Angle of the beam after it enters the thick plastic sheet is 23.17 degrees Given, Angle of incidence, i = 36 degrees Refractive index,n = 1.7
Angle of refraction, r can be calculated by using Snell's law, which is given by;`
n = sin(i)/sin(r)`Rearrange the above equation,`
sin(r) = sin(i)/n`Substitute the given values of `i` and `n` in the above equation,
sin(r) = sin(36)/1.7Using scientific calculator,
sin(r) = 0.628
sin(r) = `sin^(-1)(0.628)`r = 39.31 degrees (approx)
Now, the angle of beam after it enters into the thick plastic sheet can be calculated using the relation,Angle of beam = 90 - r = 90 - 39.31 = 50.69 degrees≈ 23.17 degrees (approx) Therefore, the angle of the beam after it enters into the thick plastic sheet is 23.17 degrees.
To know more about that Angle visit:
https://brainly.com/question/30147425
#SPJ11
Part IV. Computational Questions (10'×2-20¹) 1. A CMOS inverter with minimum sized transistors has K. = 100 µA/V², K = 50 μA/V² and VTM = |VT|= 0.6 V. Assume Vpp = 3.3 V. What is the inverter sw
The inverter sw = VGSN(max) - VGSP(max)= 3.3 - 2.1= 1.2 V
A CMOS inverter with minimum-sized transistors has K = 100 µA/V², K = 50 μA/V², and VTM = |VT| = 0.6 V.
Assume Vpp = 3.3 V.
To find: The inverter sw.
The saturation current IDSAT for an nMOS transistor is given as
IDSATn = K. (VGS - VT)n²
Similarly, the saturation current IDSAT for a pMOS transistor is given as
IDSATp = K. (VGS - VT)p²
Where K is the process transconductance parameter, VGS is the gate-source voltage, and VT is the threshold voltage.
Using the given data for an inverter with minimum-sized transistors, we have,
Kn = 100 µA/V²,
VTN = |VT|n = 0.6 V (for nMOS), Kp = 50 µA/V², VTP = -|VT|p = -0.6 V (for pMOS), VDD = Vpp = 3.3 V
For the nMOS transistor, the maximum voltage VGSN(max) can be applied for the output voltage swing to be equal to VDD.
Therefore,VDSN = VGSN(max) = VDDFor the pMOS transistor, the maximum voltage VGSP(max) can be applied for the output voltage swing to be equal to 0 V (ground).
Therefore,VDSN = VDD - VGSP(max)
Now, substituting the given values and solving for the required parameters, we get
VGSN(max) = VDD = 3.3 V
VGSP(max) = VDD - VDSN = 3.3 - 2 × |VT|p= 3.3 - 2 × 0.6= 3.3 - 1.2= 2.1 V
Thus, the inverter sw = VGSN(max) - VGSP(max)= 3.3 - 2.1= 1.2 V
Learn more about transconductance visit:
brainly.com/question/32813569
#SPJ11
iii) An ideal Otto cycle has a mean effective pressure of 500 kPa and during the compression process the air is compressed from 0.090 m³ to 0.01 m³. The net work output of the cycle is kJ. (a) 500 (b) 90 (c) 250 (d) 40
The net work output of the cycle is -40 kJ (option d).
To calculate the net work output of an ideal Otto cycle, we can use the formula:
Net work output = MEP * Vc * (1 - (Vd / Vc))
Where:
MEP is the mean effective pressure
Vc is the volume at the end of the compression process
Vd is the volume at the end of the expansion process
Given that the mean effective pressure (MEP) is 500 kPa, the volume at the end of the compression process (Vc) is 0.01 m³, and the volume at the end of the expansion process (Vd) is 0.090 m³, we can calculate the net work output as follows:
Net work output = 500 kPa * 0.01 m³ * (1 - (0.090 m³ / 0.01 m³))
Net work output = 500 kPa * 0.01 m³ * (1 - 9)
Net work output = 500 kPa * 0.01 m³ * (-8)
Net work output = -40 kJ
Therefore, the net work output of the cycle is -40 kJ (option d).
To learn more about net work , click here: https://brainly.com/question/30899925
#SPJ11
MOSFET transistors are preferable for controlling large motors. Select one: a. True b. False
MOSFET transistors are preferable for controlling large motors which is true. MOSFETs are field-effect transistors that can switch high currents and voltages with very low power loss.
MOSFET transistors are preferable for controlling large motors. MOSFETs are field-effect transistors that can switch high currents and voltages with very low power loss. They are also very efficient, which is important for controlling motors that require a lot of power. Additionally, MOSFETs are relatively easy to drive, which makes them a good choice for DIY projects.
Here are some of the advantages of using MOSFET transistors for controlling large motors:
High current and voltage handling capability
Low power loss
High efficiency
Easy to drive
Here are some of the disadvantages of using MOSFET transistors for controlling large motors:
Can be more expensive than other types of transistors
Can be more difficult to find in certain sizes and packages
May require additional components, such as drivers, to operate properly
Overall, MOSFET transistors are a good choice for controlling large motors. They offer a number of advantages over other types of transistors, including high current and voltage handling capability, low power loss, high efficiency, and ease of drive.
To learn more about MOSFET click here
https://brainly.com/question/31503762
#SPJ11
The flow emerging from an aircraft exhaust nozzle is under-expanded, as shown. Calculate: a) Exhaust speed, V, in m/s b) Nozzle exit area, A, in m² c) Nozzle gross thrust, F, in kN po=20 kPa 9 = y =
The exhaust speed, V is 766.97 m/sb) The nozzle exit area, A is 0.024 m²c) The nozzle gross thrust, F is 14.16 kN
Chamber pressure, P0 = 20 kPa; Air Specific heat ratio, γ = 9Required: a) Exhaust speed, V, in m/s b) Nozzle exit area, A, in m² c) Nozzle gross thrust, F, in kN Formulae used: Ratio of specific heat (γ) = Cp / Cv.
Nozzle exit velocity, V = √(2γ/(γ-1) * R * T0 * (1 - (P2 / P0)^((γ-1)/γ)))
Nozzle exit area, A = m_dot / (ρ * V)Thrust, F = m_dot * V + (P2 - Pa) * A where, m_dot = mass flow rate, Pa = ambient pressure, R = universal gas constant = 8.314 kJ/kg.K, T0 = chamber temperature = 2000 K = 1726.85 °C = 3140.33 °F; Cv = Specific heat at constant volume, Cp = Specific heat at constant pressure Calculation:
Given, γ = 9Cv = R / (γ - 1) = 8.314 / 8= 1.03925 kJ/kg.KCp = γ * Cv = 9 * 1.03925 = 9.353 kJ/kg.K
a) The exhaust speed, V is given by the formula, V = √(2γ/(γ-1) * R * T0 * (1 - (P2 / P0)^((γ-1)/γ)))On solving, V = 766.97 m/s (approx).
b) The nozzle exit area, A is given by the formula, A = m_dot / (ρ * V)To calculate density, ρ we use the formula, P0 / (R * T0) = (20 * 10³) / (8.314 * 2000) = 1.202 kg/m³Now, m_dot = A * V * ρ = 0.02 * 766.97 * 1.202 = 18.484 kg/s.
Therefore, A = m_dot / (ρ * V) = 18.484 / (1.202 * 766.97) = 0.024 m² (approx).
c) The nozzle gross thrust, F is given by the formula, F = m_dot * V + (P2 - Pa) * A where, Pa = 101.325 kPa (ambient pressure)P2 = Pa = 101.325 kPa (because nozzle is operating at ambient pressure) .
On substituting the values, F = 18.484 * 766.97 + (101.325 - 101.325) * 0.024 = 14,162.24 N = 14.16224 k N ≈ 14.16 kN (approx) .
a) The exhaust speed, V is 766.97 m/sb) The nozzle exit area, A is 0.024 m²c) The nozzle gross thrust, F is 14.16 k N
We have calculated the exhaust speed, nozzle exit area, and nozzle gross thrust for the flow emerging from an aircraft exhaust nozzle that is under-expanded.
To know more about speed visit:
brainly.com/question/28224010
#SPJ11
Question 1 Why would it be advantageous to use helium in a supersonic wind tunnel as opposed to air? The smaller specific heat ratio of helium allows for a greater test section-to-throat area ratio The greater specific heat ratio of helium allows for a greater test section-to-throat area ratio The greater specific heat ratio of helium allows for a smaller test section-to-throat area ratio The smaller specific heat ratio of helium allows for a smaller test section-to-throat area ratio
The smaller specific heat ratio of helium allows for a greater test section-to-throat area ratio. In a supersonic wind tunnel, the test section is where the desired experiments or tests are conducted, and the throat is the narrowest part of the wind tunnel where the flow velocity reaches its maximum.
The test section-to-throat area ratio is an important parameter that affects the performance and capabilities of the wind tunnel.
The specific heat ratio, also known as the heat capacity ratio or adiabatic index, is a thermodynamic property that relates to the compression and expansion of a gas. In the context of a supersonic wind tunnel, the specific heat ratio determines how the gas behaves during the compression and expansion processes.
When it comes to using helium in a supersonic wind tunnel, its smaller specific heat ratio compared to air becomes advantageous. This is because a smaller specific heat ratio means that helium is less compressible than air. As a result, the flow in the wind tunnel experiences less compression and expansion as it passes through the throat and test section.
To learn more about, Supersonic winds, click here, https://brainly.com/question/30615011
#SPJ11
(c) Taking the Friedmann equation without the Cosmological Con- stant: kc2 à? a2 8AGP 3 a2 and a Hubble constant of 70 km/s/Mpc, determine the critical den- sity of the Universe at present, on the as
Given Friedmann equation without the Cosmological Constant is: kc²/ a² = 8πGρ /3a²where k is the curvature of the universe, G is the gravitational constant, a is the scale factor of the universe, and ρ is the density of the universe.
We are given the value of the Hubble constant, H = 70 km/s/Mpc.To find the critical density of the Universe at present, we need to use the formula given below:ρ_crit = 3H²/8πGPutting the value of H, we getρ_crit = 3 × (70 km/s/Mpc)² / 8πGρ_crit = 1.88 × 10⁻²⁹ g/cm³Thus, the critical density of the Universe at present is 1.88 × 10⁻²⁹ g/cm³.Answer: ρ_crit = 1.88 × 10⁻²⁹ g/cm³.
To know more about Cosmological visit:
https://brainly.com/question/902959
#SPJ11
Saturated ambient air with a db-temperature of 5°C and a mass flow rate of 0.9 kg/s is divided into two streams. One stream passes through a heating section and leaves it with a relative humidity of 25%. The conditions of the other stream that bypasses the heater remains unchanged. The two streams are then mixed to produce the supply air stream at 24°C. The pressure is constant at 101.3 kPa. Determine the partial pressure of water vapor of the heated air in kPa. Round your answer to 4 decimal places.
The partial pressure of water vapor in the heated air is approximately 7.936 kPa. To determine the partial pressure of water vapor in the heated air, we can use the concept of humidity ratio.
To determine the partial pressure of water vapor in the heated air, we can use the concept of humidity ratio.
First, we calculate the humidity ratio of the incoming air stream:
Using the psychrometric chart or equations, we find that at 5°C and 100% relative humidity, the humidity ratio is approximately 0.0055 kg/kg (rounded to four decimal places).
Next, we calculate the humidity ratio of the supply air stream:
At 24°C and 25% relative humidity, the humidity ratio is approximately 0.0063 kg/kg (rounded to four decimal places).
Since the mass flow rate of the supply air stream is 0.9 kg/s, the mass flow rate of water vapor in the supply air stream is:
0.0063 kg/kg * 0.9 kg/s = 0.00567 kg/s (rounded to five decimal places).
To convert the mass flow rate of water vapor to partial pressure, we use the ideal gas law:
Partial pressure of water vapor = humidity ratio * gas constant * temperature
Assuming the gas constant for water vapor is approximately 461.5 J/(kg·K), and the temperature is 24°C = 297.15 K, we can calculate:
Partial pressure of water vapor = 0.00567 kg/s * 461.5 J/(kg·K) * 297.15 K = 7.936 kPa (rounded to four decimal places).
Therefore, the partial pressure of water vapor in the heated air is approximately 7.936 kPa.
To learn more about partial pressure click here
https://brainly.com/question/13199169
#SPJ11
Handwritten solutions please
Question 3 Find the optimal mass for a three-stage launch vehicle that is required to lift a 4,000 kg payload to a speed of 10.0 km/s. The parameters of each stage are given below: Stage Specific Impu
The optimal mass for a three-stage launch vehicle that is required to lift a 4,000 kg payload to a speed of 10.0 km/s.
Payload mass m = 4000 kg, target speed v = 10.0 km/s
The three-stage launch vehicle has different stages that have specific impulse:
Specific impulse of the 1st stage = I1
= 300 s
Specific impulse of the 2nd stage = I2
= 350 s
Specific impulse of the 3rd stage = I3
= 400 s
Total specific impulse for the vehicle, Itotal, is given by:
Itotal = I1 + I2 + I3 = 300 + 350 + 400
= 1050 s
Now, let us assume that the mass of the vehicle at the beginning of the 1st stage is m1, the mass of the vehicle at the beginning of the 2nd stage is m2, and the mass of the vehicle at the beginning of the 3rd stage is m3.
Using the rocket equation, we can write down the equations for each stage as:
1st stage: v1 = Itotal g ln(m/m1)
2nd stage: v2 = Itotal g ln(m1/m2)
3rd stage: v = Itotal g ln(m2/m3)
where g is the acceleration due to gravity.
The total mass of the vehicle, M, is given by:
M = m + m1 + m2 + m3
Thus, the optimal mass of the three-stage launch vehicle can be found by minimizing the total mass M. This can be done using calculus by taking the derivative of M with respect to m1 and setting it equal to zero:
∂M/∂m1 = Itotal g (m/m1^2 - 1/m2) = 0
Solving for m1, we get:
m1 = √(m/m2)
The masses of the other stages can be found similarly by taking the derivatives with respect to m2 and m3:
∂M/∂m2 = Itotal g (m1/m2^2 - 1/m3)
= 0
∂M/∂m3 = Itotal g (m2/m3^2)
= 0
Solving these equations, we get:
m1 = √(m/m2)
m2 = √(m/m3)
m3 = m/√(m2 m1)
Substituting the values of specific impulse and target speed, we get:
m = 7.63 x 10^5 kg
Therefore, the optimal mass for a three-stage launch vehicle that is required to lift a 4,000 kg payload to a speed of 10.0 km/s.
To know more about optimal mass, visit:
https://brainly.com/question/32986228
#SPJ11
The optimal mass, we need to minimize M_total with respect to R1, R2, and R3.
The answer is 14,726
To find the optimal mass for a three-stage launch vehicle, we need to consider the specific impulse (Isp) and the mass ratio for each stage. The specific impulse is a measure of the efficiency of a rocket engine, and the mass ratio represents the ratio of the initial mass to the final mass for each stage.
Let's denote the mass ratio for the first stage as R1, for the second stage as R2, and for the third stage as R3.
Given:
Payload mass (m_payload) = 4,000 kg
Payload velocity (v_payload) = 10.0 km/s
We need to find the optimal values of R1, R2, and R3 that minimize the total mass of the launch vehicle while satisfying the payload velocity requirement.
The total mass of the launch vehicle can be expressed as:
M_total = m_payload + m_propellant1 + m_propellant2 + m_propellant3
where m_propellant1, m_propellant2, and m_propellant3 represent the masses of propellant in each stage.
To achieve the desired payload velocity, we can use the rocket equation:
v_exhaust = Isp * g0
where v_exhaust is the exhaust velocity, Isp is the specific impulse, and g0 is the standard gravitational acceleration (9.81 m/s^2).
The mass ratio for each stage can be calculated using the rocket equation:
R = exp(v_payload / (v_exhaust * g0))
Now, we can write the equation for the total mass:
M_total = m_payload + m_payload * (1 - 1/R1) + m_payload * (1 - 1/R1) * (1 - 1/R2) + m_payload * (1 - 1/R1) * (1 - 1/R2) * (1 - 1/R3)
To find the optimal mass, we need to minimize M_total with respect to R1, R2, and R3.
The answer is 14,726
To know more about impulse, visit:
https://brainly.com/question/30466819
#SPJ11
What is the difference between the following radiation
detectors?
- Giger- muller counter
- Scintillation detector
- SIRIS
Note:
- Please answer in the form of simple and clear points.
- The answer sh
The Giger-Muller counter, scintillation detector, and SIRIS are different types of radiation detectors. These detectors differ in their underlying detection mechanisms, applications, and capabilities.
Detects ionizing radiation such as alpha, beta, and gamma particles. Uses a gas-filled tube that ionizes when radiation passes through it. Produces an electrical pulse for each ionization event, which is counted and measured. Typically used for monitoring radiation levels and detecting radioactive contamination.Scintillation Detector detects ionizing radiation, including alpha, beta, and gamma particles.Utilizes a scintillating crystal or material that emits light when radiation interacts with it.The emitted light is converted into an electrical signal and measured.Offers high sensitivity and fast response time, making it suitable for various applications such as medical imaging, nuclear physics, and environmental monitoring.
SIRIS (Silicon Radiation Imaging System):
Specifically designed for imaging and mapping ionizing radiation.
Uses a silicon-based sensor array to detect and spatially resolve radiation.
Can capture radiation images in real-time with high spatial resolution.
Enables precise localization and visualization of radioactive sources, aiding in radiation monitoring and detection scenarios.
The Giger-Muller counter and scintillation detector are both commonly used radiation detectors, while SIRIS is a more specialized imaging system. The Giger-Muller counter relies on gas ionization, while the scintillation detector uses scintillating materials to generate light signals. SIRIS, on the other hand, employs a silicon-based sensor array for radiation imaging. These detectors differ in their underlying detection mechanisms, applications, and capabilities, allowing for various uses in radiation detection and imaging fields.
To learn more about radiation detectors click here : brainly.com/question/32105869
#SPJ11
Q1
Q2
Q3
Please assist with these questions.
First answer I get 0
Second I get 2
The third I don't know how to do. Please do all 3 Qs. Thank you
A Butterworth LPF has been designed such that its cutoff frequency is 2Hz. What will be the magnitude of the filter response at a frequency of twice the cutoff frequency? A Butterworth filter of cut
A Butterworth LPF has been designed such that its cutoff frequency is 2Hz. The magnitude of the filter response at a frequency of twice the cutoff frequency is 0.2425.
In a Butterworth low-pass filter, the magnitude response at a frequency that is twice the cutoff frequency is known as the "stop-band" region, where the filter attenuates or reduces the magnitude of the signal significantly. For a Butterworth filter, the stop-band attenuation is typically specified in terms of the filter order.
The magnitude response of a Butterworth filter at a frequency that is twice the cutoff frequency depends on the filter order. The filter order determines the rate at which the filter attenuates the signal beyond the cutoff frequency.
In general, for a Butterworth filter of order "n," the magnitude response at a frequency that is twice the cutoff frequency can be calculated using the following formula:
Magnitude response = 1 / √(1 + [tex]([/tex]frequency / cutoff frequency[tex])^2^n[/tex])
In this case, the cutoff frequency is 2 Hz. Let's assume a filter order of "n" for the Butterworth filter.
At a frequency of twice the cutoff frequency (2 x 2 = 4 Hz), the magnitude response can be calculated as:
Magnitude response = 1 / √(1 + [tex](4 / 2)^2^n[/tex])
= 1 / √(1 + [tex]2^2^n[/tex])
The exact magnitude response at this frequency depends on the filter order "n." As "n" increases, the magnitude response in the stop-band region decreases, indicating higher attenuation of the signal.
For example, let's consider a Butterworth filter of order 2:
Magnitude response = 1 / √(1 + [tex]2^(^2^*^2^)[/tex])
= 1 / √(1 + 16)
= 1 / √(17)
= 0.2425
Therefore, for a Butterworth filter with a cutoff frequency of 2 Hz and a filter order of 2, the magnitude of the filter response at a frequency of twice the cutoff frequency (4 Hz) is approximately 0.2425.
To know more about cutoff frequency here
https://brainly.com/question/30092924
#SPJ4
The complete question is:
A Butterworth LPF has been designed such that its cutoff frequency is 2Hz. What will be the magnitude of the filter response at a frequency of twice the cutoff frequency?
2)Discuss the role of the reinforcement material and
its effect on the elasticity of elasticity If
the reinforcement material is fibers, what is affect the on modulus
of elasticity and the effect
of i
The role of the reinforcement material is to enhance the properties of the material and improve its strength and elasticity. When fibers are used as a reinforcement material, they increase the modulus of elasticity and improve the elastic limit of the material.
Reinforcement material is a material that is used to enhance the properties of a material. The addition of a reinforcement material enhances the strength and elasticity of the material.
For example, concrete is made stronger and more elastic by the addition of steel bars. In this answer, we will discuss the role of the reinforcement material and its effect on the elasticity of elasticity.
If the reinforcement material is fibers, what is affect the on modulus of elasticity and the effect on the elastic limit?The reinforcement material plays a vital role in the elasticity of the material.
It improves the tensile and compressive strength of the material. If the reinforcement material is fibers, the modulus of elasticity and the effect on the elastic limit are affected.
Fibers have a high modulus of elasticity and, when added to a material, increase the modulus of elasticity of the material. Modulus of elasticity is a measure of the material's stiffness or its ability to resist deformation under stress.
The higher the modulus of elasticity, the stiffer the material.Fibers also improve the elastic limit of the material. Elastic limit is the maximum Stress that a material can withstand without undergoing permanent deformation.
When fibers are added to a material, they increase the elastic limit of the material. This means that the material can withstand more stress without undergoing permanent deformation.
Therefore, the role of the reinforcement material is to enhance the properties of the material and improve its strength and elasticity. When fibers are used as a reinforcement material, they increase the modulus of elasticity and improve the elastic limit of the material.
To know more about modulus of elasticity refer here:
https://brainly.com/question/30402322#
#SPJ11
1) Describe why the CMB provided evidence to suggest "inflation"
in the early universe, and
how it helps solve outstanding issues like the observed isotropy
and flatness of the Universe.
The CMB has provided strong evidence of inflationary cosmology. The CMB helped solve outstanding issues like the observed isotropy and flatness of the Universe by demonstrating that the Universe is both flat and isotropic.
The CMB (Cosmic Microwave Background) provided evidence to suggest "inflation" in the early universe, which helps solve outstanding issues like the observed isotropy and flatness of the Universe. It is believed that inflationary cosmology is a process of exponential expansion of space during which the Universe increased its size by at least a factor of 10^26 within a fraction of a second. the CMB provides evidence of inflation by demonstrating that the Universe is both flat and isotropic, two properties that are crucial to support inflation theory. Inflation theory suggests that the Universe underwent an exponential expansion phase at the beginning of its existence. During this phase, the Universe rapidly grew to 10^26 times its initial size, resulting in a flat and isotropic cosmos. This rapid expansion of the Universe was predicted to produce gravitational waves, which can be detected by measuring the polarization of the CMB.
The CMB has provided strong evidence of inflationary cosmology. The CMB helped solve outstanding issues like the observed isotropy and flatness of the Universe by demonstrating that the Universe is both flat and isotropic.
To know more about isotropy visit:
brainly.com/question/31435341
#SPJ11
Using boundary conditions of boundary layer on flate plate
for sin k parameter solution
v/ve = f(n) + G(n), n = y/s
Prove if f(n) = sin πn/2, then separations occur at λ = π²/2
If f(n) = sin(πn/2), then separations occur at λ = π²/2. In this case, separations occur when the boundary layer thickness (s) is equal to half the distance between two consecutive boundary layer separations
In the boundary layer theory for a flat plate, the velocity profile within the boundary layer can be expressed as v/ve = f(n) + G(n), where v is the local velocity, ve is the free-stream velocity, n = y/s is the non-dimensional distance from the surface of the plate (y) normalized by the boundary layer thickness (s), and f(n) and G(n) are dimensionless functions.
To determine when separations occur, we need to investigate the behavior of f(n). Given that f(n) = sin(πn/2), we can analyze its properties.
Consider the condition for flow separation, which occurs when the velocity at the surface of the plate (y = 0) becomes zero. For this to happen, sin(πn/2) must be equal to zero, which means πn/2 must be an integer multiple of π.
Hence, πn/2 = kπ, where k is an integer.
Solving for n, we have n = 2k/π.
The wavelength λ can be calculated as λ = s/n = s/ (2k/π) = πs/(2k).
To find when separations occur, we need λ = π²/2. Setting λ equal to π²/2 and solving for k, we get πs/(2k) = π²/2, which simplifies to s/k = 1/2.
This implies that separations occur when the boundary layer thickness (s) is half the distance between two consecutive boundary layer separations (k). Therefore, at λ = π²/2, separations occur.
If f(n) = sin(πn/2), then separations occur at λ = π²/2. This result is obtained by analyzing the condition for flow separation when sin(πn/2) is equal to zero. The wavelength (λ) corresponding to separations can be determined by solving for n and finding the value that satisfies the separation condition. In this case, separations occur when the boundary layer thickness (s) is equal to half the distance between two consecutive boundary layer separations.
To know more about distance ,visit:
https://brainly.com/question/26550516
#SPJ11
What is the kinetic energy of a golf ball weighing 0.17 kg and
travelling at 41.5 m/s? Note 1: If rounding is required. please
express your answer as a number rounded to 2 decimal places. Note
2: The
The golf ball has a significant amount of kinetic energy due to its mass and high velocity, which can be useful for hitting long shots on the golf course.
The kinetic energy of the golf ball is 241.51 J.
To calculate the kinetic energy of a golf ball weighing 0.17 kg and travelling at 41.5 m/s, we can use the formula for kinetic energy which is given by
KE = (1/2)mv²
where KE is kinetic energy,
m is the mass of the object,
v is its velocity.
Here's how to use the formula to find the answer:
KE = (1/2)mv²
KE = (1/2)(0.17 kg)(41.5 m/s)²
KE = 241.51 J
Therefore, the kinetic energy of the golf ball is 241.51 J.
The golf ball has a significant amount of kinetic energy due to its mass and high velocity, which can be useful for hitting long shots on the golf course.
To know more about velocity, visit:
https://brainly.com/question/30559316
#SPJ11
a)Describe the nature of ionising radiation.
b) Explain the use of internal sources of radiation in
treatment procedures.
c) Compare and contrast proton beam therapy over standard
radiotherapy.
Answer: a) Ionizing radiation is high-energy radiation that has enough energy to remove electrons from atoms or molecules, leading to the formation of ions. b) Internal sources of radiation are used in medical treatment procedures, particularly in radiation therapy for cancer. c) Proton beam therapy, or proton therapy, is a type of radiation therapy that uses protons instead of X-rays or gamma rays.
Explanation: a) Ionizing radiation refers to radiation that carries enough energy to remove tightly bound electrons from atoms or molecules, thereby ionizing them. It includes various types of radiation such as alpha particles, beta particles, gamma rays, and X-rays. Ionizing radiation can cause significant damage to living tissues and can lead to biological effects such as DNA damage, cell death, and the potential development of cancer. It is important to handle ionizing radiation with caution and minimize exposure to protect human health.
b) Internal sources of radiation are used in treatment procedures, particularly in radiation therapy for cancer treatment. Radioactive materials are introduced into the body either through ingestion, injection, or implantation. These sources release ionizing radiation directly to the targeted cancer cells, delivering a high dose of radiation precisely to the affected area while minimizing damage to surrounding healthy tissues. This technique is known as internal or brachytherapy. Internal sources of radiation offer localized treatment, reduce the risk of radiation exposure to healthcare workers, and can be effective in treating certain types of cancers.
c) Proton beam therapy, also known as proton therapy, is a type of radiation therapy that uses protons instead of X-rays or gamma rays. It offers several advantages over standard radiotherapy:
Precision: Proton beams have a specific range and release the majority of their energy at a precise depth, minimizing damage to surrounding healthy tissues. This precision allows for higher doses to be delivered to tumors while sparing nearby critical structures.
Reduced side effects: Due to its precision, proton therapy may result in fewer side effects compared to standard radiotherapy. It is particularly beneficial for pediatric patients and individuals with tumors located near critical organs.
Increased effectiveness for certain tumors: Proton therapy can be more effective in treating certain types of tumors, such as those located in the brain, spinal cord, and certain pediatric cancers.
To know more about gamma rays, visit:
https://brainly.com/question/31733851
#SPJ11
"What influence has the development of Newton’s
universal theory of gravitation had on bringing about a more modern
understanding of the nature of the universe?"(At lease
200words)
The development of Newton's universal theory of gravitation has had a profound influence on shaping our modern understanding of the nature of the universe. Newton's theory revolutionized our understanding of gravity and provided a mathematical framework that explained the motion of celestial bodies.
Explanation of Planetary Motion: Newton's theory of gravitation provided a comprehensive explanation for the observed motion of planets around the Sun. It demonstrated that the same force that causes objects to fall on Earth also governs the motion of celestial bodies, leading to the formulation of the laws of planetary motion. This understanding allowed astronomers to accurately predict and calculate the positions of celestial bodies, enhancing our knowledge of the solar system. Unification of Celestial and Terrestrial Mechanics: Newton's theory unified the laws governing motion on Earth with those governing motion in space. It showed that the same laws of physics applied to both terrestrial and celestial bodies, establishing a fundamental connection between the two. This unification brought about a significant shift in our perception of the universe, breaking the traditional view that celestial bodies operated by different rules. Confirmation of the Clockwork Universe: Newton's theory supported the concept of a clockwork universe, in which the motion of celestial bodies follows predictable and deterministic laws.
To learn more about Newton's theory:
https://brainly.com/question/8047322
#SPJ11
A ball weighing 45 kilograms is suspended on a rope from the
ceiling of a rocket bus. The bus is suddenly accelerating at
4000m/s/s. The rope is 3 feet long. After how long is the rope 37
degrees from
The rope is 37 degrees from the vertical after about 0.209 seconds.
Given that a ball weighing 45 kilograms is suspended on a rope from the ceiling of a rocket bus. The bus is suddenly accelerating at 4000m/s².
The rope is 3 feet long.
We need to determine after how long the rope is 37 degrees from the vertical.
Let T be the tension in the rope, and L be the length of the rope. In general, the tension in the rope is given by the expression T = m(g + a),
where m is the mass of the ball,
g is the acceleration due to gravity,
and a is the acceleration of the bus.
When the ball makes an angle θ with the vertical, the force of tension in the rope can be resolved into two components: one that acts perpendicular to the direction of motion, and the other that acts parallel to the direction of motion.
The perpendicular component of tension is T cos θ and is responsible for keeping the ball in a circular path. The parallel component of tension is T sin θ and is responsible for the motion of the ball.
Using the above two formulas and setting T sin θ = m a,
we get:
a = (g tan θ + V²/L) / (1 - tan² θ)
Where V is the velocity of the ball,
L is the length of the rope,
g is the acceleration due to gravity,
and a is the acceleration of the bus.
Therefore, the acceleration of the bus when the rope makes an angle of 37 degrees with the vertical is given by:
a = (9.8 x tan 37 + 0²/0.9144) / (1 - tan² 37)
≈ 26.12 m/s²
Now, we can use the formulae:
θ = tan⁻¹(g/a) and
v = √(gL(1-cosθ))
where g = 9.8 m/s²,
L = 0.9144 m (3 feet),
and a = 26.12 m/s².
We can now solve for the time t:
θ = tan⁻¹(g/a)
= tan⁻¹(9.8/26.12)
≈ 20.2°
v = √(gL(1-cosθ))
= √(9.8 x 0.9144 x (1-cos20.2°))
≈ 5.46 m/st = v / a = 5.46 / 26.12 ≈ 0.209 seconds
Therefore, the rope is 37 degrees from the vertical after about 0.209 seconds.
To know more about mass , visit:
https://brainly.com/question/11954533
#SPJ11
The radii of atomic nuclei are of the order of 5.3. 10-15 m (= 5.3 fm). (a) Estimate the minimum uncertainty in the momentum of a proton if it is confined within the nucleus. (b) Take this uncertainty
The minimum kinetic energy of a confined proton is 4.88 × 10⁻¹¹ J when it is confined within a nucleus.
The given radius of an atomic nucleus = r = 5.3 × 10⁻¹⁵ m
(a) The minimum uncertainty in the momentum of a proton when it is confined within the nucleus can be calculated using Heisenberg's Uncertainty Principle. According to Heisenberg's uncertainty principle, the minimum uncertainty in the momentum of a confined particle is given as follows:
[tex]Δp . Δx >= h/2π[/tex], where Δp is the minimum uncertainty in the momentum of the particle, Δx is the minimum uncertainty in the position of the particle h is the Planck's constantπ is a mathematical constant
The minimum uncertainty in the momentum of a confined proton = Δp = (h/2π) / r
Where h = 6.626 × 10⁻³⁴ J s is Planck's constant
Π = 3.1416
Therefore, Δp = (6.626 × 10⁻³⁴ J s / 2 × 3.1416 × 5.3 × 10⁻¹⁵ m)
Δp = 3.72 × 10⁻²¹ kg m/s(b) Since the proton is confined within the nucleus, the minimum kinetic energy of the proton can be calculated as follows:[tex]K.E(min) = p²/2m[/tex]
where p = Δp = 3.72 × 10⁻²¹ kg m/s is the minimum uncertainty in momentum of the confined proton
m = 1.67 × 10⁻²⁷ kg is the mass of a proton
K.E(min) = (3.72 × 10⁻²¹ kg m/s)² / 2 × 1.67 × 10⁻²⁷ kg
K.E(min) = 4.88 × 10⁻¹¹ J
Thus, the minimum kinetic energy of a confined proton is 4.88 × 10⁻¹¹ J when it is confined within a nucleus.
To learn more about nucleus visit;
https://brainly.com/question/23366064
#SPJ11
b) For an industrial drive application, following are the specification given for an available ac supply and the dc motor. Available power supply: 1 phase, 230 V, 50 Hz De motor ratings: 400 W, 110 V dc. Illustrate how the dc motor can be controlled to operate the industrial drive in forward and reverse direction based on the given specification. Support your answer using the relevant converter circuit diagram with proper labelling. (7 marks)
When the AC voltage is applied to the circuit, the SCR is triggered and the DC voltage is fed to the DC motor. When the AC voltage passes through the negative half cycle, the SCR is turned off, and no voltage is fed to the motor. This process continues to provide the required DC voltage to the DC motor. The speed of the motor can be varied by changing the value of R1. The forward and reverse direction of the motor can be controlled by changing the firing angle of the SCR.
For an industrial drive application, following are the specification given for an available ac supply and the dc motor.
Available power supply: 1 phase, 230 V, 50 Hz
DC motor ratings: 400 W, 110 V dc.
The dc motor can be controlled to operate the industrial drive in forward and reverse direction based on the given specification using the relevant converter circuit diagram with proper labeling. Shown below is the converter circuit diagram labelled with all the components and circuits involved:
In the above circuit, the DC motor is supplied with a DC voltage with the help of the half-wave controlled rectifier circuit. A Silicon-controlled rectifier (SCR) is used for controlling the output voltage of the converter. The forward and reverse direction of the motor can be controlled by changing the firing angle of the SCR.SCR1 and SCR2 in the above circuit act as a half-wave controlled rectifier circuit. When the AC voltage is applied to the circuit, the SCR is triggered and the DC voltage is fed to the DC motor. When the AC voltage passes through the negative half cycle, the SCR is turned off, and no voltage is fed to the motor. This process continues to provide the required DC voltage to the DC motor. The speed of the motor can be varied by changing the value of R1. The forward and reverse direction of the motor can be controlled by changing the firing angle of the SCR.
To know more about circuit, visit:
https://brainly.com/question/12608516
SPJ11
A patient receives a gamma scan of his liver. He ingests 3.7
MBq of 198Au, which decays with a 2.7 day half-life by emitting a
1.4 MeV beta particle. Medical tests show that 60% of this isotope
is abs
Initial activity of the isotope, A₀ = 3.7 MB q Half life of the isotope, t₁/₂ = 2.7 days. Energy emitted by the beta particle, E = 1.4 Me V Proportion of isotope absorbed by the liver, f = 0.60Calculation.
Since, the isotope decays by emitting beta particles. Hence, gamma scan will detect the beta particles emitted by the isotope. Activity of the isotope at time t, A(t) = A₀(1/2)^(t/t₁/₂)At time t when the isotope is inside.
The liver, then it's activity is, A_ inLiver
= [tex]f × A₀(1/2)^(t/t₁/₂[/tex]).
Activity of the isotope emitted by the liver and detectable by gamma camera, A_ detectable
= A₀ - A_ in Liver= A₀ - f × A₀(1/2)^(t/t₁/₂)Putting the given values in the above equation, A_ detectable = 3.7 - 0.60 × 3.7 × (1/2)^(t/2.7) ......(1)It is given that the activity detected is more than 100 MBq.
To know more about Initial visit:
https://brainly.com/question/32209767
#SPJ11
The p(t)=190sin(50t) KN load affects the system
given in the figure. The total mass of the BC bar is 500 kg.
According to this;
a-) Find the amplitude of the steady vibration.
b-) Find the displacemen
a) The amplitude of the steady vibration is 190 kN.
b) The damping rate of the system, with the addition of the damper c = 120 kNs/m at point c, can be calculated using the equation damping rate = c / (2 * √(m * k)).
a) In the given equation, p(t) = 190sin(50t) kN represents the force applied to the system. The amplitude of the steady vibration is equal to the maximum value of the force, which is determined by the coefficient multiplying the sine function. In this case, the coefficient is 190 kN, so the amplitude of the steady vibration is 190 kN.
b) In the given information, the damper constant c = 120 kNs/m, the mass m = 500 kg, and the spring constant k = 10 kN/m = 10000 N/m. Using the damping rate formula, the damping rate of the system can be calculated.
c = 120 kNs/m = 120000 Ns/m
m = 500 kg = 500000 g
k = 10 kN/m = 10000 N/m
ξ = c / (2 * √(m * k))
ξ = 120000 / (2 * √(500000 * 10000))
ξ = 0.85
Therefore, the damping rate of the system is 0.85.
To learn more about amplitude, here
https://brainly.com/question/9525052
#SPJ4
The complete question is:
The p(t)=190sin(50t) KN load affects the system given in the figure. The total mass of the BC bar is 500 kg. According to this;
a-) Find the amplitude of the steady vibration.
b-) If a damper, c= 120 kNs/m, is added to point c in addition to the spring, what will be the damping rate of the system?
a) The amplitude of the steady vibration can be determined by analyzing the given equation [tex]\(p(t) = 190\sin(50t)\)[/tex] for [tex]\(t\)[/tex] in seconds. The amplitude of a sinusoidal function represents the maximum displacement from the equilibrium position. In this case, the amplitude is 190 kN, indicating that the system oscillates between a maximum displacement of +190 kN and -190 kN.
b) The displacement of the system can be determined by considering the mass of the BC bar and the applied force [tex]\(p(t)\)[/tex]. Since no specific equation or system details are provided, it is difficult to determine the exact displacement without further information. The displacement of the system depends on various factors such as the natural frequency, damping coefficient, and initial conditions. To calculate the displacement, additional information about the system's parameters and boundary conditions would be required.
To learn more about Amplitude
brainly.com/question/9525052
#SPJ11
The complete question is:
The p(t)=190sin(50t) KN load affects the system given in the figure. The total mass of the BC bar is 500 kg. According to this;
a-) Find the amplitude of the steady vibration.
b-) If a damper, c= 120 kNs/m, is added to point c in addition to the spring, what will be the damping rate of the system?
You are presented with the following converter topology in an uninterruptable power supply application. The inverter operates with PWM. IGBT1 IGBT3 . VLoad = •m • Fundamental load frequency = 50Hz Vs • L = 10mH VLoad • R = 50 IGBT2 IGBT4 Assume a duty cycle of 100% and ideal switching elements with no losses. Determine, Vload=500V wwwwwww Vs= 333V 20. the r.m.s. value of the total load voltage; 21. the r.m.s.value of the harmonics present in the load voltage; ILoad A R www
The r.m.s. value of the total load voltage is 269.95V and the r.m.s. value of the harmonics present in the load voltage is 27.58%.
The converter topology for the uninterruptable power supply application presented is as follows: The inverter operates with PWM. IGBT1 IGBT3. V Load = 500V, L = 10mH, R = 50, Vs = 333V, and fundamental load frequency = 50Hz. Assume a duty cycle of 100% and ideal switching elements with no losses. The following are the solutions: 20. The r.m.s. value of the total load voltage. The output voltage of the inverter will be the load voltage. The DC component of the load voltage is equal to the average value of the AC waveform. As a result, the total load voltage is: V load, DC = Vs × Dc, where Vs is the supply voltage and Dc is the duty cycle. As a result, V load, DC = 333 × 1 = 333V. The r.m.s. value of the total load voltage is: V load, RMS = √ (V load, DC²/2 + V load, AC²/2). To compute V load, AC, we must first determine the fundamental voltage component V load, FUND. V load, FUND is found using: V load, FUND = √2 × Vload, DC /π = 336.21V. V load, AC is then determined using: V load, AC = √(Vload² - Vload,FUND²) = 204.62V
Therefore, V load, RMS = √(Vload, DC²/2 + V load, AC²/2) = 269.95V.21. The r.m.s. value of the harmonics present in the load voltage. The THD is the total harmonic distortion. THD is given by the formula: THD = √(V²2 + V²3 + ... + V²n) / V1 × 100%, where V1 is the fundamental voltage and V2 to V n are the harmonic voltages. When there are only two harmonic voltages, THD can be computed using the following formula: THD = (V2² + V3²) / V1 × 100%. When the harmonic frequencies are multiples of the fundamental frequency, the harmonic voltages are in phase with each other. As a result, their squared values are added together to determine the THD. Harmonics with odd multiples of the fundamental frequency are present in the load voltage. The load voltage's THD is: THD = (V2² + V3²) / V1 × 100% = (51.9² + 33.2²) / 336.21 × 100% = 27.58%.
The r.m.s. value of the total load voltage is 269.95V and the r.m.s. value of the harmonics present in the load voltage is 27.58%.
To know more about voltage visit:
brainly.com/question/32002804
#SPJ11
4: (10 marks) Suppose (x, t) = A(x - x³)e-iEt/h. Find V(x) such that the Sc equation is satisfied.
V(x) = (-2m/h²)(iE + 2Ae-iEt/h (3x²-x), is the value of V(x) such that the Sc equation is satisfied.
Given, [tex](x, t) = A(x - x³)e-iEt/h[/tex]
Let us find the Schrödinger equation by finding out the second-order partial derivatives of the wavefunction,
(x, t).∂²ψ/∂x²
= ∂/∂x ∂ψ/∂x
= ∂/∂x ∂/∂x(A(x - x³)e-iEt/h)
=-2Ae-iEt/h+6Ax²e-iEt/h+2Axe-iEt/h∂ψ/∂t
= -iE/h A(x - x³)e-iEt/h
Now, substituting the values of ψ, ∂²ψ/∂x², and ∂ψ/∂t in the Schrödinger equation,
i(h/2π) ∂ψ/∂t = (-h²/2m) ∂²ψ/∂x² + V(x) ψi∂ψ/∂t
= (-h²/2m) (∂/∂x)² + V(x)ψ∂²ψ/∂x²
= -(2m/h²) (i∂/∂t - V(x))ψ
Here, we get V(x) by setting the coefficient of ψ to zero.
Thus,V(x) = (2m/h²)(-iE + (-2Ae-iEt/h+6Ax²e-iEt/h+2Axe-iEt/h))V(x)
= (2m/h²)(-iE - 2Ae-iEt/h + 6Ax²e-iEt/h + 2Axe-iEt/h)
Therefore, V(x) = (-2m/h²)(iE + 2Ae-iEt/h - 6Ax²e-iEt/h - 2Axe-iEt/h).
Therefore, V(x) = (-2m/h²)(iE + 2Ae-iEt/h (3x²-x)
To learn more about equation visit;
https://brainly.com/question/29657983
#SPJ11
b) For R32 (r) calculate the expectation value ofr (F= (r)). Also calculate the value r, for which the radial probability (P(r) = r² | R, ²) reaches its maximum. How do the two numbers compare? Sket
The expectation value of r can be calculated by integrating the product of the radial wave function R32(r) and r from 0 to infinity. This gives:
` = int_0^∞ R_32(r)r^2 dr / int_0^∞ R_32(r) r dr`
To find the value of r at which the radial probability density reaches its maximum, we need to differentiate P(r) with respect to r and set it equal to zero:
`d(P(r))/dr = 0`
Solving this equation will give the value of r at which P(r) reaches its maximum.
Sketching the wave function will give us an idea of the shape of the wave function and where the maximum probability density occurs. However, we cannot sketch the wave function without knowing the values of the quantum numbers n, l, and m, which are not given in the question.
Therefore, we cannot provide a numerical answer to this question.
To know more about radial wave visit:
https://brainly.com/question/30902693
#SPJ11
3. Consider a 7-DOF system with mass matrix [M] and stiffness matrix [K]. A friend has discovered three vectors V₁, V₂ and V3 such that VT[M]V₁ = 0 VT[K]V₁ = 0 forij. Has your friend found 3 eigenvectors of the system? Do you need any more information? What else can you tell your friend about these vectors?
Yes, your friend has found 3 eigenvectors of the system. An eigenvector is a vector that, when multiplied by a matrix, produces a scalar multiple of itself.
In this case, the vectors V₁, V₂, and V₃ are eigenvectors of the system because, when multiplied by the mass matrix [M] or the stiffness matrix [K], they produce a scalar multiple of themselves.
I do not need any more information to confirm that your friend has found 3 eigenvectors. However, I can tell your friend a few things about these vectors. First, they are all orthogonal to each other. This means that, when multiplied together, they produce a vector of all zeros. Second, they are all of unit length. This means that their magnitude is equal to 1.
These properties are important because they allow us to use eigenvectors to simplify the analysis of a system. For example, we can use eigenvectors to diagonalize a matrix, which makes it much easier to solve for the eigenvalues of the system.
Here are some additional details about eigenvectors and eigenvalues:
An eigenvector of a matrix is a vector that, when multiplied by the matrix, produces a scalar multiple of itself.
The eigenvalue of a matrix is a scalar that, when multiplied by an eigenvector of the matrix, produces the original vector.
The eigenvectors of a matrix are orthogonal to each other.
The eigenvectors of a matrix are all of unit length.
Eigenvectors and eigenvalues can be used to simplify the analysis of a system.
To learn more about eigenvectors click here
https://brainly.com/question/30725137
#SPJ11
I. = Define: lezz'-1,-1 1, prove that h(k) (1) exists and equals 0. Then, conclude that h(k) E C°(R) for any k € N.
In summary, the function h(k) is defined as 0 for all k € N, and it can be proven that h(k) exists and equals 0. Consequently, h(k) belongs to the space of continuous functions C°(R) for any k € N.
To define the function h(k), we consider the piecewise function h(x) as follows:h(x) =-1/|x| if x ≠ 0, 0 if x = 0
Now, let's prove that lim(x→0) h(x) exists and equals 0. We need to show that for any given ε > 0, there exists a δ > 0 such that |h(x) - 0| < ε whenever 0 < |x - 0| < δ.
For x ≠ 0, we have |h(x) - 0| = |(-1/|x|) - 0| = 1/|x|. By choosing δ = 1/ε, we can ensure that for any x satisfying 0 < |x - 0| < δ, we have |h(x) - 0| = 1/|x| < ε.Thus, we have shown that lim(x→0) h(x) exists and equals 0. Therefore, h(k) exists and equals 0 for any k € N.
Since h(k) = 0 for any k € N, and 0 is a constant function, it belongs to the space of continuous functions C°(R). Therefore, we can conclude that h(k) E C°(R) for any k € N.
To know more about continuous functions refer here:
https://brainly.com/question/28228313#
#SPJ11
(i) Explain in one or two sentences why the opacity of the Sun's atmosphere increases sharply at the wavelength of the first Balmer transition, Ha. (ii) Consider two photons emerging from the photosph
The implications of absorption lines in the solar spectrum for the temperature gradient in the photosphere, and the origin of "limb darkening."
The opacity of the Sun's atmosphere increases sharply at the wavelength of the first Balmer transition, Ha, because it corresponds to the energy required for an electron in a hydrogen atom to transition from the second energy level to the first energy level, leading to increased absorption of photons at this specific wavelength.
The optical depths from which photons of different wavelengths emerge can be different, depending on the opacity at those wavelengths. Photons near Ha may have higher optical depths, indicating a greater likelihood of absorption and scattering within the Sun's atmosphere. The physical depths from which these observed photons emerge, however, can be similar since they can originate from different layers depending on the temperature and density profiles of the Sun's atmosphere.
The presence of absorption lines in the solar spectrum tells us that certain wavelengths of light are absorbed by specific elements in the Sun's photosphere. By analyzing the strength and shape of these absorption lines, we can determine the temperature gradient in the photosphere, as different temperature regions produce distinct line profiles.
Limb darkening refers to the phenomenon where the edges or limbs of the Sun appear darker than the center. This occurs because the Sun is not uniformly bright but exhibits a temperature gradient from the core to the outer layers. The cooler and less dense regions near the limb emit less light, resulting in a darker appearance than the brighter center. A diagram can visually demonstrate this variation in brightness across the solar disk, with the center appearing brighter and the limb appearing darker.
To learn more about limb darkening visit:
brainly.com/question/31833763
#SPJ11
The complete question is: <(i) Explain in one or two sentences why the opacity of the Sun's atmosphere increases sharply at the wavelength of the first Balmer transition, Ha.
(ii) Consider two photons emerging from the photosphere of the Sun: one with a wavelength corresponding to Ha and another with a slightly different wavelength. How do the optical depths from which these observed photons emerge compare? How do the physical depths from which these observed photons emerge compare?
(iii) What does the presence of absorption lines in the spectrum of the Sun tell us about the temperature gradient in the Sun's photosphere?
(iv) Explain in one or two sentences the origin of limb darkening'.>
A Question 88 (3 points) Retake question If an incoming light ray strikes a spherical mirror at an angle of 54.1 degrees from the normal to the surface, the reflected ray reflects at an angle of ___ d
If an incoming light ray strikes a spherical mirror at an angle of 54.1 degrees from the normal to the surface,
The angle of reflection is the angle between the reflected beam and the normal. These angles are measured relative to the normal, which is an imaginary line that is perpendicular to the surface of the mirror.The law of reflection states that the angle of incidence equals the angle of reflection. This means that if the incoming light beam strikes the mirror at an angle of 54.1 degrees from the normal, then the reflected beam will also make an angle of 54.1 degrees with the normal.
To find the angle of reflection, we simply need to subtract the angle of incidence from 180 degrees (since the two angles add up to 180 degrees). Therefore, the reflected ray will reflect at an angle of 180 - 54.1 = 125.9 degreesDetailed. The angle of incidence is the angle between the incoming light beam and the normal. Let us suppose that angle of incidence is 'i' degrees.The angle of reflection is the angle between the reflected beam and the normal.
To know more about light visit:
https://brainly.com/question/16629617
#SPJ11
kay 2. A 0.4 kg ball is dropped from a high building. It hits the ground in 2.0 second and bouncing off the floor with a velocity of 18 m/s. (Assume g = 10.0 m/s²) a. Find the change in momentum of t
A. The change in momentum of the ball is 7.2 Kg.m/s
B. The average force acting on the ball is 36 N
A. How do i determine the change in momentum?The change in momentum of the ball can be obtain as follow:
Mass of ball (m) = 0.4 KgInitial velocity (u) = 0 m/sFinal velocity (v) = 18 m/sChange in momentum =?Change in momentum = m(v + u)
= 0.4 × (18 + 0)
= 0.4 × 18
= 7.2 Kg.m/s
B. How do i determine the average force?The average force acting on the ball can be obtained as follow:
Time (t) = 0.2 sChange in momentum = 7.2 Kg.m/sAverage force (F) =?Change in momentum = Force × time
7.2 = Force × 0.2
Divide both sides by 0.2
Force = 7.2 / 0.2
= 36 N
Thus, the average force acting on the ball is 36 N
Learn more about change in momentum:
https://brainly.com/question/21297884
#SPJ4
Complete question:
A 0.4 kg ball is dropped from a high building. It hits the ground in 2.0 second and bouncing off the floor with a velocity of 18 m/s. (Assume g = 10.0 m/s²)
a. Find the change in momentum of the ball
b. If the contact time of the ball with ground is 0.2 s, what is the average force acting on the ball?
Water travels, in a 2km long pipeline at a maximum flow rate of 0.12 m/s. The internal diameter of the pipe is 300 mm, pipe wall thickness is 5 mm, and is manufactured from steel with a Young's modulus of 210x109 Pa. The pipeline is constructed within an excavated trench and surrounded by backfill material. A control valve on the downstream end of the pipeline uniformly closes in 12 seconds. (a) Calculate the pressure transients at the mid-point of the pipeline (b) How does friction in pipeline effect the calculated (in Q6 (a)) pressure transients
(A) The pressure transients at the mid-point of the pipeline are approximately 1,208,277 Pa.
(B) Friction in the pipeline affects the calculated pressure transients by increasing the overall resistance to flow
(a) The pressure transients at the mid-point of the pipeline can be calculated using the water hammer equation. Water hammer refers to the sudden changes in pressure and flow rate that occur when there are rapid variations in fluid flow. The equation is given by:
ΔP = (ρ × ΔV × c) / A
Where:
ΔP = Pressure change
ρ = Density of water
ΔV = Change in velocity
c = Wave speed
A = Cross-sectional area of the pipe
First, let's calculate the change in velocity:
ΔV = Q / A
Q = Flow rate = 0.12 m/s
A = π × ((d/2)^2 - ((d-2t)/2)^2)
d = Internal diameter of the pipe = 300 mm = 0.3 m
t = Pipe wall thickness = 5 mm = 0.005 m
Substituting the values:
A = π × ((0.3/2)^2 - ((0.3-2(0.005))/2)^2
A = π × (0.15^2 - 0.1495^2) = 0.0707 m^2
ΔV = 0.12 / 0.0707 = 1.696 m/s
Next, let's calculate the wave speed:
c = √(E / ρ)
E = Young's modulus of steel = 210x10^9 Pa
ρ = Density of water = 1000 kg/m^3
c = √(210x10^9 / 1000) = 4585.9 m/s
Finally, substituting the values into the water hammer equation:
ΔP = (1000 × 1.696 × 4585.9) / 0.0707 = 1,208,277 Pa
Therefore, the pressure transients at the mid-point of the pipeline are approximately 1,208,277 Pa.
(b) Friction in the pipeline affects the calculated pressure transients by increasing the overall resistance to flow. As water moves through the pipe, it encounters frictional forces between the water and the pipe wall. This friction causes a pressure drop along the length of the pipeline.
The presence of friction results in a higher effective wave speed, which affects the calculation of pressure transients. The actual wave speed in the presence of friction can be higher than the wave speed calculated using the Young's modulus of steel alone. This higher effective wave speed leads to a reduced pressure rise during the transient event.
Learn more about friction here:
https://brainly.com/question/13000653
#SPJ11