Answer:
w = 6.325 rad/s
Explanation:
Given the following data;
Mass = 2kg
Radius, r = 10m
Centripetal force = 800N
To find the angular velocity of the car;
First of all, we would use the following formula to solve for the speed of the car;
Centripetal force = mv²/r
800 = 2*v²/10
Cross-multiplying, we have;
8000 = 2v²
4000 = v²
Taking the square root of both sides, we have;
v = √4000
v = 63.25 m/s
Next, we find the angular velocity, w using the formula below;
w = v/r
w = 63.25/10
w = 6.325 rad/s
PLEASE HELP !!!!!!!!!!
Answer:
1
Explanation:
15. Explain how the atomic mass of an element is
affected by the distribution of its isotopes in nature.
Answer:
The atomic mass of an element is affected by the distribution of its isotopes because each isotope of an element has a different number of neutrons in the nuclei of its atoms.
Explanation:
please give me brainlyiest if its right
Consider a pulley of mass mp and radius R that has a moment of inertia 1/2mpR2. The pulley is free to rotate about a frictionless pivot at its center. A massless string is wound around the pulley and the other end of the rope is attached to a block of mass m that is initially held at rest on frictionless inclined plane that is inclined at an angle β with respect to the horizontal. The downward acceleration of gravity is g. The block is released from rest .
How long does it take the block to move a distance d down the inclined plane?
Write your answer using some or all of the following: R, m, g, d, mp,
Answer:
a = [tex]\frac{m}{m+ \frac{1}{2} m_p} \ g \ sin \beta[/tex] , t = [tex]\sqrt{ \frac{2d}{a} }[/tex]
Explanation:
To solve this exercise we must use Newton's second law
For the block
let's set a reference system with the x axis parallel to the plane
X axis
Wₓ - T = m a
Y axis
N- W_y = 0
N = W_y
for pulley
∑τ = I α
T R = (½ m_p R²) α
let's use trigonometry for the weight components
sin β = Wₓ / W
cos β = W_y / W
Wx = W sin β
angular and linear variables are related
a = α R
α = a / R
we substitute and group our equations
W sin β - T = m a
T R = ½ m_p R² (a / R)
W sin β - T = m a
T = ½ m_p a
we solve the system of equations
W sin β = (m + ½ m_p) a
a = [tex]\frac{m}{m+ \frac{1}{2} m_p} \ g \ sin \beta[/tex]
let's find the time to travel the distance (d) through the block
x = v₀ t + ½ a t²
d = 0 + ½ a t²
t = [tex]\sqrt{ \frac{2d}{a} }[/tex]
Two resistors are connected in parallel. If R1 and R2 represent the resistance in Ohms (Ω) of each resistor, then the total resistance R is given by 1R=1R1+1R2. Suppose that in fact, these two resistors are actually potentiometers (resistors with variable resistance) and R1 is increasing at a rate of 0.4Ω/min and R2 is increasing at a rate of 0.6Ω/min. At what rate is R changing when R1=117Ω and R2=112Ω?
Answer:
1/Re= 1/R1 + 1/R2
Explanation:
Two resistors are connected in parallel. If R1 and R2 represent the resistance in Ohms (Ω) of each resistor, then the total resistance R is given by [tex]\mathbf{\dfrac{1}{R}=\dfrac{1}{R_1}+\dfrac{1}{R_2}}[/tex]. Thus, the rate of R changes when R₁ = 117 Ω and
R₂ = 112 Ω is 0.25 Ω/min
For a given resistor connected in parallel;
[tex]\mathbf{\dfrac{1}{R}=\dfrac{1}{R_1}+\dfrac{1}{R_2}}[/tex]
Making R from the left-hand side the subject of the formula, then:
[tex]\mathbf{R = \dfrac{R_1R_2}{R_1+R_2}}[/tex]
Given that:
[tex]\mathbf{R_1 = 117,}[/tex] [tex]\mathbf{R_2 = 112 }[/tex]Now, replacing the values in the above previous equation, we have:
[tex]\mathbf{R = \dfrac{13104}{229}}[/tex]
However, the differentiation of R with respect to time t will give us the rate at which R is changing when R1=117Ω and R2=112Ω.
So, by differentiating the given equation of the resistor in parallel with respect to time t;
[tex]\mathbf{\dfrac{1}{R}=\dfrac{1}{R_1}+\dfrac{1}{R_2}}[/tex], we have:
[tex]\mathbf{\dfrac{1}{R^2}(\dfrac{dR}{dt})=\dfrac{1}{R_1^2}(\dfrac{dR_1}{dt})+\dfrac{1}{R_2^2}(\dfrac{dR_2}{dt})}[/tex]
[tex]\mathbf{(\dfrac{dR}{dt})=R^2 \Bigg[ \dfrac{1}{R_1^2}(\dfrac{dR_1}{dt})+\dfrac{1}{R_2^2}(\dfrac{dR_2}{dt})\Bigg]}[/tex]
[tex]\mathbf{\dfrac{dR}{dt}=(\dfrac{13104}{229})^2 \Bigg[ \dfrac{0.4}{117^2}+\dfrac{0.6}{112^2}\Bigg]}[/tex]
[tex]\mathbf{\dfrac{dR}{dt}=3274.44 \Bigg[ (7.7052 \times 10^{-5} )\Bigg]}[/tex]
[tex]\mathbf{\dfrac{dR}{dt}=0.25\ \Omega /min}[/tex]
Therefore, we can conclude that the rate at which R is changing R1=117Ω and R2=112Ω is 0.25 Ω/min
Learn more about resistors here:
https://brainly.com/question/17390255?referrer=searchResults
A 3kg horizontal disk of radius 0.2m rotates about its center with an angular velocity of 50rad/s. The edge of the horizontal disk is placed in contact with a wall, and the disk comes to rest after 10s. Which of the following situations associated with linear impulse is analogous to the angular impulse that is described?
a. A 3kg block is initially at rest. An applied force of 3N is applied to the block, but the block does not move.
b. A 3kg block is initially at rest. A net force of 3N is applied to the block until it has a speed of 10m/s.
c. A 3kg block is initially traveling at 10m/s. An applied force of 3N is applied to the block in the direction of its velocity vector for 10s.
d. A 3kg block is initially traveling at 10m/s. The block encounters a 3N frictional force until the block eventually stops.
Answer:
D
Explanation:
From the information given:
The angular speed for the block [tex]\omega = 50 \ rad/s[/tex]
Disk radius (r) = 0.2 m
The block Initial velocity is:
[tex]v = r \omega \\ \\ v = (0.2 \times 50) \\ \\ v= 10 \ m/s[/tex]
Change in the block's angular speed is:
[tex]\Delta _{\omega} = \omega - 0 \\ \\ = 50 \ rad/s[/tex]
However, on the disk, moment of inertIa is:
[tex]I= mr^2 \\ \\ I = (3 \times 0.2^2) \\ \\ I = 0.12 \ kgm^2[/tex]
The time t = 10s
∴
Frictional torques by the wall on the disk is:
[tex]T = I \times (\dfrac{\Delta_{\omega}}{t}) \\ \\ = 0.12 \times (\dfrac{50}{10}) \\ \\ =0.6 \ N.m[/tex]
Finally, the frictional force is calculated as:
[tex]F = \dfrac{T}r{}[/tex]
[tex]F= \dfrac{0.6}{0.2} \\ \\ F = 3N[/tex]
Calculate the velocity of a wave that has a frequency of 60 Hz and wavelength of 2.0 m/s
Answer:We have , a relation in frequency f and wavelength λ of a wave having the velocity v as ,
v=fλ ,
given f=60Hz , λ=20m ,
therefore velocity of wave , v=60×20=1200m/s
Which of the following is an example of heat transfer by conduction?
A. Heat is transferred to the air above a candle flame.
B. Heat is transferred to the soil on a sunny day.
c. Heat is transferred to your hand from a warm cup.
D. Heat is transferred to the air from a warm lightbulb.
Answer:
option c
Heat is transferred to your hand from a warm cup
conduction is the process of transferring of heat from one material to another when they are in contact
hope it helps
PHYSICS HELP
PLEASE HELP ITS ABOUT ATWOOD MACHINES
Answer:
7.23407 [tex]\frac{m}{s^2}[/tex]
Explanation:
(I will not include units in calculations)
I'm assuming FBD's are already drawn, so I will work from there.
Let the 2.2kg block equal [tex]m_2[/tex], and the 20kg block equal [tex]m_1[/tex].
Summation equation for [tex]m_2[/tex]: [tex]\sum F_x=F_t_2-(F_f+F_g_x)=m_2a[/tex], [tex]\sum F_y=F_n-F_g_y=0[/tex]
Summation equation for [tex]m_1[/tex]: [tex]\sum F_y=F_g-F_t_1=m_1a[/tex]
Torque Summation Equation: [tex]\sum\tau=F_t_1*r-F_t_2*r=I\alpha[/tex]
Do some plugging in with the values given: [tex]\sum\tau=F_t_1*r-F_t_2*r=.5Mr^2\alpha[/tex]
Replace [tex]\alpha[/tex] with [tex]\frac{a}{r}[/tex], and cancel out the r's.
[tex]\sum\tau=F_t_1-F_t_2=.5Ma[/tex]
This step is important: Rearrange the force summation equation to solve for each tension force.
[tex]F_t_2=m_2a+F_f+F_g_x\\F_t_1=m_1g=m_1a[/tex]
Perform Substitution: [tex]\sum\tau=m_1g-m_1a-(m_2a+F_f+F_g_x)=.5Ma[/tex]
Now, we need to find the friction force and the horizontal component of the force of gravity.
Note that [tex]F_f=[/tex]μ[tex]F_n[/tex]
And based on our earlier summation equation: [tex]F_n=F_g_y[/tex]
First, break [tex]F_g[/tex] into x and y components. [tex]F_g_y=F_g\cos(\theta)[/tex], [tex]F_g_x=F_g\sin(\theta)[/tex]
Perform substitution with this and the fact that [tex]F_g=mg[/tex].
[tex]\sum\tau=m_1g-m_1a-(m_2a+\mu*m_2g\cos(\theta)+m_2g\sin(\theta))=.5Ma[/tex]
Solving for a, plugging in numbers yields an answer of 7.23407 [tex]\frac{m}{s^2}[/tex]
Answer:
7.23407
Explanation:
easy
does altitude has an effect on weight? HELP
Answer: lose weight at high altitudes.
Explanation:
Answer:
Just a week at high altitudes can cause sustained weight loss, suggesting that a mountain retreat could be a viable strategy for slimming down. Overweight, sedentary people who spent a week at an elevation of 8,700 feet lost weight while eating as much as they wanted and doing no exercise
someone painted the building last year.into passive
Answer:
The building was Painted
The building was painted last year by someone.
All EM waves (light waves) travel at the same speed through the vacuum of space. If the different types of waves are distinguished by their frequency, what basic characteristic of the waves determines their difference
Answer:
Their different wavelengths.
Explanation:
trust me
All EM waves (light waves) travel at the same speed through the vacuum of space. If the different types of waves are distinguished by their frequency, the basic characteristic of the waves that determine their difference is the wavelength of the electromagnetic waves.
What is Wavelength?It can be understood in terms of the distance between any two similar successive points across any wave for example wavelength can be calculated by measuring the distance between any two successive crests.
It is the total length of the wave for which it completes one cycle.
The wavelength is inversely proportional to the frequency of the wave as from the following relation.
C = νλ
where c is the speed of light
ν is the frequency of the wave
λ is the wavelength of the wave
As we know electromagnetic waves (light waves) travel at the same speed through the vacuum of space which is the speed of light which is 3×10⁸ meter/second
All EM waves (light waves) travel at the same speed through the vacuum of space. If the different types of waves are distinguished by their frequency, the basic characteristic of the waves that determine their difference is the wavelength of the electromagnetic waves.
Learn more about wavelength from here
brainly.com/question/7143261
#SPJ2
Plz help
What factors determine
how the speed of the marbles changes in a
collision?
Answer:
Force,friction,inertia and momentum
Explanation:
The speed that the marble is moving at can be determined by the amount of force used when pushed or pulled and what kind of surface it's on.Momentum is also a factor because of the mass of the marbles.
The plates of a capacitor are charged using a battery, and they produce an electric field across the separation distance d between them. The two plates are now to be pushed together to a separation of d/2. The pushing together can be done either with the battery connected or with it disconnected. In which case, with the battery connected or disconnected. Is the electric field magnitude greater with the battery connected with the battery disconnected?
Answer:
Explanation:
The equation of the capacitance of the capacitor can be represented as:
[tex]C = \dfrac{\varepsilon_oA}{d}[/tex]
Also, the electric field between the plates can be expressed as:
[tex]E = \dfrac{\sigma}{\varepsilon_o}[/tex]
[tex]= \dfrac{Q}{A \varepsilon _o} \ \ (surface \ charge\ density \ \sigma =\dfrac{Q}{\varepsilon_o})[/tex]
However;
when pushed to a distance d/2, the new capacitance of the capacitor is:
[tex]C = \dfrac{\varepsilon _oA}{(d/2))}[/tex]
[tex]=\dfrac{2 \varepsilon_oA}{d}[/tex]
[tex]=2C \\ \\ Q' = CV \\ \\ = 2CV \\ \\ =2Q[/tex]
SImilarly, the new electric field between the plates is:
[tex]E' = \dfrac{\sigma'}{\varepsilon_o} \\ \\ = \dfrac{Q'}{A \varepsilon_o} \\ \\ = \dfrac{2Q}{A \varepsilon_o} \\ \\ =2E[/tex]
For Battery disconnected:
The electric field between the plates doesn't rely upon the distance between the plates yet relies upon the magnitude of the charge. At the point when the battery is detached, the charge on the capacitor stays as before, so does the electric field.
Therefore, the magnitude of the electric field when the battery is associated is twice however much the magnitude of the electric field when the battery is separated and disconnected.
Hence, the ratio is :
[tex]\dfrac{E_{connected}}{E_{disconnected}} =\dfrac{2E}{E} \\ \\ \dfrac{E_{connected}}{E_{disconnected}} = 2[/tex]
Hence, the ratio is = 2
Please help due today
Answer:
8
Explanation:
(8√2)² = x² + x²
8² × √2² = 2x²
64 × 2 = 2x²
128 = 2x²
64 = x²
x = 8
give me brainliest please
Fluid mechanics questions and answers
Answer:
Fluid mechanics is considered one of the toughest subdisciplines within mechanical and aerospace engineering. It is unique from almost any other field an undergraduate engineer will encounter. It requires viewing physics in a new light, and that's not always an easy jump to make.
sample of pure boron contains only isotope X and isotope Y.
A nucleus of X has more mass than a nucleus of Y.
[o[4].[4] The sample is ionised, producing ions each with a charge of +1.6 x 10°C.
The specific charge of an ion of X is 8.7 x 10°C kg".
Calculate the mass of an ton of X.
[1 mark]
h
mass of ion = kg
[4].[2] Determine the number of nucleons in a nucleus of X.
mass of a nucleon = 1.7 x 1077 kg
[2 marks]
h
number of nucleons =
[o[4].[3] Compare the nuclear compositions of X and Y.
[2 marks]
[o[4].[4] lons of Y have the same charge as ions of X.
State and explain how the specific charge of an ion of X compares with that of an
ion of Y.
[2 marks]
Answer:
[tex]1.84[/tex]×[tex]10^{-26}[/tex]
Explanation:
specific charge = [tex]\frac{charge}{mass}[/tex] so by rearranging for mass we get
mass= [tex]\frac{charge}{sepcifc charge}[/tex]
[tex]\frac{1.6×10^{-26} }{1.7×10^{-27} }[/tex] = answer in kg
Does latitude has an effect on weight? PLEASE HELP!
Answer:
yes
it does you weigh less on the equator than at the North or South Pole, but the difference is small. Note that your body itself does not change. Rather it is the force of gravity and other forces that change as you approach the poles. These forces change right back when you return to your original latitude.
Look at the attached photo:
Answer:
C) Mass of the ball
Explanation:
Independent variable is the variable the researcher changes.
Since Martin is testing the mass of the ball, he'll be using different balls and that is the only thing he changes.
The distance traveled by the ball is the dependent variable since it depends on the mass of the ball.
The height and length of the ramp are the constant variables since that's the only ones that remain the same throughout this experiment.
It is almost as if each outer planet is a solar system in its own right.
True or False
calculate power disspated by the element of an electric fire (heater) of resistance 30 ohms when a
current of 10 amps flows in it. if is on for 30 hours in a week determine the energy used. determine the weekly cost of energy if eletricity costs K 13 per unit
Answer:
Weekly cost = K 8,190
Explanation:
Given the following data;
Resistance, R = 30 Ohms
Current, I = 10 Amps
Time, t = 30 hours
Cost = K13
I. To find the power dissipated;
Power = current² * resistance
Power = 10² * 30
Power = 100 * 30
Power = 3000 Watts
II. To find the energy consumption;
Energy = power * time
Energy = 3000 * 30
Energy = 90,000 Watt-hour = 90 KWh (1 Kilowatts is equal to 1000 watts).
III. To find the weekly cost;
Daily cost = Energy consumption * cost
Daily cost = 90 * 13
Daily cost = K 1170
Therefore, weekly cost = 1170 * 7
Weekly cost = K 8,190
what must be the mass of a rock if a boy applies a 64N force and causes it to accelerate at 4.51m/s2
first of all the formula of force is F=ma,so we are searching for m,so we can divide a on both sides F/a=m, after this substitute the values given above 64N/4.51=14.2°Kg
Please help me someone !
Answer:
The object is moving at constant speed.
Explanation:
The spaces between the dots are equal.
Medical devices implanted inside the body are often powered using transcutaneous energy transfer (TET), a type of wireless charging using a pair of closely spaced coils. And emf is generated around a coil inside the body by varying the current through a nearby coil outside the body, producing a changing magnetic flux. Calculate the average induced emf, of each 10-turn coil has a radius of 1.50 cm and the current in the external coil varies from its maximum value of 10.0 A to zero in 6.25 x10-6s.
Answer:
[tex]0.475\ \text{V}[/tex]
Explanation:
n = Number of turns = 10
r = Radius = 1.5 cm
I = Current = 10 A
t = Time = [tex]6.25\times 10^{-6}\ \text{s}[/tex]
[tex]\mu_0[/tex] = Vacuum permeability = [tex]4\pi\times 10^{-7}\ \text{H/m}[/tex]
Magnetic field is given by
[tex]B=\dfrac{\mu_0I}{2r}\\\Rightarrow B=\dfrac{4\pi 10^{-7}\times 10}{2\times 1.5\times 10^{-2}}\\\Rightarrow B=0.00042\ \text{T}[/tex]
EMF is given by
[tex]\varepsilon=\dfrac{nBA}{t}\\\Rightarrow \varepsilon=\dfrac{10\times 0.00042\times \pi (1.5\times 10^{-2})^2}{6.25\times 10^{-6}}\\\Rightarrow \varepsilon=0.475\ \text{V}[/tex]
The average induced emf is [tex]0.475\ \text{V}[/tex].
does altitude has an effect on weight, yes or no
Answer: yes
Explanation:
Weight is the gravitational force experienced on a body. If you move up to higher altitudes, the distance between you and earth increases. ... Yes, weight drops as you go up in altitude (because of diminishing gravity), though your mass remains the same. However, the effect is not huge.
Why must you bend forward when carrying a
heavy load on your back?
1. The gravitational force has decreased.
2. Angular momentum has decreased.
3. The center of gravity has shifted.
4. Inertia has changed.
Answer:
hi I thinks its number 3
Explanation:
hope you have a nice day
Energy associated with moving objects or that could move later is?
Astronomers define the __________ as all of space and everything in it. It is enormous, almost beyond imagination. Question 2 options: galaxy none of these universe solar system
Answer:
Universe
Explanation:
I took the quiz.
In many places on Earth, humans are responsible for the removal of grasses, shrubs, trees, and other plants with roots that hold soil in place. This activity is best described by which of the following? *
A) deforestation
B) urbanization
C) air pollution
D) rise in sea level
Please help The position of masses 4kg, 6kg, 7kg, 10kg, 2kg, and 12kg are (-1,1), (4,2), (-3,-2), (5,-4), (-2,4) and (3,-5) respectively. Determine the position of the center of mass of this system?
Answer:
(1.9756, -2.1951)
Explanation:
The center of mass equation is: [tex]x_{cm}[/tex] = [tex]\frac{m_{1}x_{1} + m_{2}x_{2} + m_{3}x_{3} + m_{4}x_{4} + m_{5}x_{5} + m_{6}x_{6}}{m_{1} + m_{2} + m_{3} + m_{4} + m_{5} + m_{6}}[/tex], where m represents the masses and x represents the position.
In order to find the coordinates of the center of mass, we need to use this equation for both the x-values and the y-values.
x-values:
[tex]x_{cm}[/tex] = [tex]\frac{m_{1}x_{1} + m_{2}x_{2} + m_{3}x_{3} + m_{4}x_{4} + m_{5}x_{5} + m_{6}x_{6}}{m_{1} + m_{2} + m_{3} + m_{4} + m_{5} + m_{6}}[/tex] = [tex]\frac{4(-1)+6(4)+7(-3)+10(5)+2(-2)+12(3)}{4+6+7+10+2+12}[/tex] = [tex]\frac{(-4)+(24)+(-21)+(50)+(-4)+(36)}{41}[/tex] = [tex]\frac{81}{41}[/tex] = 1.9756
y-values:
[tex]y_{cm}[/tex] = [tex]\frac{m_{1}y_{1} + m_{2}y_{2} + m_{3}y_{3} + m_{4}y_{4} + m_{5}y_{5} + m_{6}y_{6}}{m_{1} + m_{2} + m_{3} + m_{4} + m_{5} + m_{6}}[/tex] = [tex]\frac{4(1)+6(2)+7(-2)+10(-4)+2(4)+12(-5)}{4+6+7+10+2+12}[/tex] = [tex]\frac{(4)+(12)+(-14)+(-40)+(8)+(-60)}{41}[/tex] = [tex]\frac{-90}{41}[/tex] = -2.1951
center of mass:
(1.9756, -2.1951)
A bowling ball and a baseball both roll across your foot at the same speed. The bowling ball hurts much more.
Which law of motion is this?
Answer:
Newtons second law
Explanation:
Depends on mass
Answer:
2nd law
Explanation:
:))))))))))))))