A trader sold an article for #82,000 and made a loss of 5%.how much must he sell it to make a profit of 12%,.?

Answers

Answer 1

The trader must sell the article for approximately #96,673.68 to make a profit of 12%.To find the selling price needed to make a profit of 12%, we need to first calculate the cost price of the article.

Given that the trader sold the article for #82,000 and incurred a loss of 5%, we can use the following formula:
Selling Price = Cost Price - Loss
Since the loss is given as a percentage, we can rewrite it as:
Loss = (Loss % / 100) * Cost Price
Substituting the given values:
#82,000 = Cost Price - (5/100) * Cost Price
Simplifying:
#82,000 = Cost Price - 0.05 * Cost Price
#82,000 = Cost Price * (1 - 0.05)
#82,000 = Cost Price * 0.95

Now, let's solve for the Cost Price:
Cost Price = #82,000 / 0.95
Cost Price ≈ #86,315.79
To find the selling price needed to make a profit of 12%, we can use the following formula:
Selling Price = Cost Price + Profit
Since the profit is given as a percentage, we can rewrite it as:
Profit = (Profit % / 100) * Cost Price
Substituting the given values:
Profit = (12/100) * #86,315.79
Profit ≈ #10,357.89
Now, let's find the selling price:
Selling Price = Cost Price + Profit
Selling Price = #86,315.79 + #10,357.89
Selling Price ≈ #96,673.68

Therefore, the trader must sell the article for approximately #96,673.68 to make a profit of 12%.

To know more about  Profit visit-

brainly.com/question/32864864

#SPJ11


Related Questions

I go to the store and buy instant noodles foe 7.75 pesos,can of sardines for 16.00 pesos and 2 sachets of coffee for 12.25 pesos.how much money do i need to pay?

Answers

Money you need to pay 36.00 pesos in total for the instant noodles, can of sardines, and 2 sachets of coffee


To calculate the total amount of money you need to pay for the items you mentioned, you need to add the prices of the instant noodles, can of sardines, and 2 sachets of coffee.

The price of the instant noodles is 7.75 pesos, the price of the can of sardines is 16.00 pesos, and the price of 2 sachets of coffee is 12.25 pesos.

To find the total amount, you need to add these prices together:

7.75 pesos (instant noodles) + 16.00 pesos (can of sardines) + 12.25 pesos (2 sachets of coffee)

Adding these amounts together:

7.75 + 16.00 + 12.25 = 36.00 pesos

Therefore, you need to pay 36.00 pesos in total for the instant noodles, can of sardines, and 2 sachets of coffee.

To know more about money refer here:

https://brainly.com/question/2696748

#SPJ11

Leo earned $2.40 for delivering a small parcel and earned more for delivering a big parcel. he delivered 3 times as many small parcels as big parcels and earned a total of $170.80. he earned $45.20 less for delivering all big parcels than all small parcels. how many big parcels did leo deliver?

Answers

Leo delivered 62.80 big parcels.

Let's denote the amount Leo earned for delivering a big parcel as "B" and the amount he earned for delivering a small parcel as "S". We'll set up a system of equations based on the given information.

From the problem statement, we have the following information:

1) Leo earned $2.40 for delivering a small parcel: S = 2.40

2) Leo earned more for delivering a big parcel: B > 2.40

3) He delivered 3 times as many small parcels as big parcels: S = 3B

4) Leo earned a total of $170.80: B + S = 170.80

5) Leo earned $45.20 less for delivering all big parcels than all small parcels: S - B = 45.20

Now, let's solve the system of equations:

From equation (3), we can substitute S in terms of B:

3B = 2.40

From equation (5), we can substitute S in terms of B:

S = B + 45.20

Substituting these values for S in equation (4), we get:

B + (B + 45.20) = 170.80

Simplifying the equation:

2B + 45.20 = 170.80

2B = 170.80 - 45.20

2B = 125.60

B = 125.60 / 2

B = 62.80

To know more about equations visit:

brainly.com/question/29657983

#SPJ11

The incircle of triangle 4ABC touches the sides BC, CA, AB at D, E, F respectively. X is a point inside triangle of 4ABC such that the incircle of triangle 4XBC touches BC at D, and touches CX and XB at Y and Z respectively. Show that E, F, Z, Y are concyclic.

Answers

E, F, Z, and Y are concyclic, as the angles EFZ and EYZ are equal we have shown that E, F, Z, and Y are concyclic by proving that the angles EFZ and EYZ are equal.

To show that E, F, Z, Y are concyclic, we need to prove that the angles EFZ and EYZ are equal.

Here's a step-by-step explanation:

Start by drawing a diagram of the given situation. Label the points A, B, C, D, E, F, X, Y, and Z as described in the question.

Note that the in circle of triangle ABC touches sides BC, CA, and AB at D, E, and F, respectively. This means that AD, BE, and CF are the angle bisectors of triangle ABC.

Since AD is an angle bisector, angle BAE is equal to angle CAD. Similarly, angle CAF is equal to angle BAF.

Now, let's consider triangle XBC. The incircle of triangle XBC touches BC at point D. This means that angle XDY is a right angle, as DY is a radius of the incircle.

Since AD is an angle bisector of triangle ABC, angle BAE is equal to angle CAD. Therefore, angle DAE is equal to angle BAC.

From steps 4 and 5, we can conclude that angle DAY is equal to angle DAC.

Now, let's consider triangle XBC again. The incircle of triangle XBC also touches CX and XB at points Y and Z, respectively.

Since DY is a radius of the incircle, angle YDX is equal to angle YXD.

Similarly, since DZ is a radius of the incircle, angle ZDX is equal to angle XZD.

Combining steps 8 and 9, we have angle YDX = angle YXD = angle ZDX = angle XZD.

From steps 7 and 10, we can conclude that angle YDZ is equal to angle XDY + angle ZDX = angle DAY + angle DAC.

Recall from step 6 that angle DAY is equal to angle DAC. Therefore, we can simplify step 11 to angle YDZ = 2 * angle DAC.

Now, let's consider triangle ABC. Since AD, BE, and CF are angle bisectors, we know that angle BAD = angle CAD, angle CBE = angle ABE, and angle ACF = angle BCF.

From step 13, we can conclude that angle BAD + angle CBE + angle ACF = angle CAD + angle ABE + angle BCF.

Simplifying step 14, we have angle BAF + angle CAF = angle BAE + angle CAE.

Recall from step 3 that angle BAF = angle CAD and angle CAF = angle BAE. Therefore, we can simplify step 15 to angle CAD + angle BAE = angle BAE + angle CAE.

Canceling out angle BAE on both sides of the equation in step 16, we get angle CAD = angle CAE.

From the previous steps, we can conclude that angle CAD = angle CAE = angle BAF = angle CAF.

Now, let's return to the concyclic points E, F, Z, and Y. We have shown that angle YDZ = 2 * angle DAC and

angle CAD = angle CAE = angle BAF = angle CAF.

Therefore, angle YDZ = 2 * angle CAE and angle CAD = angle CAE = angle BAF = angle CAF.

From the two previous steps , we can conclude that angle YDZ = 2 * angle CAD.

Since angle YDZ is equal to 2 * angle CAD, and angle EFZ is also equal to 2 * angle CAD (from step 18), we can conclude that angle YDZ = angle EFZ.

Therefore, E, F, Z, and Y are concyclic, as the angles EFZ and EYZ are equal.

In conclusion, we have shown that E, F, Z, and Y are concyclic by proving that the angles EFZ and EYZ are equal.

To know more about concyclic visit :

brainly.com/question/23890129

#SPJ11

Describe two events that are mutually exclusive.

Answers

Tossing a coin and rolling a six-sided die are examples of mutually exclusive events with different probabilities of outcomes. Tossing a coin has a probability of 0.5 for heads or tails, while rolling a die has a probability of 0.1667 for one of the six possible numbers on the top face.

Mutually exclusive events are events that cannot occur at the same time. If one event happens, the other event cannot happen simultaneously. The description of two examples of mutually exclusive events are as follows:

a. Tossing a Coin: When flipping a fair coin, the possible outcomes are either getting heads (H) or tails (T). These two outcomes are mutually exclusive because it is not possible to get both heads and tails in a single flip.

The probability of getting heads is 1/2 (0.5), and the probability of getting tails is also 1/2 (0.5). These probabilities add up to 1, indicating that one of these outcomes will always occur.

b. Rolling a Six-Sided Die: Consider rolling a standard six-sided die. The possible outcomes are the numbers 1, 2, 3, 4, 5, or 6. Each outcome is mutually exclusive because only one number can appear on the top face of the die at a time.

The probability of rolling a specific number, such as 3, is 1/6 (approximately 0.1667). The probabilities of all the possible outcomes (1 through 6) add up to 1, ensuring that one of these outcomes will occur.

In both examples, the events are mutually exclusive because the occurrence of one event excludes the possibility of the other event happening simultaneously.

To know more about probabilities refer here:

https://brainly.com/question/32576061#

#SPJ11



Simplify 1/y - 1/x / 1/x+y -1 .

f. y-x / x y-1 g. x-y / 1-x y} h. x+y / 1+x y i. x+y

Answers

The simplified expression is [tex](x^2 - y^2) / (x^2 - 2xy + x - y)[/tex]. The common denominator is xy. So, we can rewrite the numerator as (x - y) / (xy).

To simplify the expression [tex](1/y - 1/x) / (1/x+y -1)[/tex], we can follow these steps:

Step 1: Simplify the numerator [tex](1/y - 1/x)[/tex]:
To combine the fractions in the numerator, we need a common denominator.

Step 2: Simplify the denominator [tex](1/x+y -1)[/tex]:
Similarly, to combine the fractions in the denominator, we need a common denominator. The common denominator is [tex]x+y[/tex]. So, we can rewrite the denominator as [tex](1 - (x + y)) / (x + y)[/tex], which simplifies to [tex](-x - y + 1) / (x + y)[/tex].

Step 3: Divide the numerator by the denominator:
Dividing [tex](x - y) / (xy) by (-x - y + 1) / (x + y)[/tex] is equivalent to multiplying the numerator by the reciprocal of the denominator.

So, the expression simplifies to[tex][(x - y) / (xy)] * [(x + y) / (-x - y + 1)].[/tex]

Step 4: Simplify the expression further:
Expanding and canceling out the common factors, we get:
[tex](x - y) * (x + y) / (xy) * (-x - y + 1)\\= (x^2 - y^2) / (-xy - y^2 + x^2 - xy + x - y)\\= (x^2 - y^2) / (x^2 - 2xy + x - y)[/tex]


To know more about the expression visit:

https://brainly.com/question/32967003

#SPJ11



Describe two methods you could use to find the area of the shaded region of the circle. Which method do you think is more efficient? Explain your reasoning.

Answers

To find the area of the shaded region of a circle, there are two methods that you could use. The first method is to subtract the area of the unshaded region from the total area of the circle.

The second method is to use the formula for the area of a sector and subtract the area of the unshaded sector from the total area of the circle.
The first method involves finding the area of the unshaded region by subtracting it from the total area of the circle. This can be done by finding the area of the entire circle using the formula A = πr^2, where A is the area and r is the radius of the circle.

Then, find the area of the unshaded region and subtract it from the total area to find the area of the shaded region.The second method involves using the formula for the area of a sector, which is A = (θ/360)πr^2, where θ is the central angle of the sector. Find the area of the unshaded sector by multiplying the central angle by the area of the entire circle. Then, subtract the area of the unshaded sector from the total area of the circle to find the area of the shaded region.In terms of efficiency, the second method is generally more efficient. This is because it directly calculates the area of the shaded region without the need to find the area of the unshaded region separately. Additionally, the second method only requires the measurement of the central angle of the sector, which can be easily determined.

To know more about shaded, visit:

https://brainly.com/question/9767762

#SPJ11



Solve each equation. Check each solution. 15/x + 9 x-7/x+2 =9

Answers

To solve the equation:(15/x) + (9x-7)/(x+2) = 9. there is no solution to the equation (15/x) + (9x-7)/(x+2) = 9.

we need to find the values of x that satisfy this equation. Let's solve it step by step:

Step 1: Multiply through by the denominators to clear the fractions:

[(15/x) * x(x+2)] + [(9x-7)/(x+2) * x(x+2)] = 9 * x(x+2).

Simplifying, we get:

15(x+2) + (9x-7)x = 9x(x+2).

Step 2: Expand and collect like terms:

15x + 30 + 9x² - 7x = 9x² + 18x.

Simplifying further, we have:

9x² + 8x + 30 = 9x² + 18x.

Step 3: Subtract 9x^2 and 18x from both sides:

8x + 30 = 0.

Step 4: Subtract 30 from both sides:

8x = -30.

Step 5: Divide by 8:

x = -30/8.

Simplifying the result, we have:

x = -15/4.

Now, let's check the solution by substituting it back into the original equation:

(15/(-15/4)) + (9(-15/4) - 7)/((-15/4) + 2) = 9.

Simplifying this expression, we get:

-4 + (-135/4 - 7)/((-15/4) + 2) = 9.

Combining like terms:

-4 + (-135/4 - 28/4)/((-15/4) + 2) = 9.

Calculating the numerator and denominator separately:

-4 + (-163/4)/(-15/4 + 2) = 9.

-4 + (-163/4)/(-15/4 + 8/4) = 9.

-4 + (-163/4)/( -7/4) = 9.

-4 + (-163/4) * (-4/7) = 9.

-4 + (652/28) = 9.

-4 + 23.2857 ≈ 9.

19.2857 ≈ 9.

The equation is not satisfied when x = -15/4.

Therefore, there is no solution to the equation (15/x) + (9x-7)/(x+2) = 9.

To know more about equation visit:

https://brainly.com/question/29538993

#SPJ11



\overleftrightarrow{M N} and \overleftrightarrow{P Q} intersect at T . Find the value of x for which m \angle M T Q=2 x+5 and m\angle PTM=x+7\text{.} What are the degree measures of \angle M T Q and \angle P T M ?

Answers

The value of x is 2, and the degree measures of ∠MTQ and ∠PTM are both 9 degrees


To find the value of x for which m∠MTQ = 2x + 5 and m∠PTM = x + 7, we need to solve the given equations.

Since ∠MTQ and ∠PTM are angles formed by the intersecting lines, we can use the properties of intersecting lines to find their degree measures.

Step 1: Set up the equation for ∠MTQ.


Given: m∠MTQ = 2x + 5

Step 2: Set up the equation for ∠PTM.


Given: m∠PTM = x + 7

Step 3: Equate the two angles.


Since T is the point of intersection, both angles must be equal. Therefore, we can set up the equation:

2x + 5 = x + 7

Step 4: Solve the equation.


To find the value of x, we can solve the equation as follows:

2x + 5 = x + 7
2x - x = 7 - 5
x = 2

Step 5: Substitute the value of x back into the equations to find the degree measures.


Substituting x = 2 into the equations:

m∠MTQ = 2x + 5


m∠MTQ = 2(2) + 5


m∠MTQ = 4 + 5


m∠MTQ = 9

m∠PTM = x + 7


m∠PTM = 2 + 7


m∠PTM = 9

Therefore, the degree measure of ∠MTQ is 9 degrees, and the degree measure of ∠PTM is also 9 degrees.

In summary, the value of x is 2, and the degree measures of ∠MTQ and ∠PTM are both 9 degrees.

To know more about degree refer here:

https://brainly.com/question/30672369

#SPJ11

A coin is flipped eight times where each flip comes up either heads or tails. The outcome is the string of 8 heads/tails that is produced. How many possible outcomes

Answers

There are 256 possible outcomes for the string of 8 heads/tails that can be produced when flipping a coin eight times.

When a coin is flipped eight times, there are two possible outcomes for each individual flip: heads or tails.

Since each flip has two possibilities, the total number of possible outcomes for eight flips can be calculated by multiplying the number of possibilities for each flip together.

Therefore, the number of possible outcomes for eight coin flips is:

2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 2^8 = 256

To know more about number visit:

brainly.com/question/3589540

#SPJ11

A general manager is forming a committee of 6 people out of 10 total employees to review the company's hiring process. What is the probability that two specific employees will be chosen for the committee

Answers

The probability that two specific employees will be chosen for the committee of 6 out of 10 total employees is approximately 0.33 or 33%.

A general manager is forming a committee of 6 people out of 10 total employees to review the company's hiring process. What is the probability that two specific employees will be chosen for the committee

To find the probability that two specific employees will be chosen for the committee of 6 out of 10 total employees, we can use the combination formula:

n C r = n! / (r! * (n - r)!)

where n is the total number of employees (10), and r is the number of employees chosen for the committee (6).

The probability of selecting two specific employees out of a total of 10 employees for the committee is the number of ways to choose those two employees (2) from the total number of employees (10), multiplied by the number of ways to choose the remaining 4 employees from the remaining 8 employees:

P = (2 C 2) * (8 C 4) / (10 C 6)

P = (1) * (70) / (210)

P = 0.3333 or approximately 0.33

Therefore, the probability that two specific employees will be chosen for the committee of 6 out of 10 total employees is approximately 0.33 or 33%.

Learn more about "combination formula" : https://brainly.com/question/28065038

#SPJ11

According to a survey, the number of patients in a given dental office in a given month is normally distributed with a mean of 1,100 patients and a standard deviation of 100 patients. If a dental office is chosen at random, what is the probability that more than 1,400 patients visit this dental office

Answers

the probability that more than 1,400 patients visit this dental office is approximately 0.0013, or 0.13%.

To find the probability that more than 1,400 patients visit the dental office, we need to calculate the area under the normal distribution curve to the right of 1,400.

First, let's calculate the z-score for 1,400 patients using the formula:

z = (x - μ) / σ

Where:

x = 1,400 (the number of patients)

μ = 1,100 (the mean)

σ = 100 (the standard deviation)

z = (1,400 - 1,100) / 100 = 3

Next, we can use a standard normal distribution table or a calculator to find the probability corresponding to a z-score of 3.

Looking up the z-score of 3 in the standard normal distribution table, we find that the probability associated with this z-score is approximately 0.9987.

However, since we want the probability of more than 1,400 patients, we need to find the area to the right of this value. The area to the left is 0.9987, so the area to the right is:

1 - 0.9987 = 0.0013

To know more about area visit:

brainly.com/question/1631786

#SPJ11

If one of the hotdogs is eaten by ms.wursts dog just before the picnic, what is the greatest number of students that can attend

Answers

According to the given statement the maximum number of students that can attend the picnic is X - 1.

To find the greatest number of students that can attend the picnic after one hotdog is eaten by Ms. Wurst's dog, we need to consider the number of hotdogs available.

Let's assume there are X hotdogs initially.

If one hotdog is eaten, then the total number of hotdogs remaining is X - 1.

Each student requires one hotdog to attend the picnic.

Therefore, the maximum number of students that can attend the picnic is X - 1.
To know more about students visit:

https://brainly.com/question/29101948

#SPJ11

If one hotdog is eaten by Ms. Wurst's dog just before the picnic, the greatest number of students that can attend is equal to the initial number of hotdogs minus one.

The number of students that can attend the picnic depends on the number of hotdogs available. If one hotdog is eaten by Ms. Wurst's dog just before the picnic, then there will be one less hotdog available for the students.

To find the greatest number of students that can attend, we need to consider the number of hotdogs left after one is eaten. Let's assume there were initially "x" hotdogs.

If one hotdog is eaten, the remaining number of hotdogs will be (x - 1). Each student can have one hotdog, so the maximum number of students that can attend the picnic is equal to the number of hotdogs remaining.

Therefore, the greatest number of students that can attend the picnic is (x - 1).

For example, if there were initially 10 hotdogs, and one is eaten, then the greatest number of students that can attend is 9.

In conclusion, if one hotdog is eaten by Ms. Wurst's dog just before the picnic, the greatest number of students that can attend is equal to the initial number of hotdogs minus one.

Learn more about number of hotdogs from the given link:

https://brainly.com/question/21967075

#SPJ11

A is a subset of Z > 0 which is an infinite set. Show that there exsits an a \ne b which is a subset of A such that A b has a prime factor > 2022!

Answers

we have proved that there exists an a ≠ b in subset A such that the product of a and b (a*b) has a prime factor greater than 2022!.

To prove that there exists a pair of distinct elements a and b in subset A, such that their product (a*b) has a prime factor greater than 2022!, we can use the concept of prime factorization.

Let's assume that A is an infinite set of positive integers. We can construct the following subset:

A = {p | p is a prime number and p > 2022!}

In this subset, all elements are prime numbers greater than 2022!. Since the set of prime numbers is infinite, A is also an infinite set.

Now, let's consider any two distinct elements from A, say a and b. Since both a and b are prime numbers greater than 2022!, their product (a*b) will also be a positive integer greater than 2022!.

If we analyze the prime factorization of (a*b), we can observe that it must have at least one prime factor greater than 2022!. This is because the prime factors of a and b are distinct and greater than 2022!, so their product (a*b) will inherit these prime factors.

Therefore, for any pair of distinct elements a and b in subset A, their product (a*b) will have a prime factor greater than 2022!.

To know more about numbers visit:

brainly.com/question/24908711?

#SPJ11

There is a major rivalry between Ohio State and Michigan. Alumni from both schools are claiming there is a difference between the batting averages of their baseball players. A sample of 60 Ohio State players' averages was .400 with a standard deviation of .05 A sample of 50 Michigan players' averages was .390 with a standard deviation of .04 Conduct the following test of hypothesis using the .05 significance level. What are the null and alternative hypothesis

Answers

The null hypothesis (H0) states that there is no significant difference between the batting averages of Ohio State and Michigan players.

The alternative hypothesis (H1) posits that there is a significant difference between the two. By conducting the hypothesis test at a significance level of .05, the goal is to determine if the observed difference in sample means (.400 - .390) is statistically significant enough to reject the null hypothesis and support the claim that there is indeed a difference in batting averages between Ohio State and Michigan players.

A rivalry between Ohio State and Michigan alumni has sparked a debate about the difference in batting averages between their baseball players. A sample of 60 Ohio State players showed an average of .400 with a standard deviation of .05, while a sample of 50 Michigan players had an average of .390 with a standard deviation of .04. A hypothesis test with a significance level of .05 will be conducted to determine if there is a significant difference between the two schools' batting averages.

For more information on null hypothesis visit: brainly.com/question/33194057

#SPJ11

The distribution of the number of children per family in the United States is strongly skewed right with a mean of 2.5 children per family and a standard deviation of 1.3 children per family.

Answers

The estimated percentage is 35.20%.

Given the data provided, the distribution of the number of children per family in the United States is strongly skewed right. The mean is 2.5 children per family, and the standard deviation is 1.3 children per family.

To calculate the percentage of families in the United States that have three or more children, we can use the normal distribution and standardize the variable.

Let's define the random variable X as the number of children per family in the United States. Based on the given information, X follows a normal distribution with a mean of 2.5 and a standard deviation of 1.3. We can write this as X ~ N(2.5, 1.69).

To find the probability of having three or more children (X ≥ 3), we need to calculate the area under the normal curve for values greater than or equal to 3.

We can standardize X by converting it to a z-score using the formula: z = (X - μ) / σ, where μ is the mean and σ is the standard deviation.

Substituting the values, we have:

z = (3 - 2.5) / 1.3 = 0.38

Now, we need to find the probability P(z ≥ 0.38) using standard normal tables or a calculator.

Looking up the z-value in the standard normal distribution table, we find that P(z ≥ 0.38) is approximately 0.3520.

Therefore, the percentage of families in the United States that have three or more children in the family is 35.20%.

To learn more about probability

https://brainly.com/question/13604758

#SPJ11



Write the converse, inverse, and contrapositive of the following true conditional statement. Determine whether each related conditional is true or false. If a statement is false, find a counterexample.


All whole numbers are integers

Answers

The converse is true: All integers are whole numbers.

The inverse is true: Not all whole numbers are integers (e.g., fractions or decimals).

The contrapositive is true: Not all integers are whole numbers (e.g., negative numbers).

Statement with a Condiment: All entire numbers are whole numbers.

Converse: Whole numbers are all integers.

Explanation: The hypothesis and conclusion are altered by the conditional statement's opposite. The hypothesis is "whole numbers" and the conclusion is "integers" in this instance.

Is the opposite a lie or true?

True. Because every integer is, in fact, a whole number, the opposite holds true.

Inverse: Whole numbers are not always integers.

Explanation: Both the hypothesis and the conclusion are rejected by the inverse of the conditional statement.

Is the opposite a lie or true?

True. Because there are whole numbers that are not integers, the inverse holds true. Fractions or decimals like 1/2 and 3.14, for instance, are whole numbers but not integers.

Contrapositive: Integers are not all whole numbers.

Explanation: Both the hypothesis and the conclusion are turned on and off by the contrapositive of the conditional statement.

Do you believe the contrapositive or not?

True. The contrapositive is valid on the grounds that there are a few numbers that are not entire numbers. Negative numbers like -1 and -5, for instance, are integers but not whole numbers.

To know more about Integers, visit

brainly.com/question/929808

#SPJ11

If+the+frequency+of+ptc+tasters+in+a+population+is+91%,+what+is+the+frequency+of+the+allele+for+non-tasting+ptc?

Answers

The frequency of the allele for non-tasting PTC in the population is 0.09 or 9%.

To determine the frequency of the allele for non-tasting PTC in a population where the frequency of PTC tasters is 91%, we can use the Hardy-Weinberg equation. The Hardy-Weinberg principle describes the relationship between allele frequencies and genotype frequencies in a population under certain assumptions.

Let's denote the frequency of the allele for taster individuals as p and the frequency of the allele for non-taster individuals as q. According to the principle, the sum of the frequencies of these two alleles must equal 1, so p + q = 1.

Given that the frequency of PTC tasters (p) is 91% or 0.91, we can substitute this value into the equation:

0.91 + q = 1

Solving for q, we find:

q = 1 - 0.91 = 0.09

Therefore, the frequency of the allele for non-tasting PTC in the population is 0.09 or 9%.

It's important to note that this calculation assumes the population is in Hardy-Weinberg equilibrium, meaning that the assumptions of random mating, no mutation, no migration, no natural selection, and a large population size are met. In reality, populations may deviate from these assumptions, which can affect allele frequencies. Additionally, this calculation provides an estimate based on the given information, but actual allele frequencies may vary in different populations or geographic regions.

learn more about frequency here

https://brainly.com/question/29739263

#SPJ11

staA study conducted by the Center for Population Economics at the University of Chicago studied the birth weights of 1000 babies born in New York. The mean weight was 3234 grams with a standard deviation of 871 grams. Assume that the shape of birth weight data distribution is unimodal and symmetric. Find the approximate percentage of newborns who weighted less than 4105 grams. Find the nearest answer.

Answers

The given problem involves finding the approximate percentage of newborns who weighed less than 4105 grams given the mean weight and standard deviation. To do this, we need to find the z-score which is calculated using the formula z = (x - μ) / σ where x is the weight we are looking for. Plugging in the values, we get z = (4105 - 3234) / 871 = 0.999.

Next, we need to find the area under the normal curve to the left of z = 0.999 which is the probability of newborns weighing less than 4105 grams. Using a standard normal distribution table or calculator, we find that the area to the left of z = 0.999 is 0.8413. Therefore, the approximate percentage of newborns who weighed less than 4105 grams is 84.13% rounded to two decimal places, which is the nearest answer of 84%.

Know more about standard normal distribution here:

https://brainly.com/question/30390016

#SPJ11

Two canoes x and y started from a point z at the same time, x sails at 35 km/hr on a bearing of 230° while y at 30km/hr on a bearing of 320°. If the canoe sails for 2.5 hours find, correct to one decimal place (a) the distance between x and y. (b) the bearing of x from y​

Answers

a)  The distance between canoe X and Y is 87.5 km.

b) The bearing of X from Y is 90°.

To find the distance between canoes X and Y and the bearing of X from Y, we can use the given information:

Canoe X sails at 35 km/hr on a bearing of 230°, and canoe Y sails at 30 km/hr on a bearing of 320°. Both canoes sail for 2.5 hours.

To calculate the distance between X and Y, we can use the formula for distance:

Distance = Speed * Time

For canoe X:

Distance_X = Speed_X * Time = 35 km/hr * 2.5 hrs = 87.5 km

For canoe Y:

Distance_Y = Speed_Y * Time = 30 km/hr * 2.5 hrs = 75 km

Therefore, the distance between canoe X and Y is 87.5 km.

To find the bearing of X from Y, we need to calculate the angle between their paths. We can use trigonometry to find this angle.

Let's start with canoe X's bearing of 230°. Since the angle is measured clockwise from the north, we need to convert it to the standard unit circle form. To do that, subtract 230° from 360°:

Angle_X = 360° - 230° = 130°

Similarly, for canoe Y's bearing of 320°:

Angle_Y = 360° - 320° = 40°

Now we have two angles, Angle_X and Angle_Y. To find the bearing of X from Y, we subtract Angle_Y from Angle_X:

Bearing_X_from_Y = Angle_X - Angle_Y = 130° - 40° = 90°

Therefore, the bearing of X from Y is 90°.

for such more question on distance

https://brainly.com/question/12356021

#SPJ8

if angle B and angle q are acute angles such that sinB=sinQ then prove that angle B = angle Q

Answers

If sin B = sinQ then angle B = angle Q

What is trigonometric ratio?

Trigonometric Ratios are defined as the values of all the trigonometric functions based on the value of the ratio of sides in a right-angled triangle.

Trigonometric ratio is applied to right triangles. If one side is already 90°, them the two angles will be an acute angle. An acute angle is am angle that is not upto 90°.

Therefore for Sin B to be equal to SinQ then it shows the two acute angles in the right triangles are thesame.

Therefore ;

90+ x +x = 180

90 + 2x = 180

2x = 180 -90

2x = 90

x = 90/2

x = 45°

This means that B and Q are both 45°

learn more about trigonometric ratio from

https://brainly.com/question/24349828

#SPJ1

a pair tests defective if at least one of the two cips is defective, and not defective otherwise. if (a,b), (a,c) are tested defective, what is minimum possible probability that chip a is defective

Answers

The minimum possible probability that chip A is defective can be calculated using conditional probability. Given that chips (A, B) and (A, C) are tested defective, the minimum possible probability that chip A is defective is 1/3.

Let's consider the different possibilities for the status of chips A, B, and C.

Case 1: Chip A is defective.

In this case, both (A, B) and (A, C) are tested defective as stated in the problem.

Case 2: Chip B is defective.

In this case, (A, B) is tested defective, but (A, C) is not tested defective.

Case 3: Chip C is defective.

In this case, (A, C) is tested defective, but (A, B) is not tested defective.

Case 4: Neither chip A, B, nor C is defective.

In this case, neither (A, B) nor (A, C) are tested defective.

From the given information, we know that at least one of the pairs (A, B) and (A, C) is tested defective. Therefore, we can eliminate Case 4, as it contradicts the given data.

Among the remaining cases (Case 1, Case 2, and Case 3), only Case 1 satisfies the condition where both (A, B) and (A, C) are tested defective.

Hence, the minimum possible probability that chip A is defective is the probability of Case 1 occurring, which is 1/3.

To know more about Probability visit-

brainly.com/question/31828911

#SPJ11

if one order is​ selected, find the probability of getting an order from restaurant a or an order that is not accurate. express your answer as a percentage rounded to the nearest hundredth without the % sign.

Answers

The probability of getting an order from restaurant A or an order that is not accurate is 70%.

To find the probability of getting an order from restaurant A or an order that is not accurate, you need to add the individual probabilities of these two events occurring.

Let's assume the probability of getting an order from restaurant A is p(A), and the probability of getting an inaccurate order is p(Not Accurate).

The probability of getting an order from restaurant A or an order that is not accurate is given by the equation:

p(A or Not Accurate) = p(A) + p(Not Accurate)

To express the answer as a percentage rounded to the nearest hundredth without the % sign, you would convert the probability to a decimal, multiply by 100, and round to two decimal places.

For example, if p(A) = 0.4 and p(Not Accurate) = 0.3, the probability would be:

p(A or Not Accurate) = 0.4 + 0.3 = 0.7

Converting to a percentage: 0.7 * 100 = 70%

So, the probability of getting an order from restaurant A or an order that is not accurate is 70%.

Know more about probability  here:

https://brainly.com/question/30390037

#SPJ11



Find the population density of gaming system owners if there are 436,000 systems in the United States and the area of the United States is 3,794,083 square miles.

Answers

To find the population density of gaming system owners, we need to divide the number of gaming systems by the area of the United States.

Population density is typically measured in terms of the number of individuals per unit area. In this case, we want to find the density of gaming system owners, so we'll calculate the number of gaming systems per square mile.

Let's denote the population density of gaming system owners as D. The formula to calculate population density is:

D = Number of gaming systems / Area

In this case, the number of gaming systems is 436,000 and the area of the United States is 3,794,083 square miles.

Substituting the given values into the formula:

D = 436,000 systems / 3,794,083 square miles

Calculating this division, we find:

D ≈ 0.115 systems per square mile

Therefore, the population density of gaming system owners in the United States is approximately 0.115 systems per square mile.

To know more about population density visit:

https://brainly.com/question/16894337

#SPJ11

The midpoint rule for estimating a definite integral uses a Riemann sum with subintervals of equal width and the ________________, of each subinterval in place of

Answers

The midpoint rule for estimating a definite integral uses a Riemann sum with subintervals of equal width and the midpoint, or the value at the center, of each subinterval in place of the function values.

The midpoint rule is a method for approximating the value of a definite integral using a Riemann sum. It involves dividing the interval of integration into subintervals of equal width and evaluating the function at the midpoint of each subinterval.

Here's how the midpoint rule works:

Divide the interval of integration [a, b] into n subintervals of equal width, where the width of each subinterval is given by Δx = (b - a) / n.

Find the midpoint of each subinterval. The midpoint of the k-th subinterval, denoted as x_k*, can be calculated using the formula:

x_k* = a + (k - 1/2) * Δx

Evaluate the function at each midpoint to obtain the function values at those points. Let's denote the function as f(x). So, we have:

f(x_k*) for each k = 1, 2, ..., n

Use the midpoint values and the width of the subintervals to calculate the Riemann sum. The Riemann sum using the midpoint rule is given by:

R = Δx * (f(x_1*) + f(x_2*) + ... + f(x_n*))

The value of R represents an approximation of the definite integral of the function over the interval [a, b].

The midpoint rule provides an estimate of the definite integral by using the midpoints of each subinterval instead of the function values at the endpoints of the subintervals, as done in other Riemann sum methods. This approach can yield more accurate results, especially for functions that exhibit significant variations within each subinterval.

To know more about definite integral,

https://brainly.com/question/30479817

#SPJ11

Demand over the past three months has been 700, 750, and 900. Using a three-month moving average, what is the forecast for month four?

Answers

The three-month moving average is calculated by adding up the demand for the past three months and dividing the sum by three.

To calculate the forecast for month four, we need to find the average of the demand over the past three months: 700, 750, and 900.

Step 1: Add up the demand for the past three months:
700 + 750 + 900 = 2350

Step 2: Divide the sum by three:
2350 / 3 = 783.33 (rounded to two decimal places)

Therefore, the forecast for month four, based on the three-month moving average, is approximately 783.33.

Keep in mind that the three-month moving average is a method used to smooth out fluctuations in data and provide a trend. It is important to note that this forecast may not accurately capture sudden changes or seasonal variations in demand.



Describe the number and types of planes that produce reflection symmetry in the solid. Then describe the angles of rotation that produce rotation symmetry in the solid.


hemisphere

Answers

A hemisphere is a three-dimensional shape that is half of a sphere. It has a curved surface and a flat circular base.

When it comes to reflection symmetry, a hemisphere has an infinite number of planes that can produce reflection symmetry. Any plane that passes through the center of the hemisphere will divide it into two equal halves that are mirror images of each other. These planes can be oriented in any direction, resulting in an infinite number of reflection symmetries.

On the other hand, a hemisphere has rotational symmetry. It has a rotational axis that passes through its center and is perpendicular to its base. This axis allows the hemisphere to be rotated by any angle around it and still maintain its original shape.

Therefore, the angles of rotation that produce rotation symmetry in a hemisphere are any multiple of 360 degrees divided by the number of equally spaced positions around the axis. In the case of a hemisphere, since it is a half of a sphere, it has rotational symmetry of order 2, meaning it can be rotated by 180 degrees around its axis and still appear the same.

To know more about hemisphere visit:

https://brainly.com/question/501939

#SPJ11



Use a half-angle identity to find the exact value of each expression. sin 7.5°

Answers

Using the half-angle identity, we found that the exact value of sin 7.5° is 0.13052619222.

This was determined by applying the half-angle formula for sine, sin (θ/2) = ±√[(1 - cos θ) / 2].

To find the exact value of sin 7.5° using a half-angle identity, we can use the half-angle formula for sine:

sin (θ/2) = ±√[(1 - cos θ) / 2]

In this case, θ = 15° (since 7.5° is half of 15°). So, let's substitute θ = 15° into the formula:

sin (15°/2) = ±√[(1 - cos 15°) / 2]

Now, we need to find the exact value of cos 15°. We can use a calculator to find an approximate value, which is approximately 0.96592582628.

Substituting this value into the formula:

sin (15°/2) = ±√[(1 - 0.96592582628) / 2]
             = ±√[0.03407417372 / 2]
             = ±√0.01703708686
             = ±0.13052619222

Since 7.5° is in the first quadrant, the value of sin 7.5° is positive.

sin 7.5° = 0.13052619222


To know more about the half-angle identity visit:

https://brainly.com/question/14308845

#SPJ11

Right triangle abc is located at a (−1, 4), b (−1, 1), and c (−5, 1) on a coordinate plane. what is the equation of a circle a with radius segment ac? (x 1)2 (y − 4)2 = 9 (x 5)2 (y − 1)2 = 25 (x 5)2 (y − 1)2 = 16 (x 1)2 (y − 4)2 = 25

Answers

The equation of the circle is[tex](x + 1)^2 + (y - 4)^2 = 25.[/tex]

The equation of a circle with center (x1, y1) and radius r is given by [tex](x - x1)^2 + (y - y1)^2 = r^2.[/tex]

In this case, the center of the circle is point A, which has coordinates (-1, 4). The radius of the circle is the length of segment AC, which is the distance between points A and C.

To find the length of segment AC, we can use the distance formula:

[tex]d = sqrt((x2 - x1)^2 + (y2 - y1)^2)[/tex]

In this case, (x1, y1) = (-1, 4) and (x2, y2) = (-5, 1).

[tex]d = sqrt((-5 - (-1))^2 + (1 - 4)^2)  \\ = sqrt((-4)^2 + (-3)^2) \\  = sqrt(16 + 9)\\   = sqrt(25) \\  = 5[/tex]

So, the radius of the circle is 5.

Plugging in the values into the equation of a circle, we get:

(x - (-1))^2 + (y - 4)^2 = 5^2
(x + 1)^2 + (y - 4)^2 = 25

Therefore, the equation of the circle is[tex](x + 1)^2 + (y - 4)^2 = 25.[/tex]

, the equation of the circle with radius segment AC is[tex](x + 1)^2 + (y - 4)^2 = 25[/tex].

To know more about values visit:

https://brainly.com/question/30145972

#SPJ11



Simplify each trigonometric expression. sin² csc θ secθ

Answers

The reciprocal identity for sine is cscθ = 1/sinθ, and the reciprocal identity for secant is secθ = 1/cosθ. The simplified form of the expression sin² csc θ secθ is 1/cosθ.

To simplify the trigonometric expression

sin² csc θ secθ,

we can use the reciprocal identities.
Recall that the reciprocal identity for sine is

cscθ = 1/sinθ,

and the reciprocal identity for secant is

secθ = 1/cosθ.
So, we can rewrite the expression as

sin² (1/sinθ) (1/cosθ).
Next, we can simplify further by multiplying the fractions together.

This gives us (sin²/cosθ) (1/sinθ).
We can simplify this expression by canceling out the common factor of sinθ.
Therefore, the simplified form of the expression sin² csc θ secθ is 1/cosθ.

To know more about expression visit:

https://brainly.com/question/28170201

#SPJ11



Solve each trigonometric equation for θ with 0≤θ<2π . sin(π/2-θ)=-cos (-θ)

Answers

The solution for the trigonometric equation sin(π/2-θ)=-cos(-θ) with 0≤θ<2π is θ = π/2 or θ = 3π/2.

To solve the trigonometric equation sin(π/2-θ)=-cos(-θ), we can simplify the equation using trigonometric identities and then solve for θ.

First, we can apply the identity sin(π/2-θ) = cos(θ) to the left side of the equation, resulting in cos(θ) = -cos(-θ).

Next, we can utilize the even property of cosine, which states that cos(-θ) = cos(θ), to simplify the equation further: cos(θ) = -cos(θ).

Now, we have an equation that relates cosine values. To find the values of θ that satisfy this equation, we can examine the unit circle.

On the unit circle, cosine is positive in the first and fourth quadrants, while it is negative in the second and third quadrants. Therefore, the equation cos(θ) = -cos(θ) is satisfied when θ is equal to π/2 (first quadrant) or θ is equal to 3π/2 (third quadrant).

Since the problem specifies that 0≤θ<2π, both solutions θ = π/2 and θ = 3π/2 fall within this range.

In conclusion, the solution for the trigonometric equation sin(π/2-θ)=-cos(-θ) with 0≤θ<2π is θ = π/2 or θ = 3π/2.

Learn more about Trigonometric

brainly.com/question/29156330

#SPJ11

Other Questions
The United States did not intervene in Bosnia until after what peace accord was reached? Spending 5 weeks on endurance training, followed by 5 weeks on strength training, followed by 5 weeks of both strength and endurance training is an example of If the production possibilities frontier (ppf ) has banking services on the vertical axis and ice cream on the horizontal axis, the effect of the change reflects:_______ resisting blackness, embracing rightness: how muslim arab sudanese women negotiate their identity in the diaspora Which device is able to stop activity that is considered to be suspicious based on historical traffic patterns? g A ca r sta rts from rest at a stop sign. It accelerates at 4.0 m/s 2 for 6.0 s, coasts for 2.0 s, and then slows down at a rate of 3.0 m/s 2 for the next stop sign. How far apart are the stop signs In 24 hours, 110 l of water pass through a sponge. what is the rate of waterflow. Evaluate The 15th, 19th, and 26th amendments give voting rights to specific groups. Why was it necessary for Congress to spell out these groups rights in amendments? For the reported losses of an insured group to become more likely to equal the statistical probability of? Describe carbohydrate digestion and absorption, beginning in the mouth. What role does fiber play in the process? How will an increase in business taxes affect per-unit production costs, short-run aggregate supply, the price level, and real GDP Diminishing marginal product a. suggests that the marginal cost of an extra worker is unchanged. b. suggests that the marginal product of an extra worker is less than the previous worker's marginal product. c. suggests that the marginal product of an extra worker is greater than the previous worker's marginal product. d. suggests that the marginal cost of an extra worker is less than the previous worker's marginal cost Which patriot leader persuaded bostonians to create the first committee of correspondence? What are the two things involved in the leadership challenge to consistently achieve good strategy execution John, the nurse practitioner is prescribing fosamax for his patient. bisphosphonate administration education includes? A student planning a party has $20 to spend on her favorite soft drink. it is on sale at store a for $1.29 for a 2-l bottle (plus 10-cent deposit); at store b the price of a 12-pack of 12 fl oz cans is $2.99 (plus a 5-cent deposit per can). at which store can she buy the most of her favorite soft drink for no more than $20 What is the gas formed when oxalyl chloride is added to triethylamine and benzaldehyde? What tests should be performed routinely on digital radiography detectors? The part of the dental dam clamp that encircles the tooth and must be firmly seated to stabilize the clamp is the:_______. 79/40-162.5% enter the answer as an exact decimal or simplified fraction. please fast