Answer:
Student t-distribution.
Step-by-step explanation:
In this scenario, a test is being conducted to test the difference between two population "means" using data that are gathered from a matched pairs experiment. If the paired differences are normal, then the distribution used for testing is the student t-distribution.
In Statistics and probability, a student t-distribution can be defined as the probability distribution which can be used to estimate population parameters when the population variance is not known (unknown) and the sample population is relatively small. The student t-distribution is a statistical distribution which was published in 1908 by William Sealy Gosset.
A student t-distribution has a similar curve with the normal distribution curve, except that it is fatter and a little bit shorter.
An evergreen nursery usually sells a certain shrub after 9 years of growth and shaping. The growth rate during those 9 years is approximated by
dh/dt = 1.8t + 3,
where t is the time (in years) and h is the height (in centimeters). The seedlings are 10 centimeters tall when planted (t = 0).
(a) Find the height after t years.
h(t) =
(b) How tall are the shrubs when they are sold?
cm
Answer:
(a) After t years, the height is
18t² + 3t + 10
(b) The shrubs are847 cm tall when they are sold.
Step-by-step explanation:
Given growth rate
dh/dt = 1.8t + 3
dh = (18t + 3)dt
Integrating this, we have
h = 18t² + 3t + C
When t = 0, h = 10cm
Then
10 = C
So
(a) h = 18t² + 3t + 10
(b) Because they are sold after every 9 years, then at t = 9
h = 18(9)² + 3(9) + 10
= 810 + 27 + 10
= 847 cm
A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F. (Let y be measured in degrees Fahrenheit, and t be measured in seconds.) (a) Determine the cooling constant k. k = s−1 (b) What is the differential equation satisfied by the temperature y(t)? (Use y for y(t).) y'(t) = (c) What is the formula for y(t)? y(t) = (d) Determine the temperature of the bar at the moment it is submerged. (Round your answer to one decimal place.)
Answer:
a. k = -0.01014 s⁻¹
b. [tex]\mathbf{\dfrac{dy}{dt} = - \dfrac{In(\dfrac{3}{2})}{40}(y-60)}[/tex]
c. [tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ t}{40}}}[/tex]
d. y(t) = 130.485°F
Step-by-step explanation:
A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F.
(Let y be measured in degrees Fahrenheit, and t be measured in seconds.)
We are to determine :
a. Determine the cooling constant k. k = s−1
By applying the new law of cooling
[tex]\dfrac{dT}{dt} = k \Delta T[/tex]
[tex]\dfrac{dT}{dt} = k(T_1-T_2)[/tex]
[tex]\dfrac{dT}{dt} = k (T - 60)[/tex]
Taking the integral.
[tex]\int \dfrac{dT}{T-60} = \int kdt[/tex]
㏑ (T -60) = kt + C
T - 60 = [tex]e^{kt+C}[/tex]
[tex]T = 60+ C_1 e^{kt} ---- (1)[/tex]
After 20 seconds, the temperature of the bar submersion is 120°F
T(20) = 120
From equation (1) ,replace t = 20s and T = 120
[tex]120 = 60 + C_1 e^{20 \ k}[/tex]
[tex]120 - 60 = C_1 e^{20 \ k}[/tex]
[tex]60 = C_1 e^{20 \ k} --- (2)[/tex]
After 1 min i.e 60 sec , the temperature = 100
T(60) = 100
From equation (1) ; replace t = 60 s and T = 100
[tex]100 = 60 + c_1 e^{60 \ t}[/tex]
[tex]100 - 60 =c_1 e^{60 \ t}[/tex]
[tex]40 =c_1 e^{60 \ t} --- (3)[/tex]
Dividing equation (2) by (3) , we have:
[tex]\dfrac{60}{40} = \dfrac{C_1e^{20 \ k } }{C_1 e^{60 \ k}}[/tex]
[tex]\dfrac{3}{2} = e^{-40 \ k}[/tex]
[tex]-40 \ k = In (\dfrac{3}{2})[/tex]
- 40 k = 0.4054651
[tex]k = - \dfrac{0.4054651}{ 40}[/tex]
k = -0.01014 s⁻¹
b. What is the differential equation satisfied by the temperature y(t)?
Recall that :
[tex]\dfrac{dT}{dt} = k \Delta T[/tex]
[tex]\dfrac{dT}{dt} = \dfrac{- In (\dfrac{3}{2})}{40}(T-60)[/tex]
Since y is the temperature of the body , then :
[tex]\mathbf{\dfrac{dy}{dt} = - \dfrac{In(\dfrac{3}{2})}{40}(y-60)}[/tex]
(c) What is the formula for y(t)?
From equation (1) ;
where;
[tex]T = 60+ C_1 e^{kt} ---- (1)[/tex]
Let y be measured in degrees Fahrenheit
[tex]y(t) = 60 + C_1 e^{-\dfrac{In (\dfrac{3}{2})}{40}t}[/tex]
From equation (2)
[tex]C_1 = \dfrac{60}{e^{20 \times \dfrac{-In(\dfrac{3}{2})}{40}}}[/tex]
[tex]C_1 = \dfrac{60}{e^{-\dfrac{1}{2} {In(\dfrac{3}{2})}}}[/tex]
[tex]C_1 = \dfrac{60}{e^ {In(\dfrac{3}{2})^{-1/2}}}}[/tex]
[tex]C_1 = \dfrac{60}{\sqrt{\dfrac{2}{3}}}[/tex]
[tex]C_1 = \dfrac{60 \times \sqrt{3}}{\sqrt{2}}}[/tex]
[tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ t}{40}}}[/tex]
(d) Determine the temperature of the bar at the moment it is submerged.
At the moment it is submerged t = 0
[tex]\mathbf{y(0) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ 0}{40}}}[/tex]
[tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} }[/tex]
y(t) = 60 + 70.485
y(t) = 130.485°F
Based on a poll, 40% of adults believe in reincarnation. Assume that 4 adults are randomly selected, and find the indicated probability. Complete parts (a) through (d) below.Required:a. The probability that exactly 3 of the 4 adults believe in reincarnation is? b. The probability that all of the selected adults believe in reincarnation is? c. The probability that at least 3 of the selected adults believe in reincarnation is? d. If 4 adults are randomlyselected, is 3 a significantly high number who believe inreincarnation?
Complete Question
The complete question is shown on the first uploaded image
Answer:
a
[tex]P(3) = 0.154[/tex]
b
[tex]P(4) = 0.026[/tex]
c
[tex]P( X \ge 3 ) = 0.18[/tex]
d
option C is correct
Step-by-step explanation:
From the question we are told that
The probability of success is p = 0.4
The sample size is n= 4
This adults believe follow a binomial distribution is because there are only two outcome one is an adult believes in reincarnation and the second an adult does not believe in reincarnation
The probability of failure is mathematically evaluated as
[tex]q = 1 - p[/tex]
substituting values
[tex]q = 1 - 0.4[/tex]
[tex]q = 0.6[/tex]
Considering a
The probability that exactly 3 of the selected adults believe in reincarnation is mathematically represented as
[tex]P(3) = \left n} \atop {}} \right. C_ 3 * p^3 * q^{n-3}[/tex]
substituting values
[tex]P(3) = \left 4} \atop {}} \right. C_ 3 * (0.40)^3 * (0.60)^{4-3}[/tex]
Here [tex]\left 4} \atop {}} \right.C_3[/tex] means 4 combination 3 . i have calculated this using a calculator and the value is
[tex]\left 4} \atop {}} \right.C_3 = 4[/tex]
So
[tex]P(3) = 4* (0.4)^3 * (0.6)[/tex]
[tex]P(3) = 0.154[/tex]
Considering b
The probability that all of the selected adults believe in reincarnation is mathematically represented as
[tex]P(n) = \left n} \atop {}} \right. C_ n * p^n * q^{n-n}[/tex]
substituting values
[tex]P(4) = \left 4} \atop {}} \right. C_ 4 * (0.40)^4 * (0.60)^{4-4}[/tex]
Here [tex]\left 4} \atop {}} \right.C_3[/tex] means 4 combination . i have calculated this using a calculator and the value is [tex]\left 4} \atop {}} \right.C_4 = 1[/tex]
so
[tex]P(4) = 1* (0.4)^4 * 1[/tex]
=> [tex]P(4) = 0.026[/tex]
Considering c
the probability that at least 3 of the selected adults believe in reincarnation is mathematically represented as
[tex]P( X \ge 3 ) = P(3 ) + P(n )[/tex]
substituting values
[tex]P( X \ge 3 ) = 0.154 + 0.026[/tex]
[tex]P( X \ge 3 ) = 0.18[/tex]
From the calculation the probability that all the 4 randomly selected persons believe in reincarnation is [tex]p(4) = 0.026 < 0.05[/tex]
But the the probability of 3 out of the 4 randomly selected person believing in reincarnation is [tex]P(3) = 0.154 \ which \ is \ > 0.05[/tex]
Hence 3 is not a significantly high number of adults who believe in reincarnation because the probability that 3 or more of the selected adults believe in reincarnation is greater than 0.05.
A box of nails weighs 1-5/6 pounds. What is the weight of 12 boxes?
Step-by-step explanation:
for finding the weight of 12 boxes multiply 12 with the weight of first box and then you will get your answer. Tell me the answer which you found and if it will be correct I will say ok if not I will give you the correct answer
Solve the system of equations.
6x−y=−14
2x−3y=6
whats the answer please C:
Answer:
Step-by-step explanation:
Calculate the surface area of this composite shape.
Answer:
1284 m^2
Step-by-step explanation:
Front face and back face:
2 * [28 m * 5 m + (22 m - 5 m) * 6 m] = 484 m^2
Left face and right face:
2 * 22 m * 8 m = 352 m^2
Bottom face and top face:
2 * 28 m * 8 m = 448 m^2
total surface area = 484 m^2 + 352 m^2 + 448 m^2 = 1284 m^2
Find the measure of ZJ, the smallest angle in a triangle
with sides measuring 11, 13, and 19. Round to the
nearest whole degree.
O 30°
O 34°
o 42°
O 47°
Maite has money in an interest-bearing account. The table shows how much money is in the account at the end of each year.
N
Year Amount
1 $1,000.00
$1,030.00
3 $1,060.90
4 $1,092.73
5 $1,125.51
This situation represents
sequence.
The common
is
At the end of the seventh year, Maite will have $
in the account
Determining how much money will be in the account of Maite at the end of each year, we use an exponential growth factor, since this is a geometric sequence.
1. This situation represents a geometric sequence.
A geometric sequence increases by a common exponential growth factor.
2. The common exponential factor is 1.03 (which gives a growth rate of 3% annually). See how this factor is determined below.
3. At the end of the seventh year, Maite will have $1,194.05 in the account. See the calculation below.
Data and Calculations:
Year Amount
1 $1,000.00
2 $1,030.00
3 $1,060.90
4 $1,092.73
5 $1,125.51
6 $1,159.27 ($1,125.51 * 1.03)
7 $1,194.05 ($1,159.27 * 1.03)
The common exponential factor = 1.03 (1 + 0.03)
To obtain the common exponential factor, subtract Year 2 account balance from Year 1 account balance. Divide the result by Year 1 account balance. This operation can also be carried out with Year 2 and Year 3 balances or Year 4 and Year 5 balances.
To determine how much money will be in the account of Maite at the end of Year 6, using Year 5 as a base = (Year 5 account balance * Exponential Factor)
= $1,159.27 ($1,125.51 * 1.03)
To determine Year 7 account balance, we use Year 6 above as the base
= $1.194.05 ($1,159.27 * 1.03)
Learn more about geometric sequence and exponential growth here: https://brainly.com/question/7154553
Answer:
This situation represents a geometric sequence.
The common ratio is 1.03
At the end of the seventh year, Maite will have $1,194.06 in the account.
Step-by-step explanation:
Plato
How far from the base of the house do you need to place a 13-foot ladder so that it exactly reaches the top of a 10-feet wall?
Answer:
√69 or 8.3 feets
Step-by-step explanation:
Hypotenuse=13
Therefore
13²=x²+10²
x²=169-100
x²=69
x=√69 feets
The distance from the base of the house is 8.3 feet.
What is the pythagoras theorem?The pythagoras theorem is used to obtain the sides of a right angled triangle.
Given that;
The hypotenues of the triangle is 13-foot
The length of the opposite side is 10 feet
Thus;
13^2 = 10^2 + a^2
a^2 = 13^2 - 10^2
a = √13^2 - 10^2
a = 8.3 feet
Learn more about pythagoras theorem:https://brainly.com/question/343682
#SPJ1
can you please help ?
Answer:
69
Step-by-step explanation:
The order of operations is PEMDAS; parentheses, exponents, multiplication and division, and finally addition and subtraction.
We know that x is the first row, and if there are 30 spots in the first row, then x=30. Using this information, all we have to do now is plug in 30 for x and solve.
[tex]\frac{5(x)}{2} -6[/tex]
[tex]\frac{5(30)}{2}-6[/tex]
[tex]\frac{150}{2}-6[/tex]
[tex]75-6[/tex]
[tex]69[/tex]
[tex] \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = what[/tex]
Answer I'll make and mark as brainlist.
Answer Fast.
Post on - 2 Aug 2021
HELP ASAP ROCKY!!! will get branliest.
Answer:
y = 8x + 70
Step-by-step explanation:
Start with the third line.
x = 3, y = 94
Subtract 1 from x and 8 from y:
x = 2, y = 86; this is the second line
Subtract 1 from x and 8 from y:
x = 1, y = 78; this is the first line
Subtract 1 from x and 8 from y:
x = 0; y = 70
For selling 0 games, she earns $70.
y = mx + b
y = mx + 70
For each game she sells, her commission is $8.
y = 8x + 70
Look at the chore chart--write a notice and a wonder about the chart. Click on the image to see the chart. Enter ur answer
Answer:
I noticed that to babysit my cousin was the chore that doled out the most, and I wonder why pet my dog is even a chore. Do they not love their pets?
Need to be in order Smallest to biggest question.
Want to check if my answers are right.
Answer:
a49%, 1/2,0.55,3/5
b)0.2,1/4,27%,3/10
c)9/10,95%,0.99,97/100
d)30%,1/3,0.6,2/3
e)0.09,10%,11/100,0.125
Solve the following equation for the given variable
-14 + 6y = -6y + 10
Round your answers to the nearest tenths place.
Help please
Answer:
y = 2
Step-by-step explanation:
I do not know how to explain how I got the answer
Answer:
y = 2
Step-by-step explanation:
- 14 + 6y = - 6y + 10
-14 - 10 = -6y - 6y collect the like terms
- 24/ -12 = - 12y/ - 12
2 = y
I hope this answers your question
Consider these five values a population: 7, 4, 6, 4, and 7. Determine the mean of the population. (Round your answer to 1 decimal place.)
Answer:
[tex]Mean = 5.6[/tex]
Step-by-step explanation:
Given
[tex]7,4,6,4,7[/tex]
Required
Determine the mean
Mean is calculated as thus;
[tex]Mean = \frac{\sum x}{n}[/tex]
Where n is the number of observation;
In this case;
[tex]n = 5[/tex]
and [tex]\sum x[/tex] is the sum of the observations
The expression becomes
[tex]Mean = \frac{7+4+6+4+7}{5}[/tex]
[tex]Mean = \frac{28}{5}[/tex]
[tex]Mean = 5.6[/tex]
Hence, the mean of the population is 5.6
A lottery exists where balls numbered 1 to "20" are placed in an urn. To win, you must match the balls chosen in the correct order. How many possible outcomes are there for this game?
Answer: 1860480
Step-by-step explanation:
Initially, there are 20 balls where 5 must be chosen in order.
The number of possible outcomes may be calculated using the concept of permutations.
The formula for permutations is:
nPr =n!/(n−r)!
where n represents the number of items and r represents the number of items to be selected.
The number of ways of selecting 5 balls in order out of 20 is:
20P5 = 20!/15!
= 1860480
To conclude, there are 1860480 possible outcomes.
what is 5(2x - 2y) - (4x + 3y)
Answer:
6x - 13y
Step-by-step explanation:
5(2x - 2y) - (4x + 3y)
10x - 10y - 4x - 3y
10x - 4x - 10y - 3y
6x - 13y
Which is the zero of the function f(x)=(x+3) (2x-1)(x+2) ?
Answer:
x= -3 x = 1/2 x=-2
Step-by-step explanation:
f(x)=(x+3) (2x-1)(x+2)
Set equal to zero
0 =(x+3) (2x-1)(x+2)
Using the zero product property
x+3 =0 2x-1 =0 x+2 =0
x= -3 2x =1 x = -2
x= -3 x = 1/2 x=-2
The distance between two cities on a map is 4 centimeters. If the scale is 0.5 cm:1 km, how many kilometers apart are the actual cities?
Answer:
8 km
Step-by-step explanation:
1 km
4 cm x -------- = 8 km
0.5 cm
The actual cities are 8 km apart from each other at the scale 0.5 cm = 1 km.
What is ratio?Ratio basically compares quantities, that means it shows the value of one quantity with respect to the other quantity.
If a and b are two values, their ratio will be a:b,
Given that,
The distance between two cities on a map = 4 centimeters.
Also, the scale
0.5 cm = 1 km
To find actual distance between cities, use ratio properly,
0.5 cm = 1 km
1 cm = 2 km
4 cm = 8 km
The distance between the actual cities is 8 km.
To learn more about Ratio on :
https://brainly.com/question/13419413
#SPJ2
A new fast-food firm predicts that the number of franchises for its products will grow at the rate dn dt = 6 t + 1 where t is the number of years, 0 ≤ t ≤ 15.
Answer:
The answer is "253"
Step-by-step explanation:
In the given- equation there is mistype error so, the correct equation and its solution can be defined as follows:
Given:
[tex]\bold{\frac{dn}{dt} = 6\sqrt{t+1}}\\[/tex]
[tex]\to dn= 6\sqrt{t+1} \ \ dt.....(a)\\\\[/tex]
integrate the above value:
[tex]\to \int dn= \int 6\sqrt{t+1} \ \ dt \\\\\to n= \frac{(6\sqrt{t+1} )^{\frac{3}{2}}}{\frac{3}{2}}+c\\\\\to n= \frac{(12\sqrt{t+1} )^{\frac{3}{2}}}{3}+c\\\\[/tex]
When the value of n=1 then t=0
[tex]\to 1= \frac{12(0+1)^{\frac{3}{2}}}{3}+c\\\\ \to 1= \frac{12(1)^{\frac{3}{2}}}{3}+c\\\\\to 1-\frac{12}{3}=c\\\\\to \frac{3-12}{3}=c\\\\\to \frac{-9}{3}=c\\\\\to c=-3\\[/tex]
so the value of n is:
[tex]\to n= \frac{(12\sqrt{t+1} )^{\frac{3}{2}}}{3}-3\\\\[/tex]
when we put the value t= 15 then,
[tex]\to n= \frac{(12\sqrt{15+1} )^{\frac{3}{2}}}{3}-3\\\\\to n= \frac{(12\sqrt{16} )^{\frac{3}{2}}}{3}-3\\\\\to n= \frac{(12\times 64)}{3}-3\\\\\to n= (4\times 64)-3\\\\\to n= 256-3\\\\\to n= 253[/tex]
Determine the value of x in the figure. Question 1 options: A) x = 90 B) x = 85 C) x = 45 D) x = 135
Answer:
A.) x=90°
Step-by-step explanation:
Note:
The triangle shown is an isosceles triangle, which means that it has 2 congruent sides (as shown by the small intersecting lines), and this also means that it has two congruent angles.
We are given an angle measure adjacent to one of the missing angles. These two form supplementary angles, which means that they're sum is equal to 180°, or a straight line. So, to find:
[tex]180=135+y[/tex]
y is the unknown angle. Solve for y:
[tex]180-135=y\\\\y=45[/tex]
y is 45°. Since this and the other angle are congruent, add:
[tex]45+45=90[/tex]
Note:
Triangles angles will always add up to a total of 180°.
To find the missing angle x°, use:
[tex]180=a+b+c[/tex]
These are the angles in a triangle. Substitute any known values and solve:
[tex]180=45+45+x\\\\180=90+x\\\\180-90=x\\\\x=90[/tex]
The missing angle x° is 90°.
:Done
Simplify using calculator.. I'm not sure if i am putting it in the calculator right
You would type in
32^(6/5)
Or you could type in
32^(1.2)
since 6/5 = 1.2
Either way, the final result is 64
A middle school has 470 students. Regina surveys a random sample of 40 students and finds that 28 have cell phones. How many students at the school are likely to have cell phones? A. 132 students B. 188 students C. 329 students D. 338 students Please include ALL work! <3
Answer:
C. 329
Step-by-step explanation:
So 28 is 70% of 40
so we know that 70% percent of students have phones
70% of 470
329
Thats how I solved it have a great day :)
please Factor 12n - 18.
Answer:
[tex]\large \boxed{6(2n-3)}[/tex]
Step-by-step explanation:
[tex]12n-18[/tex]
Factor out 6 from each term.
[tex]6(2n)+6(-3)[/tex]
Take 6 as a common factor.
[tex]6(2n-3)[/tex]
Answer:
[tex] \boxed{3(4n - 6)}[/tex]Step-by-step explanation:
[tex] \mathsf{12n - 18}[/tex]
In such expression, the factor which is present in all terms of the expression is taken out as common and each term of the expression should be divided by the common factor to get another factor
Factor out 3 from the expression
[tex] \mathsf{ = 3(4n - 6)}[/tex]
Hope I helped!
Best regards!
HELP PLEASE!! I have been working on this for about three hours!!
Answer:
see below
Step-by-step explanation:
First we need to find the slope
m = ( y2-y1)/ ( x2-x1)
= (60-64)/( 10-0)
= -6/10
= -2/5
The y intercept is (0,64)
The slope intercept form of the equation is
y = mx+b where m is the slope and b is the y intercept
y = -2/5 x + 64 where y is in the thousands of feet
m = -2/5 * 1000 = -400 ft / minute
The height decreases since the sign is negative
The height decreases 400 ft per minute
The y intercept is (0,64)
64 is in the thousands of ft
64*1000 = 64,000 ft
When it starts, it is at 64,000 ft
The descent starts at a cruising altitude of 64,000 ft
Which shapes are quadrilaterals?
1. Scalene right triangle
2. Obtuse scalene triangle
3. Isosceles right triangle
4. Hexagon
5. Pentagon
6. Right trapezoid
7. Venn diagram
Hey there! I'm happy to help!
A quadrilateral is any polygon (enclosed shape) with four sides. Let's see what each of these shapes are.
Scalene right triangle - the prefix tri- means three (tricycle, tripod, triple, etc.), and all triangles have three sides, so this is not a quadrilateral.Obtuse scalene triangle - once again a triangle, so not a quadrilateral.Isosceles right triangle - would you look at that, another triangle! Not a quadrilateral.Hexagon - a hexagon is a six-sided polygon (hex=six), so this is not a quadrilateral.Pentagon - a pentagon is a five-sided polygon (pent=five, like Pentatonix!). Not a quadrilateralRight trapezoid - a trapezoid is a quadrilateral with at least one pair of parallel sides!Venn diagram - a Venn diagram is a compare and contrast chart made of two overlapping circles (ZERO sides), so this is not a quadrilateral.So, the only shape on your list that is a quadrilateral is 6. right trapezoid.
Have a wonderful day! :D
Assume a bank loan requires an interest payment of $85 per year and a principal payment of $1,000 at the end of the loan's eight-year life. What would be the present value of this loan if it carried a 10% interest rate?
Answer:
The present value is [tex]PV = \$ 396,987[/tex]
Step-by-step explanation:
From the question we are told that
The interest payment per year is [tex]C = \$ 85[/tex]
The principal payment is [tex]P = \$ 1000[/tex]
The duration is n = 8 years
The interest rate is [tex]r = 10\% = 0.10[/tex]
The present value is mathematically represented as
[tex]PV = [ \frac{C}{r} * [1 - \frac{1 }{ (1 +r)^n} ] + \frac{P}{(1 + r)^n} ][/tex]
substituting values
[tex]PV = [ \frac{85}{0.10} * [1 - \frac{1 }{ (1 +0.10)^8} ] + \frac{1000}{(1 + 0.10)^ 8} ][/tex]
[tex]PV = \$ 396,987[/tex]
A store has clearance items that have been marked down about 30%. They are having a sale, advertising an additional 55% off clearance items. What percent of the original price do you end up paying
Answer:
60% discount given in total, so only 40% is paid.
Step-by-step explanation:
Solve the equation using square roots x^2+20=4
Answer:
Step-by-step explanation:
x^2+20=4 first isolate the variable by subtracting 20 on both sides.
x^2=-16 again isolate the variable but this time you square root both sides.
[tex]\sqrt{x}^2[/tex]=[tex]\sqrt{-16[/tex] then simplify
x= ±4