke system engine, requires mixing of oil and fuel to the crankshaft before forcing the mixture into the cylinder and do not require a pressurized system. The 4 stroke system uses a splash and pressurized system where oil is not mixed with gasoline but drawn from the sump and directed to the main moving parts of crankshaft through its channels.
We can therefore say that Technician A is wrong while Technician B is correct
The velocity field of a flow is given by V = 2x2 ti +[4y(t - 1) + 2x2 t]j m/s, where x and y are in meters and t is in seconds. For fluid particles on the x-axis, determine the speed and direction of flow
Answer:
Explanation:
The value of a will be zero as it is provided that the particle is on the x-axis.
Calculate the velocity of particles along x-axis.
[tex]{\bf{V}} = 2{x^2}t{\bf{\hat i}} + [4y(t - 1) + 2{x^2}t]{\bf{\hat j}}{\rm{ m/s}}[/tex]
Substitute 0 for y.
[tex]\begin{array}{c}\\{\bf{V}} = 2{x^2}t{\bf{\hat i}} + \left( {4\left( 0 \right)\left( {t - 1} \right) + 2{x^2}t} \right){\bf{\hat j}}{\rm{ m/s}}\\\\ = 2{x^2}t{\bf{\hat i}} + 2{x^2}t{\bf{\hat j}}{\rm{ m/s}}\\\end{array}[/tex]
Here,
[tex]A = 2{x^2}t \ \ and\ \ B = 2{x^2}t[/tex]
Calculate the magnitude of vector V .
[tex].\left| {\bf{V}} \right| = \sqrt {{A^2} + {B^2}}[/tex]
Substitute
[tex]2{x^2}t \ \ for\ A\ and\ 2{x^2}t \ \ for \ B.[/tex]
[tex]\begin{array}{c}\\\left| {\bf{V}} \right| = \sqrt {{{\left( {2{x^2}t} \right)}^2} + {{\left( {2{x^2}t} \right)}^2}} \\\\ = \left( {2\sqrt 2 } \right){x^2}t\\\end{array}[/tex]
The velocity of the fluid particles on the x-axis is [tex]\left( {2\sqrt 2 } \right){x^2}t{\rm{ m/s}}[/tex]
Calculate the direction of flow.
[tex]\theta = {\tan ^{ - 1}}\left( {\frac{B}{A}} )[/tex]
Here, θ is the flow from positive x-axis in a counterclockwise direction.
Substitute [tex]2{x^2}t[/tex] as A and [tex]2{x^2}t[/tex] as B.
[tex]\begin{array}{c}\\\theta = {\tan ^{ - 1}}\left( {\frac{{2{x^2}t}}{{2{x^2}t}}} \right)\\\\ = {\tan ^{ - 1}}\left( 1 \right)\\\\ = 45^\circ \\\end{array}[/tex]
The direction of flow is [tex]45^\circ[/tex] from the positive x-axis.
A piston-cylinder device initially at 0.45-m3 contains nitrogen gas at 600 kPa and 300 K. Now the gas is compressed isothermally to a volume of 0.2 m3. The work done on the gas during this compression process is _____ kJ.
Answer:
219kJ
Explanation:
The work done (W) on a gas in an isothermal process is given by;
W = -P₁V₁ ln[tex]\frac{V_{2}}{V_1}[/tex] -----------------(i)
Where;
P₁ = initial pressure of the gas
V₁ = initial volume of the gas
V₂ = final volume of the gas
From the question;
P₁ = 600kPa = 6 x 10⁵Pa
V₁ = 0.45m³
V₂ = 0.2m³
Substitute these values into equation (i) as follows;
W = -6 x 10⁵ x 0.45 x ln [tex]\frac{0.2}{0.45}[/tex]
W = -6 x 10⁵ x 0.45 x ln (0.444)
W = -6 x 10⁵ x 0.45 x -0.811
W = 2.19 x 10⁵
W = 219 x 10³
W = 219kJ
Therefore, the work done on the gas during the compression process is 219kJ
Find the function f and the value of the constant a such that: 2 ∫ f(t)dt x a = 2 cos x − 1
Answer:
The function is [tex]-\sin x[/tex] and the constant of integration is [tex]C = - 1[/tex].
Explanation:
The resultant expression is equal to the sum of a constant multiplied by the integral of a given function and an integration constant. That is:
[tex]a = k\cdot \int\limits {f(x)} \, dx + C[/tex]
Where:
[tex]k[/tex] - Constant, dimensionless.
[tex]C[/tex] - Integration constant, dimensionless.
By comparing terms, [tex]k = 2[/tex], [tex]C = -1[/tex] and [tex]\int {f(x)} \, dx = \cos x[/tex]. Then, [tex]f(x)[/tex] is determined by deriving the cosine function:
[tex]f(x) = \frac{d}{dx} (\cos x)[/tex]
[tex]f(x) = -\sin x[/tex]
The function is [tex]-\sin x[/tex] and the constant of integration is [tex]C = - 1[/tex].
2. The block is released from rest at the position shown, figure 1. The coefficient of
kinetic friction over length ab is 0.22, and over length bc is 0.16. Using the
principle of work and energy, find the velocity with which the block passes
position c.
Answer:
Velocity = 4.73 m/s.
Explanation:
Work done by friction is;
W_f = frictional force × displacement
So; W_f = Ff * Δs = (μF_n)*Δs
where; magnitude of the normal force F_n is equal to the component of the weight perpendicular to the ramp i.e; F_n = mg*cos 24
Over the distance ab, Potential Energy change mgΔh transforms into a change in Kinetic energy and the work of friction, so;
mg(3 sin 24) = ΔKE1 + (0.22)*(mg cos 24) *(3).
Similarly, Over the distance bc, potential energy mg(2 sin 24) transforms to;
ΔKE2 + (0.16)(mg cos 24)(2).
Plugging in the relevant values, we have;
1.22mg = ΔKE1 + 0.603mg
ΔKE1 = 1.22mg - 0.603mg
ΔKE1 = 0.617mg
Also,
0.813mg = ΔKE2 + 0.292mg
ΔKE2 = 0.813mg - 0.292mg
ΔKE2 = 0.521mg
Now total increase in Kinetic Energy is ΔKE1 + ΔKE2
Thus,
Total increase in kinetic energy = 0.617mg + 0.521m = 1.138mg
Putting 9.81 for g to give;
Total increase in kinetic energy = 11.164m
Finally, if v = 0 m/s at point a, then at point c, KE = ½mv² = 11.164m
m cancels out to give; ½v² = 11.164
v² = 2 × 11.164
v² = 22.328
v = √22.328
v = 4.73 m/s.
a surveyor is trying to find the height of a hill . he/she takes a sight on the top of the hill and find that the angle of elevation is 40°. he/she move a distance of 150 metres on level ground directly away from the hill and take a second sight. from this point the angl.e of elevation is 22°. find the height of the
hill
Answer:
height ≈ 60.60 m
Explanation:
The surveyor is trying to find the height of the hill . He takes a sight on the top of the hill and finds the angle of elevation is 40°. The distance from the hill where he measured the angle of elevation of 40° is not known.
Now he moves 150 m on level ground directly away from the hill and take a second sight from this point and measures the angle of elevation as 22°. This illustration forms a right angle triangle. The opposite side of the triangle is the height of the hill. The adjacent side of the triangle which is 150 m is the distance on level ground directly away from the hill.
Using tangential ratio,
tan 22° = opposite/adjacent
tan 22° = h/150
h = 150 × tan 22°
h = 150 × 0.40402622583
h = 60.6039338753
height ≈ 60.60 m