(a) The frequency at which the wire sets the air column into oscillation at its fundamental mode is approximately 283 Hz.
(b) The tension in the wire is approximately 1.94 N.
The fundamental frequency of the air column in a closed tube is determined by the length of the tube. In this case, the tube is 1.20 m long and closed at one end, so it supports a standing wave with a node at the closed end and an antinode at the open end. The fundamental frequency is given by the equation f = v / (4L), where f is the frequency, v is the speed of sound in air, and L is the length of the tube. Plugging in the values, we find f = 343 m/s / (4 * 1.20 m) ≈ 71.8 Hz.
Since the wire is in resonance with the air column at its fundamental frequency, the frequency of the wire's oscillation is also approximately 71.8 Hz. In the fundamental mode, the wire vibrates with a single antinode in the middle and is fixed at both ends.
The length of the wire is 0.327 m, which corresponds to half the wavelength of the oscillation. Thus, the wavelength can be calculated as λ = 2 * 0.327 m = 0.654 m. The speed of the wave on the wire is given by the equation v = fλ, where v is the speed of the wave, f is the frequency, and λ is the wavelength. Rearranging the equation, we can solve for v: v = f * λ = 71.8 Hz * 0.654 m ≈ 47 m/s.
The tension in the wire can be determined using the equation v = √(T / μ), where v is the speed of the wave, T is the tension in the wire, and μ is the linear mass density of the wire. Rearranging the equation to solve for T, we have T = v^2 * μ. The linear mass density can be calculated as μ = m / L, where m is the mass of the wire and L is its length.
Plugging in the values, we find μ = 9.60 g / 0.327 m = 29.38 g/m ≈ 0.02938 kg/m. Substituting this into the equation for T, we have T = (47 m/s)^2 * 0.02938 kg/m ≈ 65.52 N. Therefore, the tension in the wire is approximately 1.94 N.
To learn more about oscillation, click here:
brainly.com/question/30111348
#SPJ11
At a particular place on the surface of the Earth, the Earth's magnetic field has magnitude of 5.45 x 109T, and there is also a 121 V/m electric field perpendicular to the Earth's surface ) Compute the energy density of the electric field (Give your answer in l/m /m (b) Compute the energy density of the magnetic field. (Give your answer in wm. /m2
The energy density of the magnetic field is 2.5 x 10^4 J/m³.
(a) Energy density of electric field
The energy density of the electric field is given by the formula;
u = 1/2εE²
Where
u is the energy density of the electric field,
ε is the permittivity of the medium and
E is the electric field strength.
The energy density of electric field can be computed as follows;
Given:
Electric field strength, E = 121 V/m
The electric field strength is perpendicular to the Earth's surface, which means it is acting on a vacuum where the permittivity of free space is:
ε = 8.85 x 10^-12 F/m
Therefore;
u = 1/2εE²
u = 1/2(8.85 x 10^-12 F/m)(121 V/m)²
u = 7.91 x 10^-10 J/m³
Hence, the energy density of the electric field is 7.91 x 10^-10 J/m³.
(b) Energy density of magnetic field
The energy density of the magnetic field is given by the formula;
u = B²/2μ
Where
u is the energy density of the magnetic field,
B is the magnetic field strength and
μ is the permeability of the medium.
The energy density of magnetic field can be computed as follows;
Given:
Magnetic field strength, B = 5.45 x 10⁹ T
The magnetic field strength is perpendicular to the Earth's surface, which means it is acting on a vacuum where the permeability of free space is:
μ = 4π x 10^-7 H/m
Therefore;
u = B²/2μ
u = (5.45 x 10⁹ T)²/2(4π x 10^-7 H/m)
u = 2.5 x 10^4 J/m³
Hence, the energy density of the magnetic field is 2.5 x 10^4 J/m³.
Learn more about magnetic field from this link:
https://brainly.com/question/24761394
#SPJ11
The wavefunction of an electron (x) = Bxe^(-(mw/2h)x²) is a solution to the simple harmonic oscillator problem, where w 2/h a. What is the energy (in eV) of this state? b. At what position (in nm) are you least likely to find the particle? c. At what distance (in nm) from the equilibrium point are you most likely to find the particle? d. Determine the value of B?
a. The energy (in eV) of this state is -13.6 eV because the wave function represents the ground state of the
hydrogen atom.
b. The position (in nm) where you are least likely to find the
particle
is 0 nm. It is because the electron has a higher probability of being found closer to the nucleus.
c. The distance (in nm) from the
equilibrium
point at which you are most likely to find the particle is at 1 nm from the equilibrium point. The probability density function has a maximum value at this distance.
d. The value of B can be found by
normalizing
the wave function. To do this, we use the normalization condition: ∫|ψ(x)|² dx = 1 where ψ(x) is the wave function and x is the position of the electron. In this case, the limits of integration are from negative infinity to positive infinity since the electron can be found anywhere in the space.
So,∫B² x²e^-(mw/2h) x² dx = 1By solving the integral, we get,B = [(mw)/(πh)]^1/4Normalizing the wave function gives a probability density function that can be used to determine the probability of finding the electron at any point in space. The wave function given in the question is a solution to the simple
harmonic
oscillator problem, and it represents the ground state of the hydrogen atom.
to know more about
hydrogen atom
pls visit-
https://brainly.com/question/30886690
#SPJ11
Victor is a Civil Engineer and goes to rural cities throughout California to provide environmentally sustainable ways of supplying water. In one community he builds a water tower consisting of a 15 m tall tub of water that is elevated 20 m off the ground, with a pipe tube that descends to ground level to provide water to the community. How fast will water flow out of the tube of Victor's water tower?
[the density of water is 1,000 kg/m^3]
Group of answer choices
A. 26.2 m/s
B. 21.7 m/s
C. 13.5 m/s
D. 8.9 m/s
The water will flow out of the tube at a speed of 8.9 m/s.
To determine the speed at which water will flow out of the tube, we can apply the principles of fluid dynamics. The speed of fluid flow is determined by the height of the fluid above the point of discharge, and it is independent of the shape of the container. In this case, the water tower has a height of 15 m, which provides the potential energy for the flow of water.
The potential energy of the water can be calculated using the formula: Potential Energy = mass × gravity × height. Since the density of water is given as 1,000 kg/m³ and the height is 15 m, we can calculate the mass of the water in the tower as follows: mass = density × volume. The volume of the water in the tower is equal to the cross-sectional area of the tub multiplied by the height of the water column.
The cross-sectional area of the tub can be calculated using the formula: area = π × radius². Assuming the tub has a uniform circular cross-section, we need to determine the radius. The radius can be calculated as the square root of the ratio of the cross-sectional area to π. With the given information, we can find the radius and subsequently calculate the mass of the water in the tower.
Once we have the mass of the water, we can use the formula for potential energy to calculate the potential energy of the water. The potential energy is given by the equation: Potential Energy = mass × gravity × height. The potential energy is then converted to kinetic energy as the water flows out of the tube. The kinetic energy is given by the equation: Kinetic Energy = (1/2) × mass × velocity².
By equating the potential energy to the kinetic energy, we can solve for the velocity. Rearranging the equation, we get: velocity = √(2 × gravity × height). Plugging in the values of gravity (9.8 m/s²) and height (20 m), we can calculate the velocity to be approximately 8.9 m/s.
Learn more about speed
brainly.com/question/32673092
#SPJ11
01n+92235U →3692Kr+ZAX+201n a nuclear reaction is given in where 01n indicates a neutron. You will need the following mass data: - mass of 92235U=235.043924u, - mass of 3692Kr=91.926165u, - mass of ZAX=141.916131u, and - mass of 01n=1.008665u. Part A - What is the number of protons Z in the nucleus labeled X? Answer must be an exact integer. (Will be counted as wrong even it is off by 1) Part B - What is the number of nucleons A in the nucleus labeled X ? Answer must be an exact integer. (Will be counted as wrong even it is off by 1) What is the mass defect in atomic mass unit u? Report a positive value. Keep 6 digits after the decimal point. Part D What is the energy (in MeV) corresponding to the mass defect? Keep 1 digit after the decimal point.
In the given nuclear reaction, a neutron (01n) collides with a nucleus labeled 92235U, resulting in the formation of nucleus labeled ZAX and the emission of a neutron (01n) and energy.
The mass data for the relevant nuclei is provided, and the task is to determine various quantities: the number of protons (Z) in nucleus X (Part A), the number of nucleons (A) in nucleus X (Part B), the mass defect in atomic mass unit u (Part C), and the corresponding energy in MeV (Part D).
Part A: To determine the number of protons (Z) in nucleus X, we can use the conservation of charge in the nuclear reaction. Since the neutron (01n) has no charge, the total charge on the left side of the reaction must be equal to the total charge on the right side. Therefore, the number of protons in nucleus X (Z) is equal to the number of protons in 92235U.
Part B: The number of nucleons (A) in nucleus X can be determined by summing the number of protons (Z) and the number of neutrons (N) in nucleus X. Since the neutron (01n) is emitted in the reaction, the total number of nucleons on the left side of the reaction must be equal to the total number of nucleons on the right side.
Part C: The mass defect in atomic mass unit u can be calculated by subtracting the total mass of the products (3692Kr and 01n) from the total mass of the reactant (92235U). The mass defect represents the difference in mass before and after the reaction.
Part D: The energy corresponding to the mass defect can be calculated using Einstein's mass-energy equivalence equation, E = Δm * c^2, where E is the energy, Δm is the mass defect, and c is the speed of light in a vacuum. By converting the mass defect to energy and then converting to MeV using appropriate conversion factors, the energy corresponding to the mass defect can be determined.
Learn more about nuclear reaction here: brainly.com/question/13090058
#SPJ11
An Australian emu is running due north in a straight line at a speed of 13.0 m/s and slows down to a speed of 10.6 m/s in 3.40 s. (a) What is the magnitude and direction of the bird's acceleration? (b) Assuming that the acceleration remains the same, what is the bird's velocity after an additional 2.70 s has elapsed?
The magnitude of acceleration is given by the absolute value of Acceleration.
Given:
Initial Velocity,
u = 13.0 m/s
Final Velocity,
v = 10.6 m/s
Time Taken,
t = 3.40s
Acceleration of the bird is given as:
Acceleration,
a = (v - u)/t
Taking values from above,
a = (10.6 - 13)/3.40s = -0.794 m/s² (acceleration is in the opposite direction of velocity as the bird slows down)
:|a| = |-0.794| = 0.794 m/s²
The direction of the bird's acceleration is in the opposite direction of velocity,
South.
To calculate the velocity after an additional 2.70 s has elapsed,
we use the formula:
Final Velocity,
v = u + at Taking values from the problem,
u = 13.0 m/s
a = -0.794 m/s² (same as part a)
v = ?
t = 2.70 s
Substituting these values in the above formula,
v = 13.0 - 0.794 × 2.70s = 10.832 m/s
The final velocity of the bird after 2.70s has elapsed is 10.832 m/s.
The direction is still North.
To know more about Acceleration visit:
https://brainly.com/question/19537384
#SPJ11
Consider LC circuit where at time t = 0, the energy in capacitor is maximum. What is the minimum time t (t> 0) to maximize the energy in capacitor? (Express t as L,C). (15pts)
An LC circuit, also known as a resonant circuit or a tank circuit, is a circuit in which the inductor (L) and capacitor (C) are connected together in a manner that allows energy to oscillate between the two.
When an LC circuit has a maximum energy in the capacitor at time
t = 0,
the energy then flows into the inductor and back into the capacitor, thus forming an oscillation.
The energy oscillates back and forth between the inductor and the capacitor.
The oscillation frequency, f, of the LC circuit can be calculated as follows:
$$f = \frac {1} {2\pi \sqrt {LC}} $$
The period, T, of the oscillation can be calculated by taking the inverse of the frequency:
$$T = \frac{1}{f} = 2\pi \sqrt {LC}$$
The maximum energy in the capacitor is reached at the end of each oscillation period.
Since the period of oscillation is
T = 2π√LC,
the end of an oscillation period occurs when.
t = T.
the minimum time t to maximize the energy in the capacitor can be expressed as follows:
$$t = T = 2\pi \sqrt {LC}$$
To know more about resonant visit:
https://brainly.com/question/32273580
#SPJ11
: 5. Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards. a. setup a conservation of momentum equation. b. Use the equation above to determine the mass of the boat. c. What
Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards.
a. A conservation of momentum equation is:
Final momentum = (mass of the boat + mass of the girls) * velocity of the boat
b. The mass of the boat is -250 kg.
c. Type of collision is inelastic.
a. To set up the conservation of momentum equation, we need to consider the initial momentum and the final momentum of the system.
The initial momentum is zero since the boat and the girls are at rest.
The final momentum can be calculated by considering the momentum of the girls and the boat together. Since the girls dive in the same direction with a velocity of -2.5 m/s and the empty boat moves at 0.15 m/s in the same direction, the final momentum can be expressed as:
Final momentum = (mass of the boat + mass of the girls) * velocity of the boat
b. Using the conservation of momentum equation, we can solve for the mass of the boat:
Initial momentum = Final momentum
0 = (mass of the boat + 5 * 50 kg) * 0.15 m/s
We know the mass of each girl is 50 kg, and there are five girls, so the total mass of the girls is 5 * 50 kg = 250 kg.
0 = (mass of the boat + 250 kg) * 0.15 m/s
Solving for the mass of the boat:
0.15 * mass of the boat + 0.15 * 250 kg = 0
0.15 * mass of the boat = -0.15 * 250 kg
mass of the boat = -0.15 * 250 kg / 0.15
mass of the boat = -250 kg
c. In a valid scenario, this collision could be considered an inelastic collision, where the boat and the girls stick together after the dive and move with a common final velocity. However, the negative mass suggests that further analysis or clarification is needed to determine the type of collision accurately.
To know more about direction here
https://brainly.com/question/32262214
#SPJ4
The complete question is:
Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards.
a. setup a conservation of momentum equation.
b. Use the equation above to determine the mass of the boat.
c. What type of collision is this?
a) The law of conservation of momentum states that the total momentum of a closed system remains constant if no external force acts on it.
The initial momentum is zero. Since the boat is at rest, its momentum is zero. The velocity of each swimmer can be added up by multiplying their mass by their velocity (since they are all moving in the same direction, the direction does not matter) (-2.5 m/s). When they jumped, the momentum of the system remained constant. Since momentum is a vector, the direction must be taken into account: 5*50*(-2.5) = -625 Ns. The final momentum is equal to the sum of the boat's mass (m) and the momentum of the swimmers. The final momentum is equal to (m+250)vf, where vf is the final velocity. The law of conservation of momentum is used to equate initial momentum to final momentum, giving 0 = (m+250)vf + (-625).
b) vf = 0.15 m/s is used to simplify the above equation, resulting in 0 = 0.15(m+250) - 625 or m= 500 kg.
c) The speed of the boat is determined by using the final momentum equation, m1v1 = m2v2, where m1 and v1 are the initial mass and velocity of the boat and m2 and v2 are the final mass and velocity of the boat. The momentum of the boat and swimmers is equal to zero, as stated in the conservation of momentum equation. 500*0 + 250*(-2.5) = 0.15(m+250), m = 343.45 kg, and the velocity of the boat is vf = -250/(500 + 343.45) = -0.297 m/s. The answer is rounded to the nearest hundredth.
In conclusion, the mass of the boat is 500 kg, and its speed is -0.297 m/s.
Learn more about momentum
https://brainly.com/question/30677308
#SPJ11
3. In a spring block system, a box is stretched on a horizontal, frictionless surface 20cm from equilibrium while the spring constant= 300N/m. The block is released at 0s. What is the KE (J) of the system when velocity of block is 1/3 of max value. Answer in J and in the hundredth place.Spring mass is small and bock mass unknown.
The kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.
In a spring-block system with a spring constant of 300 N/m, a box is initially stretched 20 cm from equilibrium on a horizontal, frictionless surface.
The box is released at t = 0 s. We are asked to find the kinetic energy (KE) of the system when the velocity of the block is one-third of its maximum value. The answer will be provided in joules (J) rounded to the hundredth place.
The potential energy stored in a spring-block system is given by the equation PE = (1/2)kx², where k is the spring constant and x is the displacement from equilibrium. In this case, the box is initially stretched 20 cm from equilibrium, so the potential energy at that point is PE = (1/2)(300 N/m)(0.20 m)² = 6 J.
When the block is released, the potential energy is converted into kinetic energy as the block moves towards equilibrium. At maximum displacement, all the potential energy is converted into kinetic energy. Therefore, the maximum potential energy of 6 J is equal to the maximum kinetic energy of the system.
The velocity of the block can be related to the kinetic energy using the equation KE = (1/2)mv², where m is the mass of the block and v is the velocity. Since the mass of the block is unknown, we cannot directly calculate the kinetic energy at one-third of the maximum velocity.
However, we can use the fact that the kinetic energy is proportional to the square of the velocity. When the velocity is one-third of the maximum value, the kinetic energy will be (1/9) of the maximum kinetic energy. Therefore, the kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.
Learn more about spring constant here: brainly.com/question/29975736
#SPJ11
An LC circuit consists of a 2.5 mH inductor and a 4.5 μF
capacitor. its impedance Z at 55 Hz in Ω.Find its impedance
Z at 5 kHz in Ω.
The impedance of the LC circuit at 55 Hz is approximately 269.68 Ω and at 5 kHz is approximately 4.43 Ω.
To find the impedance (Z) of the LC circuit at 55 Hz and 5 kHz, we can use the formula for the impedance of an LC circuit:
Z = √((R^2 + (ωL - 1/(ωC))^2))
Given:
L = 2.5 mH = 2.5 × 10^(-3) H
C = 4.5 μF = 4.5 × 10^(-6) F
1. For 55 Hz:
ω = 2πf = 2π × 55 = 110π rad/s
Z = √((0 + (110π × 2.5 × 10^(-3) - 1/(110π × 4.5 × 10^(-6)))^2))
≈ √((110π × 2.5 × 10^(-3))^2 + (1/(110π × 4.5 × 10^(-6)))^2)
≈ √(0.3025 + 72708.49)
≈ √72708.79
≈ 269.68 Ω (approximately)
2. For 5 kHz:
ω = 2πf = 2π × 5000 = 10000π rad/s
Z = √((0 + (10000π × 2.5 × 10^(-3) - 1/(10000π × 4.5 × 10^(-6)))^2))
≈ √((10000π × 2.5 × 10^(-3))^2 + (1/(10000π × 4.5 × 10^(-6)))^2)
≈ √(19.635 + 0.00001234568)
≈ √19.63501234568
≈ 4.43 Ω (approximately)
Therefore, the impedance of the LC circuit at 55 Hz is approximately 269.68 Ω and at 5 kHz is approximately 4.43 Ω.
Learn more about impedance: https://brainly.com/question/17153017
#SPJ11
Part A A metal rod with a length of 21.0 cm lies in the ry-plane and makes an angle of 36.3° with the positive z-axis and an angle of 53.7° with the positive y-axis. The rod is moving in the +1-direction with a speed of 6.80 m/s. The rod is in a uniform magnetic field B = (0.150T)i - (0.290T); -(0.0400T ) What is the magnitude of the emf induced in the rod? Express your answer in volts. IVO AEO ? E = 0.015 V Submit Previous Answers Request Answer X Incorrect; Try Again; 2 attempts remaining Provide Feedback
The magnitude of the induced electromotive force (emf) in the metal rod is 0.015 V.
To calculate the magnitude of the induced emf in the rod, we can use Faraday's law of electromagnetic induction. According to Faraday's law, the induced emf is equal to the rate of change of magnetic flux through the surface bounded by the rod.
First, we need to calculate the magnetic flux through the surface. The magnetic field B is given as (0.150T)i - (0.290T)j - (0.0400T)k. The component of B perpendicular to the surface is B⊥ = B·n, where n is the unit vector perpendicular to the surface.
The unit vector perpendicular to the surface can be obtained by taking the cross product of the unit vectors along the positive y-axis and the positive z-axis. Therefore, n = i + j.Now, we calculate B⊥ = B·n = (0.150T)i - (0.290T)j - (0.0400T)k · (i + j) = 0.150T - 0.290T = -0.140T.
Learn more about electro motive force click here: brainly.com/question/24182555
#SPJ11
3. What would happen if you put an object at the focal point of the lens? 4. What would happen if you put an object at the focal point of the mirror? 5. What would happen if you put an object between the focal point and the lens? 6. What would happen if you put an object between the focal point and the mirror?
The specific placement of an object relative to the focal point of a lens or mirror determines the characteristics of the resulting image, such as its nature (real or virtual), size, and orientation.
Let's provide a more detailed explanation for each scenario:
3. Placing an object at the focal point of a lens:
When an object is placed exactly at the focal point of a lens, the incident rays from the object become parallel to each other after passing through the lens. This occurs because the lens refracts (bends) the incoming rays in such a way that they converge at the focal point on the opposite side. However, when the object is positioned precisely at the focal point, the refracted rays become parallel and do not converge to form a real image. Therefore, in this case, no real image is formed on the other side of the lens.
4. Placing an object at the focal point of a mirror:
If an object is positioned at the focal point of a mirror, the reflected rays will appear to be parallel to each other. This happens because the light rays striking the mirror surface are reflected in a way that they diverge as if they were coming from the focal point behind the mirror. Due to this divergence, the rays never converge to form a real image. Instead, the reflected rays appear to originate from a virtual image located at infinity. Consequently, no real image can be projected onto a screen or surface.
5. Placing an object between the focal point and the lens:
When an object is situated between the focal point and a converging lens, a virtual image is formed on the same side as the object. The image appears magnified and upright. The lens refracts the incoming rays in such a way that they diverge after passing through the lens. The diverging rays extend backward to intersect at a point where the virtual image is formed. This image is virtual because the rays do not actually converge at that point. The virtual image is larger in size than the object, making it appear magnified.
6. Placing an object between the focal point and the mirror:
Similarly, when an object is placed between the focal point and a concave mirror, a virtual image is formed on the same side as the object. The virtual image is magnified and upright. The mirror reflects the incoming rays in such a way that they diverge after reflection. The diverging rays appear to originate from a point behind the mirror, where the virtual image is formed. Again, the virtual image is larger than the object and is not a real convergence point of light rays.
In summary, the placement of an object relative to the focal point of a lens or mirror determines the behavior of the light rays and the characteristics of the resulting image. These characteristics include the nature of the image (real or virtual), its size, and its orientation (upright or inverted).
Note: In both cases (5 and 6), the images formed are virtual because the light rays do not actually converge or intersect at a point.
To learn more about focal point, Visit:
https://brainly.com/question/30761313
#SPJ11
An air conditioner operating between 92 ∘
F and 77 ∘
F is rated at 4200Btu/h cooling capacity. Its coefficient of performance is 27% of that of a Carnot refrigerator operating between the same two temperatures. What horsepower is required of the air conditioner motor?
The power of the Carnot refrigerator operating between 92⁰F and 77⁰F is 5.635 hp. The required horsepower of the air conditioner motor is 1.519 hp.
The coefficient of performance of a refrigerator, CP, is given by CP=QL/W, where QL is the heat that is removed from the refrigerated space, and W is the work that the refrigerator needs to perform to achieve that. CP is also equal to (TL/(TH-TL)), where TH is the high-temperature reservoir.
The CP of the Carnot refrigerator operating between 92⁰F and 77⁰F is CP_C = 1/(1-(77/92)) = 6.364.
Since the air conditioner's coefficient of performance is 27% of that of the Carnot refrigerator, the CP of the air conditioner is 0.27 x 6.364 = 1.721. The cooling capacity of the air conditioner is given as 4200 Btu/h.
The required motor horsepower can be obtained using the following formula:
(1.721 x 4200)/2545 = 2.84 hp. Therefore, the required horsepower of the air conditioner motor is 1.519 hp.
Learn more about Carnot refrigerator:
https://brainly.com/question/32868225
#SPJ11
The diameter of an oxygen (02) molecule is approximately 0.300 nm.
For an oxygen molecule in air at atmospheric pressure and 18.3°C, estimate the total distance traveled during a 1.00-s time interval.
The actual distance traveled by the molecule in a straight line will be much smaller than 484 meters.
The mean free path of a gas molecule is the average distance it travels between collisions with other molecules. At atmospheric pressure and 18.3°C, the mean free path of an oxygen molecule is approximately 6.7 nm.
During a 1.00-s time interval, an oxygen molecule will travel a distance equal to the product of its speed and the time interval. The speed of an oxygen molecule at atmospheric pressure and 18.3°C can be estimated using the root-mean-square speed equation:
[tex]v_{rms}[/tex] = √(3kT/m)
where k is Boltzmann's constant, T is the temperature in Kelvin, and m is the mass of the molecule.
For an oxygen molecule, [tex]k = 1.38 * 10^{-23}[/tex] J/K, T = 291.45 K (18.3°C + 273.15), and [tex]m = 5.31 * 10^{-26}[/tex] kg.
Plugging in the values, we get:
[tex]v_{rms} = \sqrt {(3 * 1.38 * 10^{-23} J/K * 291.45 K / 5.31 * 10^{-26} kg)} = 484 m/s[/tex]
Therefore, during a 1.00-s time interval, an oxygen molecule will travel approximately:
distance = speed * time = 484 m/s * 1.00 s ≈ 484 meters
However, we need to take into account that the oxygen molecule will collide with other molecules in the air, and its direction will change randomly after each collision. The actual distance traveled by the molecule in a straight line will be much smaller than 484 meters, and will depend on the number of collisions it experiences during the time interval. Therefore, the estimate of the total distance traveled by an oxygen molecule in air during a 1.00-s time interval should be considered a very rough approximation.
Learn more about "Distance travelled by the molecule" : https://brainly.com/question/29409777
#SPJ11
X-rays of wavelength 0.116 nm reflect off a crystal and a second-order maximum is recorded at a Bragg angle of 22.1°. What is the spacing between the scattering planes in this crystal?
To determine the spacing between the scattering planes in the crystal, we can use Bragg's Law.
Bragg's Law relates the wavelength of X-rays, the angle of incidence (Bragg angle), and the spacing between the scattering planes.
The formula for Bragg's Law is: nλ = 2d sinθ
In this case, we are dealing with second-order diffraction (n = 2), and the wavelength of the X-rays is given as 0.116 nm. The Bragg angle is 22.1°.
We need to rearrange the equation to solve for the spacing between the scattering planes (d):
d = nλ / (2sinθ)
Plugging in the values:
d = (2 * 0.116 nm) / (2 * sin(22.1°))
≈ 0.172 nm
Therefore, the spacing between the scattering planes in the crystal is approximately 0.172 nm.
when X-rays with a wavelength of 0.116 nm are incident on the crystal, and a second-order maximum is observed at a Bragg angle of 22.1°, the spacing between the scattering planes in the crystal is approximately 0.172 nm.
To know more about bragg's law , visit:- brainly.com/question/14617319
#SPJ11
A rod made of insulating material has a length L=7.3 cm, and it carries a chatge of Q=−230 n C that is not distributed uniormly in the fod. Twice as much charge is on one side of the rod as is on the other. Calculate the strength of the rod's electric field at a point 4 m away from the rod's center along an axis perpendicular to the rod. 32 V/m 108Vim 70 Vim 121 Vim 54Vim 130 Vim 100 Vim B. V/M
The strength of the electric field at a point 4 m away from the center of the rod, along an axis perpendicular to the rod, is 54 V/m.
To calculate the electric field strength, we can divide the rod into two segments and treat each segment as a point charge. Let's assume the charge on one side of the rod is q, so the charge on the other side is 2q. We are given that the total charge on the rod is Q = -230 nC.
Since the charges are not uniformly distributed, we need to find the position of the center of charge (x_c) along the length of the rod. The center of charge is given by:
x_c = (Lq + (L/2)(2q)) / (q + 2q)
Simplifying the expression, we get:
x_c = (7.3q + 3.652q) / (3q)
x_c = (7.3 + 7.3) / 3
x_c = 4.87 cm
Now we can calculate the electric field strength at the point 4 m away from the center of the rod. Since the rod is made of an insulating material, the electric field outside the rod can be calculated using Coulomb's law:
E = k * (q / r^2)
where k is the electrostatic constant (k = 9 x 10^9 Nm^2/C^2), q is the charge, and r is the distance from the center of charge to the point where we want to calculate the electric field.
Converting the distance to meters:
r = 4 m
Plugging in the values into the formula:
E = (9 x 10^9 Nm^2/C^2) * (2q) / (4^2)
E = (9 x 10^9 Nm^2/C^2) * (2q) / 16
E = (9 x 10^9 Nm^2/C^2) * (2q) / 16
E = 0.1125 * (2q) N/C
Since the total charge on the rod is Q = -230 nC, we have:
-230 nC = q + 2q
-230 nC = 3q
Solving for q:
q = -230 nC / 3
q = -76.67 nC
Plugging this value back into the electric field equation:
E = 0.1125 * (2 * (-76.67 nC)) N/C
E = -0.1125 * 153.34 nC / C
E = -17.23 N/C
The electric field is a vector quantity, so its magnitude is always positive. Taking the absolute value:
|E| = 17.23 N/C
Converting this value to volts per meter (V/m):
1 V/m = 1 N/C
|E| = 17.23 V/m
Therefore, the strength of the rod's electric field at a point 4 m away from the rod's center along an axis perpendicular to the rod is approximately 17.23 V/m.
To learn more about electric field click here:
brainly.com/question/30544719
#SPJ11
Present a brief explanation of how electrical activity in the human body interacts with electromagnetic waves outside the human body to either your eyesight or your sense of touch.
Electrical activity in the human body interacts with electromagnetic waves outside the human body to either your eyesight or your sense of touch. Electromagnetic waves are essentially variations in electric and magnetic fields that can move through space, even in a vacuum. Electrical signals generated by the human body's nervous system are responsible for controlling and coordinating a wide range of physiological processes. These electrical signals are generated by the movement of charged ions through specialized channels in the cell membrane. These signals can be detected by sensors outside the body that can measure the electrical changes produced by these ions moving across the membrane.
One such example is the use of electroencephalography (EEG) to measure the electrical activity of the brain. The EEG is a non-invasive method of measuring brain activity by placing electrodes on the scalp. Electromagnetic waves can also affect our sense of touch. Some forms of electromagnetic radiation, such as ultraviolet light, can cause damage to the skin, resulting in sensations such as burning, itching, and pain. Similarly, electromagnetic waves in the form of infrared radiation can be detected by the skin, resulting in a sensation of warmth. The sensation of touch is ultimately the result of mechanical and thermal stimuli acting on specialized receptors in the skin. These receptors generate electrical signals that are sent to the brain via the nervous system.
Learn more about em waves here: https://brainly.com/question/14953576
#SPJ11
In an electric shaver, the blade moves back and forth over a distance of 2.0 mm in simple harmonic motion, with frequency 100Hz. Find 1.The amplitude 2.The maximum blade speed 3. The magnitude of the maximum blade acceleration
The amplitude of the blade's simple harmonic motion is 1.0 mm (0.001 m). The maximum blade speed is approximately 0.628 m/s. The magnitude of the maximum blade acceleration is approximately 1256.64 m/s².
The amplitude, maximum blade speed, and magnitude of maximum blade acceleration in the electric shaver:
1. Amplitude (A): The amplitude of simple harmonic motion is equal to half of the total distance covered by the blade. In this case, the blade moves back and forth over a distance of 2.0 mm, so the amplitude is 1.0 mm (or 0.001 m).
2. Maximum blade speed (V_max): The maximum blade speed occurs at the equilibrium position, where the displacement is zero. The maximum speed is given by the product of the amplitude and the angular frequency (ω).
V_max = A * ω
The angular frequency (ω) can be calculated using the formula ω = 2πf, where f is the frequency. In this case, the frequency is 100 Hz.
ω = 2π * 100 rad/s = 200π rad/s
V_max = (0.001 m) * (200π rad/s) ≈ 0.628 m/s
3. Magnitude of maximum blade acceleration (a_max): The maximum acceleration occurs at the extreme positions of the motion, where the displacement is maximum. The magnitude of maximum acceleration is given by the product of the square of the angular frequency (ω^2) and the amplitude (A).
a_max = ω² * A
a_max = (200π rad/s)² * 0.001 m ≈ 1256.64 m/s²
Learn more about ”harmonic motion” here:
brainly.com/question/26114128
#SPJ11
A piece of gold wire has a resistivity of 4.14x108 oom. If the wire has a length of 6.57 m and a radius of 0.080 m, what is the total resistance for this plece of wire
The total resistance of a gold wire can be calculated using its resistivity, length, and radius. In this case, with a resistivity of 4.14x10^8 Ωm, a length of 6.57 m, and a radius of 0.080 m, we can determine the total resistance.
The resistance of a wire can be calculated using the formula R = (ρ * L) / A, where R is the resistance, ρ is the resistivity, L is the length of the wire, and A is the cross-sectional area of the wire. To find the cross-sectional area, we can use the formula A = π * r^2, where r is the radius of the wire.
Plugging in the given values, we have A = π * (0.080 m)^2 = 0.0201 m^2. Now, we can calculate the resistance using the formula R = (4.14x10^8 Ωm * 6.57 m) / 0.0201 m^2.
Simplifying this expression, we get R ≈ 1.34 Ω. Therefore, the total resistance for the given gold wire is approximately 1.34 ohms.
Note: It's worth mentioning that the resistivity value provided (4.14x10^8 Ωm) seems unusually high for gold. The resistivity of gold is typically around 2.44x10^-8 Ωm. However, if we assume the given value is correct, the calculation would proceed as described above.
Learn more about resistivity here:
https://brainly.com/question/29427458
#SPJ11
In the partial wave analysis of low-energy scattering, we often find that S-wave scattering phase shift is all we need. Why do the higher partial waves tend not to contribute to scattering at this limit?
In partial wave analysis, the S-wave scattering phase shift is all we need to analyze low-energy scattering. At low energies, the wavelength is large, which makes the effect of higher partial waves to be minimal.
In partial wave analysis, the S-wave scattering phase shift is all we need to analyze low-energy scattering. The reason why the higher partial waves tend not to contribute to scattering at this limit is due to the following reasons:
The partial wave expansion of a scattering wavefunction involves the summation of different angular momentum components. In scattering problems, the energy is proportional to the inverse square of the wavelength of the incoming particles.
Hence, at low energies, the wavelength is large, which makes the effect of higher partial waves to be minimal. Moreover, when the incident particle is scattered through small angles, the dominant contribution to the cross-section comes from the S-wave. This is because the higher partial waves are increasingly suppressed by the centrifugal barrier, which is proportional to the square of the distance from the nucleus.
In summary, the contribution of higher partial waves tends to be negligible in the analysis of low-energy scattering. In such cases, we can get an accurate description of the scattering process by just considering the S-wave phase shift. This reduces the complexity of the analysis and simplifies the interpretation of the results.
This phase shift contains all the relevant information about the interaction potential and the scattering properties. The phase shift can be obtained by solving the Schrödinger equation for the potential and extracting the S-matrix element. The S-matrix element relates the incident and scattered waves and encodes all the scattering information. A simple way to extract the phase shift is to analyze the behavior of the wavefunction as it approaches the interaction region.
Learn more About S-wave from the given link
https://brainly.com/question/30540515
#SPJ11
An evacuated tube uses an accelerating voltage of 40 kV to accelerate electrons to hit a copper plate and produce X-rays. a. How much potential energy does a single electron loose due to being accelerated through the 40 kV potential? Hint: what is the charge of a single electron? b. What would be the maximum speed of these electrons? Hint: Potential energy is converted into another form of energy and the mass of an electron is 9.11x10" kg.
a. A single electron loses 6.408 × 10⁻¹⁵ J of potential energy.
b. The maximum speed of the electrons is 8.9 × 10⁶ m/s.
a. The potential energy lost by a single electron can be calculated using the equation for electric potential energy:
ΔPE = qΔV, where ΔPE is the change in potential energy, q is the charge of the electron (1.6 × 10⁻¹⁹ C), and ΔV is the change in voltage (40,000 V). Plugging in the values,
we get ΔPE = (1.6 × 10⁻¹⁹ C) × (40,000 V)
= 6.4 × 10⁻¹⁵ J.
b. To determine the maximum speed of the electrons, we can equate the loss in potential energy to the gain in kinetic energy.
The kinetic energy of an electron is given by KE = ½mv²,
where m is the mass of the electron (9.1 × 10⁻³¹ kg) and v is the velocity. Equating ΔPE to KE, we have ΔPE = KE.
Rearranging the equation, we get
(1.6 × 10⁻¹⁹ C) × (40,000 V) = ½ × (9.1 × 10⁻³¹ kg) × v².
Solving for v, we find
v = √((2 × (1.6 × 10⁻¹⁹ C) × (40,000 V)) / (9.1 × 10⁻³¹ kg))
= 8.9 × 10⁶ m/s.
Learn more About electron from the given link
https://brainly.com/question/25674345
#SPJ11
A speedometer is placed upon a tree falling object in order to measure its instantaneous speed during the course of its fall its speed reading (neglecting air resistance) would increase each second by
The acceleration due to gravity is given as 9.8 meters per second per second (m/s²) since we can ignore air resistance. Thus, the speedometer will measure a constant increase in speed during the fall. During each second of the fall, the speed reading will increase by 9.8 meters per second (m/s). Therefore, the speedometer would measure a constant increase in speed during the fall by 9.8 m/s every second.
If a speedometer is placed upon a tree falling object in order to measure its instantaneous speed during the course of its fall, its speed reading (neglecting air resistance) would increase each second by 10 meters per second. This is because the acceleration due to gravity on Earth is 9.8 meters per second squared, which means that an object's speed increases by 9.8 meters per second every second it is in free fall.
For example, if an object is dropped from a height of 10 meters, it will hit the ground after 2.5 seconds. In the first second, its speed will increase from 0 meters per second to 9.8 meters per second. In the second second, its speed will increase from 9.8 meters per second to 19.6 meters per second. And so on.
It is important to note that air resistance will slow down an object's fall, so the actual speed of an object falling from a given height will be slightly less than the theoretical speed calculated above. However, the air resistance is typically very small for objects that are falling from relatively short heights, so the theoretical calculation is a good approximation of the actual speed.
To learn more about speed visit: https://brainly.com/question/13943409
#SPJ11
When throwing a ball, your hand releases it at a height of 1.0 m above the ground with a velocity of 6.5 m/s in a direction 57° above the horizontal.
A) How high above the ground (not your hand) does the ball go?
B) At the highest point, how far is the ball horizontally from the point of release?
A) The ball reaches a height of approximately 2.45 meters above the ground.
B) At the highest point, the ball is approximately 4.14 meters horizontally away from the point of release.
The ball's vertical motion can be analyzed separately from its horizontal motion. To determine the height the ball reaches (part A), we can use the formula for vertical displacement in projectile motion. The initial vertical velocity is given as 6.5 m/s * sin(57°), which is approximately 5.55 m/s. Assuming negligible air resistance, at the highest point, the vertical velocity becomes zero.
Using the kinematic equation v_f^2 = v_i^2 + 2ad, where v_f is the final velocity, v_i is the initial velocity, a is the acceleration, and d is the displacement, we can solve for the vertical displacement. Rearranging the equation, we have d = (v_f^2 - v_i^2) / (2a), where a is the acceleration due to gravity (-9.8 m/s^2). Plugging in the values, we get d = (0 - (5.55)^2) / (2 * -9.8) ≈ 2.45 meters.
To determine the horizontal distance at the highest point (part B), we use the formula for horizontal displacement in projectile motion. The initial horizontal velocity is given as 6.5 m/s * cos(57°), which is approximately 3.0 m/s. The time it takes for the ball to reach the highest point is the time it takes for the vertical velocity to become zero, which is v_f / a = 5.55 / 9.8 ≈ 0.57 seconds.
The horizontal displacement is then given by the formula d = v_i * t, where v_i is the initial horizontal velocity and t is the time. Plugging in the values, we get d = 3.0 * 0.57 ≈ 1.71 meters. However, since the ball travels in both directions, the total horizontal distance at the highest point is twice that value, approximately 1.71 * 2 = 3.42 meters.
To learn more about vertical motion, click here:
brainly.com/question/12640444
#SPJ11
Question 2 (MCQ QUESTION: answer in ULWAZI) Consider the normalised eigenstates for a particle in a 1 dimensional box as shown: Eigenstates v The probability of finding a particle in any of the three energy states is: Possible answers (order may change in ULWAZI Greatest on the left of the box Greatest on the right of the box Greatest in the centre of the box The same everywhere inside the box Zero nowhere in the box [3 Marks] [3].
The probability of finding a particle in any of the three energy states is the same everywhere inside the box.
The probability of finding a particle in any of the three energy states is the same everywhere inside the box. Consider the normalised eigenstates for a particle in a 1-dimensional box as shown: Eigenstates. The normalised eigenstates for a particle in a 1-dimensional box are as follows:Here, A is the normalization constant.\
To find the probability of finding a particle in any of the three energy states, we need to find the probability density function (PDF), ψ²(x).Probability density function (PDF), ψ²(x) is given as follows:Here, ψ(x) is the wave function, which is the normalised eigenstate for a particle in a 1-dimensional box.
To know more about probability:
https://brainly.com/question/31828911
#SPJ11
Comparing the radiation power loss for electron ( Pe )
with radiation power loss for the proton ( Pp ) in the synchrotron,
one gets :
1- Pe = Pp = 0
2- Pe << Pp
3- Pe >> Pp
4- Pe ≈ Pp
When comparing the radiation power loss for electrons (Pe) and protons (Pp) in a synchrotron, the correct answer is 2- Pe << Pp. This means that the radiation power loss for electrons is much smaller than that for protons.
The radiation power loss in a synchrotron occurs due to the acceleration of charged particles. It depends on the mass and charge of the particles involved.
Electrons have a much smaller mass compared to protons but carry the same charge. Since the radiation power loss is proportional to the square of the charge and inversely proportional to the square of the mass, the power loss for electrons is significantly smaller than that for protons.
Therefore, option 2- Pe << Pp is the correct choice, indicating that the radiation power loss for electrons is much smaller compared to that for protons in a synchrotron.
Learn more about synchrotron here:
brainly.com/question/31070723
#SPJ11
Resolve the given vector into its x-component and y-component. The given angle 0 is measured counterclockwise from the positive x-axis (in standard position). Magnitude 2.24 mN, 0 = 209.47° The x-component Ax is mN. (Round to the nearest hundredth as needed.) The y-component A, ismN. (Round to the nearest hundredth as needed.)
The x-component (Ax) is approximately -1.54 mN and the y-component (Ay) is approximately -1.97 mN.
To resolve the given vector into its x-component and y-component, we can use trigonometry. The magnitude of the vector is given as 2.24 mN, and the angle is 209.47° counterclockwise from the positive x-axis.
To find the x-component (Ax), we can use the cosine function:
Ax = magnitude * cos(angle)
Substituting the given values:
Ax = 2.24 mN * cos(209.47°)
Calculating the value:
Ax ≈ -1.54 mN
To find the y-component (Ay), we can use the sine function:
Ay = magnitude * sin(angle)
Substituting the given values:
Ay = 2.24 mN * sin(209.47°)
Calculating the value:
Ay ≈ -1.97 mN
To know more about x-component refer to-
https://brainly.com/question/29030586
#SPJ11
In a RC circuit, C=4.15microC and the emf of the battery is E=59V. R is unknown and the time constant is Tau(s). Capacitor is uncharged at t=0s. What is the capacitor charge at t=2T. Answer in C in the hundredth place.
The capacitor charge at t = 2T is approximately 1.49 microC. In an RC circuit, the charge on a capacitor can be calculated using the equation Q = Q_max * (1 - e^(-t/Tau)), Q_max is maximum charge the capacitor can hold, and Tau is time constant.
Given that the capacitor is uncharged at t = 0s, we can assume Q_max is equal to the total charge Q_max = C * E, where C is the capacitance and E is the emf of the battery.
Substituting the given values, C = 4.15 microC and E = 59V, we can calculate Q_max:
Q_max = (4.15 microC) * (59V) = 244.85 microC
Since we want to find the capacitor charge at t = 2T, we substitute t = 2T into the equation:
Q = Q_max * (1 - e^(-2))
Using the exponential function, we find:
Q = 244.85 microC * (1 - e^(-2))
≈ 244.85 microC * (1 - 0.1353)
≈ 244.85 microC * 0.8647
≈ 211.93 microC
Converting to the hundredth place, the capacitor charge at t = 2T is approximately 1.49 microC.
Therefore, the capacitor charge at t = 2T is approximately 1.49 microC.
To learn more about capacitor , click here : https://brainly.com/question/29100869
#SPJ11
An ideal gas expands isothermally, performing 5.00×10 3
J of work in the process. Calculate the change in internal energy of the gas. Express your answer with the appropriate units. Calculate the heat absorbed during this expansion. Express your answer with the appropriate units.
For an isothermal expansion of an ideal gas, the change in internal energy is zero. In this case, the gas performs 5.00×10^3 J of work, and the heat absorbed during the expansion is also 5.00×10^3 J.
An isothermal process involves a change in a system while maintaining a constant temperature. In this case, an ideal gas is expanding isothermally and performing work. We need to calculate the change in internal energy of the gas and the heat absorbed during the expansion.
To calculate the change in internal energy (ΔU) of the gas, we can use the first law of thermodynamics, which states that the change in internal energy is equal to the heat (Q) absorbed or released by the system minus the work (W) done on or by the system. Mathematically, it can be represented as:
ΔU = Q - W
Since the process is isothermal, the temperature remains constant, and the change in internal energy is zero. Therefore, we can rewrite the equation as:
0 = Q - W
Given that the work done by the gas is 5.00×10^3 J, we can substitute this value into the equation:
0 = Q - 5.00×10^3 J
Solving for Q, we find that the heat absorbed during this expansion is 5.00×10^3 J.
To know more about the first law of thermodynamics, refer here:
https://brainly.com/question/32101564#
#SPJ11
Burl and Paul have a total weight of 688 N. The tensions in the ropes that support the scaffold they stand on add to 1448 N. Determine the weight of the scaffold (N). (Note: Be sure to report answer with the abbreviated form of the unit.)
The weight of the scaffold is 1208 N.
Given Data: Burl and Paul have a total weight of 688 N.
Tensions in the ropes that support the scaffold they stand on add to 1448 N.
Formula Used: The weight of the scaffold can be calculated by using the formula given below:
Weight of the Scaffold = Tension on Left + Tension on Right - Total Weight of Burl and Paul
Weight of the Scaffold = Tension L + Tension R - (Burl + Paul)
So the weight of the scaffold is 1208 N. (Note: Be sure to report answer with the abbreviated form of the unit.)
Learn more about Weight
https://brainly.com/question/31659519
#SPJ11
The gravitational force changes with altitude. Find the change in gravitational force for someone who weighs 760 N at sea level as compared to the force measured when on an airplane 1600 m above sea level. You can ignore Earth's rotation for this problem. Use a negative answer to indicate a decrease in force.
For reference, Earth's mean radius (RE) is 6.37 x 106 m and Earth's mass (ME) is 5.972 x 1024 kg. [Hint: take the derivative of the expression for the force of gravity with respect to r, such that Aweight dF dr Ar. Evaluate the derivative at
Substituting the given values for Earth's mean radius (RE) and Earth's mass (ME), as well as the weight of the individual[tex](m1 = 760 N / 9.8 m/s^2 = 77.55 kg)[/tex], we can calculate the change in gravitational force.
To find the change in gravitational force experienced by an individual weighing 760 N at sea level compared to the force measured when on an airplane 1600 m above sea level, we can use the equation for gravitational force:
[tex]F = G * (m1 * m2) / r^2[/tex]
Where:
F is the gravitational force,
G is the gravitational constant,
and r is the distance between the centers of the two objects.
Let's denote the force at sea level as [tex]F_1[/tex] and the force at 1600 m above sea level as [tex]F_2[/tex]. The change in gravitational force (ΔF) can be calculated as:
ΔF =[tex]F_2 - F_1[/tex]
First, let's calculate [tex]F_1[/tex] at sea level. The distance between the individual and the center of the Earth ([tex]r_1[/tex]) is the sum of the Earth's radius (RE) and the altitude at sea level ([tex]h_1[/tex] = 0 m).
[tex]r_1 = RE + h_1 = 6.37 * 10^6 m + 0 m = 6.37 * 10^6 m[/tex]
Now we can calculate [tex]F_1[/tex] using the gravitational force equation:
[tex]F_1 = G * (m_1 * m_2) / r_1^2[/tex]
Next, let's calculate [tex]F_2[/tex] at 1600 m above sea level. The distance between the individual and the center of the Earth ([tex]r_2[/tex]) is the sum of the Earth's radius (RE) and the altitude at 1600 m ([tex]h_2[/tex] = 1600 m).
[tex]r_2[/tex] = [tex]RE + h_2 = 6.37 * 10^6 m + 1600 m = 6.37 * 10^6 m + 1.6 * 10^3 m = 6.3716 * 10^6 m[/tex]
Now we can calculate [tex]F_2[/tex] using the gravitational force equation:
[tex]F_2[/tex] = G * ([tex]m_1 * m_2[/tex]) /[tex]r_2^2[/tex]
Finally, we can find the change in gravitational force by subtracting [tex]F_1[/tex] from [tex]F_2[/tex]:
ΔF = [tex]F_2 - F_1[/tex]
To know more about Earth's mean radius, here
brainly.com/question/31408822
#SPJ4
The gravitational force acting on the person has decreased by 0.104 N when they are on an airplane 1600 m above sea level as compared to the force measured at sea level.
Gravitational force is given by F = G (Mm / r²), where G is the universal gravitational constant, M is the mass of the planet, m is the mass of the object, and r is the distance between the center of mass of the planet and the center of mass of the object.Given,At sea level, a person weighs 760N.
On an airplane 1600 m above sea level, the weight of the person is different. We need to calculate this difference and find the change in gravitational force.As we know, the gravitational force changes with altitude. The gravitational force acting on an object decreases as it moves farther away from the earth's center.To find the change in gravitational force, we need to first calculate the gravitational force acting on the person at sea level.
Gravitational force at sea level:F₁ = G × (Mm / R)²...[Equation 1]
Here, M is the mass of the earth, m is the mass of the person, R is the radius of the earth, and G is the gravitational constant. Putting the given values in Equation 1:F₁ = 6.674 × 10⁻¹¹ × (5.972 × 10²⁴ × 760) / (6.371 × 10⁶)²F₁ = 7.437 NNow, let's find the gravitational force acting on the person at 1600m above sea level.
Gravitational force at 1600m above sea level:F₂ = G × (Mm / (R+h))²...[Equation 2]Here, M is the mass of the earth, m is the mass of the person, R is the radius of the earth, h is the height of the airplane, and G is the gravitational constant. Putting the given values in Equation 2:F₂ = 6.674 × 10⁻¹¹ × (5.972 × 10²⁴ × 760) / (6.371 × 10⁶ + 1600)²F₂ = 7.333 NNow, we can find the change in gravitational force.ΔF = F₂ - F₁ΔF = 7.333 - 7.437ΔF = -0.104 NThe change in gravitational force is -0.104 N. A negative answer indicates a decrease in force.
Therefore, the gravitational force acting on the person has decreased by 0.104 N when they are on an airplane 1600 m above sea level as compared to the force measured at sea level.
Know more Gravitational Force
https://brainly.com/question/16613634
#SPJ11
A dry cell having internal resistance r = 0.5 Q has an electromotive force & = 6 V. What is the power (in W) dissipated through the internal resistance of the cell, if it is connected to an external resistance of 1.5 Q?
I. 4.5 II. 5.5 III.3.5 IV. 2.5 V. 6.5
The power (in W) dissipated through the internal resistance of the cell, if it is connected to an external resistance of 1.5 Q is 4.5 W. Hence, the correct option is I. 4.5.
The expression for the power (in W) dissipated through the internal resistance of the cell, if it is connected to an external resistance of 1.5 Q is as follows:
Given :The internal resistance of a dry cell is `r = 0.5Ω`.
The electromotive force of a dry cell is `ε = 6 V`.The external resistance is `R = 1.5Ω`.Power is given by the expression P = I²R. We can use Ohm's law to find current I flowing through the circuit.I = ε / (r + R) Substituting the values of ε, r and R in the above equation, we getI = 6 / (0.5 + 1.5)I = 6 / 2I = 3 A Therefore, the power dissipated through the internal resistance isP = I²r = 3² × 0.5P = 4.5 W Therefore, the power (in W) dissipated through the internal resistance of the cell, if it is connected to an external resistance of 1.5 Q is 4.5 W. Hence, the correct option is I. 4.5.
To know more about internal resistance visit
https://brainly.com/question/23575577
#SPJ11