(a) The average velocity of the tennis player at 0 to 1 s is 4 m/s.
(b) The average velocity of the tennis player at 0 to 4 s is -0.5 m/s.
(c) The average velocity of the tennis player at 1 to 5 s is 1 m/s.
(d) The average velocity of the tennis player at 0 to 5 s is 0.8 m/s.
What is the average velocity of the tennis player?The average velocity of the tennis player at the given time, is calculated by applying the formula for average velocity as follows;
average velocity = total displacement / total time
(a) The average velocity at 0 to 1 s;
average vel. = (4 m - 0 m ) / (1 s ) = 4 m/s
(b) The average velocity at 0 to 4 s;
average vel. = (-2 - 0 )m / 4 s = -0.5 m/s
(c) The average velocity at 1 to 5 s;
average vel. = (4 - 0 )m / (5 - 1) s = 1 m/s
(d) The average velocity at 0 to 5 s;
average vel. = (4 - 0 )m / (5 - 0) s = 0.8 m/s
Learn more about average velocity here: https://brainly.com/question/24445340
#SPJ1
Explain the function of power supply, readout, peripheral, microcomputer, transducer and processor
The function of the power supply is to provide electrical energy to the device or system that needs it. The power supply converts the incoming voltage from the power source into a form that is usable by the device, such as DC voltage.
The readout is a device or component that displays data or information to the user. The readout could be a simple LED display or a complex graphical display.
A peripheral is a device or component that connects to a computer or other electronic device to provide additional functionality. Examples of peripherals include printers, scanners, and external hard drives.
A microcomputer is a type of computer that is designed to fit on a single microchip. Microcomputers are found in a wide range of devices, including smart phones, tablets, and embedded systems.
A transducer is a device that converts one form of energy to another. In electronics, transducers are commonly used to convert electrical energy into mechanical energy, or vice versa.
The processor is the central component of a computer or electronic device. The processor is responsible for executing instructions and controlling the other components of the system. The performance and capabilities of a device are largely determined by the speed and power of the processor.
A ball is thrown vertically upward with a speed of 15.0 m/s. Find a - How high does it rise? in meters, find b - How long does it take to reach its highest point? in seconds, find c - How long does the ball take to hit the ground after it reaches its highest point? in seconds, find d - What is its velocity when it returns to the level from which it started? in m/s.
Given that the initial velocity at which the ball is thrown vertically upward is 15m/s. Let us also assume that the value of acceleration due to gravity (g) = 9.8m/s² and in this case, the value will be -9.8m/s² as the ball is moving against gravity.
a) To calculate how high the ball rises, we can use the kinematic equation:
v² = u² + 2gs......(i)
where v ⇒ final velocity
u ⇒ initial velocity
g ⇒ acceleration and,
s ⇒ displacement (the height)
The final velocity will be 0 when the ball reaches its maximum height.
Substituting the values in equation (i), we get
0² = 15² + (2*-9.8*s)
0 = 225 - 19.6s
Thus, s = 225/19.6 = 11.48 m.
Therefore, the ball rises approximately 11.48 meters.
b) To find the time taken to reach the highest point, we can use the kinematic equation,
v = u + gt......(ii)
where t = time
Substituting the values in equation (ii)
0 = 15 - 9.8*t
t = -15/ -9.8 = 1.53 seconds
Thus, the time taken to reach the highest point = 1.53 seconds.
c) To find the time taken for the ball to hit the ground after it reaches its highest point, we can use the equation,
s = ut +1/2gt².....(iii)
As the ball is moving downwards, the initial velocity, u will be 0m/s.
Thus, substituting the values in equation (iii), we get
11.48 = 0*t + 1/2*9.8*t²
11.48 = 4.9t²
t² = 2.34
Therefore t = 1.53 seconds
Thus, the time taken for the ball to hit the ground is 1.53 seconds.
d) To find the velocity at which the ball returns to the level from which it started, we can use the equation
v = u+ gt.....(iv)
v = 0 + 9.8*1.53
Thus, v = 14.99 ≅ 15 m/s
Therefore, the velocity when it returns to the level from which it started is 15m/s.
Learn more about Velocity, here:
https://brainly.com/question/24824545