Answer:
1,280,000 (1.28 million.)
Step-by-step explanation:
If Network B schedules its top show (with a probability of 0.7), Network A will get 1.1 million viewers.
If Network B schedules a different show during that time slot, (with a probability of 0.3), Network A will get 1.9 million viewers.
Therefore, the probability distribution table of number of viewers of Network A is:
[tex]\left|\begin{array}{c|c|c}$Number of Viewers, x&1.1$ million&$1.7 million\\P(x)&0.7&0.3\end{array}\right|[/tex]
Therefore, the expected number of viewers for Network A's top show
= (1100000 X 0.7) + (1700000 X 0.3)
=1,280,000
The expected number of viewers for Network A's top show is 1.28 million.
HELP! What is the solution to the equation below? Round your answer to two decimal places. 4x = 20 A. x = 2.99 B. x = 0.46 C. x = 1.30 D. x = 2.16
Answer:
X = 5
Step-by-step explanation:
If 4x = 20
And we are asked to find the solution.
It simply means looking for the value of x
So
4x = 20
X = 20/4
X = 5
X is simply the solution
X = 5
Answer:
D 2.16
Step-by-step explanation:
a p e x just use log
Two clinical trials were designed to test the effectiveness of laser treatment for acne. Seaton et al. (2003) randomly divided participants into two groups. One group received the laser treatment, whereas the other group received a sham treatment. Orringer et al. (2004) used an alternative design in which laser treatment was applied to one side of the face, randomly chosen, and the sham treatment was applied to the other side. The number of facial lesions was the response variable.
Orringer et al. used _______________ in a ___________ design.
Seaton et al. used a completely _____________design.
Answer:
Blocking in a paired design
Completed randomized design
Step-by-step explanation:
Orringer et. al used blocking in a paired design. He use the special type of randomized block design; a matched pair design wherein there is just two treatment conditions (laser treatment and the sham treatment) and the subjects are then group the subjects in pairs using the blocking variable which is a treatment applied to one side of face randomly chosen.
While Seaton et. al. used a completely randomized design. Here the subjects/participants are just merely assigned albeit randomly to either the laser or the sham treatment.
Given that (-2,7) is on the graph of f(x), find the corresponding point for the function f(x + 4).
Answer:
(-6, 7)
Step-by-step explanation:
In order to make (x+4) = -2, we must have x = -6. Then the point (-6, 7) will be on the graph of f(x+4).
__
Another way to think about this is that replacing x with x-h causes the graph to be shifted right by h units. Here, we have h=-4, so the graph is shifted left 4 units. Shifting the point (-2, 7) by 4 units to the left moves it to (-2-4, 7) = (-6, 7).
Answer:
PLATO: -6,7
Step-by-step explanation:
Two contractors will jointly pave a road, each working from one end. If one of them paves 2/5 of the road and the other 81 km remaining, the length of that road is
25x^4 +120x^2y +144y^2
Answer:
We can factor this into (5x+12y)^2
Step-by-step explanation:
Can some help me if your good at maths
Answer:
36=2×3×3×3
36=2×3³Answer
[tex]36 = 2 \times 2 \times 3 \times 3 \\ \: \: \: \: \: \: \: \: = {2}^{2} \times {3}^{2} [/tex]
Step-by-step explanation:
First write the prime factors of 36 that you can see here
[tex]2 \: \: \: 2 \: \: \: 3 \: \: \: 3[/tex]
Now write 36 as a product of its prime factors.
[tex]36 = 2 \times 2 \times 3 \times 3 \\ \: \: \: \: \: \: \: \: = {2}^{2} \times {3}^{2} [/tex]
Five times the sum of a number and 13 is 20. Find the number
Answer:
x = -9
Step-by-step explanation:
Step 1: Write out expression
5(x + 13) = 20
Step 2: Distribute
5x + 65 = 20
Step 3: Isolate x
5x = -45
x = -9
And we have our answer!
Answer:
-9
Step-by-step explanation:
Let the number be x.
5(x+13) = 20
Expand.
5x+65 = 20
Subtract 26 on both sides.
5x = 20 - 65
5x = -45
Divide 5 into both sides.
x = -45/5
x = -9
The number is -9.
A tooth-whitening gel is to be tested for effectiveness. A group of 85 adults have volunteered to participate in the study. Of these, 43 are to be given a gel that contains the tooth-whitening chemicals. The remaining 42 are to be given a similar-looking package of gel that does not contain the tooth-whitening chemicals. A standard method will be used to evaluate the whiteness of teeth for all participants. Then the results for the two groups will be compared. 1. After the treatment period, compare the whiteness of the 43 treated adults. 2. A placebo is not being used. 3. After the treatment period, compare the whiteness of the two groups. 4. Randomly select 85 adults to be given the treatment gel. 5. The remaining 42 adults receive the placebo gel. 6. Randomly select 43 adults to be given the treatment gel.
Answer:
(a) 3, 5 and 6
Step-by-step explanation:
In the experiment, 43 are to be given a gel that contains the tooth-whitening chemicals while the remaining 42 are to be given a placebo. Therefore, a placebo is used.
The 43 that will receive the gel are to be selected randomly.
After the experiment, the whiteness of the two groups will be compared to see the effect of the gel.
Therefore for the experiment to be completely random, 3, 5, and 6 apply.
(b)
For the experiment to be double-blind, the researchers who will evaluate the whiteness and interact with the subjects, and the subjects would not know which subjects received either the whitening gel or the placebo.
The television show 50 Minutes has been successful for many years. That show recently had a share of 20, meaning that among the TV sets in use, 20% were tuned to 50 Minutes. Assume that an advertiser wants to verify that 20% share value by conducting its own survey, and a pilot survey begins with 14 households have TV sets in use at the time of a 50 Minutes broadcast. Find the probability that none of the households are tuned to 50 Minutes.
Answer:
The probability that none of the households are tuned to 50 Minutes is 0.04398.
Step-by-step explanation:
We are given that the television show 50 Minutes has been successful for many years. That show recently had a share of 20, meaning that among the TV sets in use, 20% were tuned to 50 Minutes.
A pilot survey begins with 14 households have TV sets in use at the time of a 50 Minutes broadcast.
The above situation can be represented through binomial distribution;
[tex]P(X = r)= \binom{n}{r} \times p^{r} \times (1-p)^{n-r} ;x = 0,1,2,3,.........[/tex]
where, n = number of samples (trials) taken = 14 households
r = number of success = none of the households are tuned to 50 min
p = probability of success which in our question is probability that households were tuned to 50 Minutes, i.e. p = 20%
Let X = Number of households that are tuned to 50 Minutes
So, X ~ Binom(n = 14, p = 0.20)
Now, the probability that none of the households are tuned to 50 Minutes is given by = P(X = 0)
P(X = 0) = [tex]\binom{14}{0} \times 0.20^{0} \times (1-0.20)^{14-0}[/tex]
= [tex]1 \times 1 \times 0.80^{14}[/tex]
= 0.04398
The selection of a password of a computer account has the followingrestrictions: The password must be 6, 7, or 8 characters long. A charactercan be lower case letter or a decimal digit. The first character must be alowercase letter. Determine the total number of possible passwords with thegiven restrictions
Answer:
2,095,636,800,000 possible passwords.
Step-by-step explanation:
There are:
26 lower case characters.
10 decimal digits.
Passwords with 6 characters:
The first character must be a lower case letter, so 26 possible outcomes.
Any of the other 6 - 1 = 5, there are 36 possible options. So
[tex]T_{6} = 26*36^{5} = 1572120576[/tex]
Passwords with 7 characters:
Same logic as above, just the last 6 with 36 possible options. So
[tex]T_{7} = 26*36^{6} = 56596340736[/tex]
Passwords with 8 characters:
7 with 36 possible options
[tex]T_{8} = 26*36^{7} = 2037468300000[/tex]
Total:
[tex]T = T_{6} + T_{7} + T_{8} = 1572120576 + 56596340736 + 2037468300000 = 2095636800000[/tex]
2,095,636,800,000 possible passwords.
a particular city had a population of 24,000 in 1900 and a population of 29,000 in 1920. Assuming that its population continues to grow exponentially at a constant rate, what population will it have in 2000
Answer:
It will have a population of 61,779 in 2000.
Step-by-step explanation:
The population for the city, in t years after 1900, can be modeled by a exponential function with constant growth rate in the following format:
[tex]P(t) = P(0)(1+r)^{t}[/tex]
In which P(0) is the population in 1900 and r is the growth rate.
Population of 24,000 in 1900
This means that [tex]P(0) = 24000[/tex]
Population of 29,000 in 1920.
1920 is 1920 - 1900 = 20 years after 1900.
This means that P(20) = 29000. So
[tex]P(t) = P(0)(1+r)^{t}[/tex]
[tex]29000 = 24000(1+r)^{20}[/tex]
[tex](1+r)^{20} = \frac{29000}{24000}[/tex]
[tex]\sqrt[20]{(1+r)^{20}} = \sqrt[20]{\frac{29000}{24000}}[/tex]
[tex]1 + r = 1.0095[/tex]
So
[tex]P(t) = P(0)(1+r)^{t}[/tex]
[tex]P(t) = 24000(1.0095)^{t}[/tex]
What population will it have in 2000
2000 is 2000 - 1900 = 100 years after 1900. So this is P(100).
[tex]P(t) = 24000(1.0095)^{t}[/tex]
[tex]P(100) = 24000(1.0095)^{100} = 61779[/tex]
It will have a population of 61,779 in 2000.
Data was collected for a sample of organic snacks. The amount of sugar (in mg) in each snack is summarized in the histogram below. 2 4 6 8 10 12 14 amount of sugar (mg) 60 80 100 120 140 160 180 200 Frequency What is the sample size for this data set
Answer:
The sample size for the data set = 56
Step-by-step explanation:
The sample size or number of individuals (n) is gotten from a histogram by summing up the total frequencies of occurrences.
In this example, the frequencies are: 2 4 6 8 10 12 14
Therefore, the sample size (n) is calculated as follows:
n = 2 + 4 + 6 + 8 + 10 + 12 + 14 = 56
Therefore the sample size for the data set = 56
The sample size for the data set = 56
Given that,
Data was collected for a sample of organic snacks.The calculation is as follows:
= 2 + 4 + 6 + 8 + 10 + 12 + 14
= 56
Learn more: https://brainly.com/question/15622851?referrer=searchResults
Find the value of each variable
Answer:
To find a we use sine
sin 60° = a / 4√3
a = 4√3sin60°
a = 6
To find b we use sine
sin 45° = a / b
a = 6
b = 6 / sin 45°
b = 6√2
To find c we use cosine
cos 60° = c / 4√3
c = 4√3 cos 60°
c = 2√3
To find d we use tan
tan 45° = a / d
a = 6
d = 6 / tan 45°
d = 6
Therefore a = 6 b = 6√2 c = 2√3
d = 6
That's option A.
Hope this helps
Assume that 1700 births are randomly selected and 4 of the births are girls. Use subjective judgment to describe the number of girls as significantly high, significantly low, or neither significantly low nor significantly high.
Answer: Significantly low.
Step-by-step explanation:
Ok, we know that out of 1700 randomly selected, only 4 of them are girls.
Then the frequency is:
p = 4/1700
Now, using the subjective judgement (meaning that it is based on the opinion only, there is no real math involved)
I can conclude that the number of girls is significantly low, meaning that out of 1700 births we have 4 girls, then the other 1694 must be boys.
Using the order of operations, what should be done first to evaluate 12 divided by (negative 6) (3) + (negative 2)? Divide 12 by 5. Multiply –6 and 3. Divide 12 by –6. Add 3 and –2.
Answer:
first you need to multiply -6 and 3
Answer:
-6 and 3
Step-by-step explanation:
sorry it was an late answer I'm just tryna gain points :D
Which function has the same range?
Answer:
I would say the second one
Step-by-step explanation:
f(x) has a range of y<0, because it is reflected over the x axis
g(x) = -5/7(3/5)^-x is also reflected over the x axis, except also in the y axis. Regardless of the reflection in the y-axis, y still cannot be equal to or greater than 0. Therefore, I believe it is the second choice.
(The third and forth choice are the same, which rules them both out. The first on reflects it over the y-axis, meaning that x can be greater than 0.)
If AD=BD, which of the following relationships can be proved and why?
B
o
A. A ACD= A BCD, because of ASA.
B. XACD N BOD because of SAS
C. There is not enough information to prove a relationship.
(D. A ACD S ABCD, because of AS
SUBMIT
< PREVIOUS
Answer: SAS
Step-by-step explanation:
Suppose the time it takes a barber to complete a haircuts is uniformly distributed between 8 and 22 minutes, inclusive. Let X = the time, in minutes, it takes a barber to complete a haircut. Then X ~ U (8, 22). Find the probability that a randomly selected barber needs at least 14 minutes to complete the haircut, P(x > 14) (round answer to 4 decimal places) Answer:
Answer:
[tex] P(X>14)= 1-P(X<14) =1- F(14)[/tex]
And replacing we got:
[tex] P(X>14)= 1- \frac{14-8}{22-8}= 0.5714[/tex]
The probability that a randomly selected barber needs at least 14 minutes to complete the haircut is 0.5714
Step-by-step explanation:
We define the random variable of interest as x " time it takes a barber to complete a haircuts" and we know that the distribution for X is given by:
[tex] X \sim Unif (a= 8, b=22)[/tex]
And for this case we want to find the following probability:
[tex] P(X>14)[/tex]
We can find this probability using the complement rule and the cumulative distribution function given by:
[tex] P(X<x) = \frac{x-a}{b-a} ,a \leq x \leq b[/tex]
Using this formula we got:
[tex] P(X>14)= 1-P(X<14) =1- F(14)[/tex]
And replacing we got:
[tex] P(X>14)= 1- \frac{14-8}{22-8}= 0.5714[/tex]
The probability that a randomly selected barber needs at least 14 minutes to complete the haircut is 0.5714
Mary is selling chocolate bars to raise money. She earns $3 for each solid milk chocolate bar sold and $4 for each caramel-filled bar sold. If m represents the number of milk chocolate bars sold, and c represents the number of caramel bars sold, which of the following expressions represents the amount of money that Mary has raised? Question 6 options: A) 3m – 4c B) m∕3 + i∕4 C) 12mc D) 3m + 4c
Answer:
3m + 4c
Step-by-step explanation:
Whenever a word problem says the word earn that means the slope, also known as the rate of change, will be positive. Knowing this you can determine that both the caramel and milk chocolate slopes will be positive. After figuring all that out the only thing left to do is to make the equation. You know you have two slopes, and each slope needs a variable, so you will have to look back at the question. It is given that m represents the milk chocolate and c represents the caramel. Now all you have to do is make the slope the coefficient to the corresponding variable. The milk chocolates are 3 dollars, so the 3 goes in front of the m and the caramel chocolates are 4 dollars, so teh 4 goes in front of the 4. Since both slopes are positive no negatives or minus signs will be used in the equation. Knowing all this information you can now create the expression 3m + 4c.
Answer:
D
Step-by-step explanation:
3m + 4c
Can someone answer this
Answer:
Step-by-step explanation:
x 6 a
8 48 c
-4 b 20
Let the unknown numbers of the multiplication grid are a, b and c.
1). 6 × 8 = 48
2). (-4)×6 = b
b = -24
3). (-4) × a = 20
a = -5
4). 8 × a = c
8 × (-5) = c
c = -40
Therefore, missing in the given multiplication grid are,
x 6 -5
8 48 -40
-4 -24 20
4. The area of a rhombus with one diagonal is 8.72 cm long is the same as the area of a square of side 15.6 cm. Find the length of the other diagonal of the rhombus.
Answer:
55.82 cm
Step-by-step explanation:
d1= 8.72 cm
a= 15.6 cm
A rhombus= 1/2*d1*d2 = A square
A square= 15.6²= 243.36 cm²
d2= 2A/d1= 2*243.36/8.72 ≈55.82 cm
Any help would be great
Answer:
I don't know
Step-by-step explanation:
sorry I can't help,use a calculator
Answer:
58.5 miles
Step-by-step explanation:
Let's Use unitary Method
8 hours = 52 miles
Then,
1 hour = 52/8 miles
1 hour = 6.5 miles
Multiplying both sides by 9, We'll get
9 hours = 6.5 × 9 miles
9 hours = 58.5 miles
F(x)=(x+1)(x-3)(x-4)
Answer :
x1 = -1
x2= +3
x3 = +4
I hope it helps
If you are doing it by roots how ever it would be 3
Use the end behavior of the graph to solve 3x^3+9x^2-12x < 0
Answer:
1. x = 4
2. x = -1
3. x = 0
Answer:
Step-by-step explanation:
what is the volume of a cone with the given dimensions. radius=4 cm; height= 10 cm
Answer:
[tex] 167.47 \: {cm}^{3} [/tex]
Step-by-step explanation:
[tex]V_{cone} = \frac{1}{ 3} \pi {r}^{2}h \\ \\ = \frac{1}{ 3} \pi \times {4}^{2} \times 10 \\ \\ = \frac{1}{ 3} \times 3.14 \times 16 \times 10 \\ \\ = \frac{1}{ 3} \times \: 502.4 \\ \\ = 167.466667 \\ \\ = 167.47 \: {cm}^{3} [/tex]
The diagram shows a circle, centre O.
Work out the value of a.
BCO=41 degrees
Answer:
a = 49°
Step-by-step explanation:
OB = OC ( both radii of the circle ), thus
Δ BOC is isosceles and the base angles are congruent, that is
∠ OBC = ∠ OCB = 41° , so
∠ BOC = 180° - (2 × 41)° = 180° - 82° = 98°
The angle on the circumference BAC is half the angle at the centre for angles subtended on the same arc , thus
a = 0.5 × 98° = 49°
If the measure of the angle ∠BOC will be 98°. Then the measure of the angle ∠BAC will be 49°.
What is a circle?It is the close curve of an equidistant point drawn from the center. The radius of a circle is the distance between the center and the circumference.
The central angle is double the angle at the periphery that was subtended by the same chords.
The measure of the angle ∠BCO is 41°.
The angle ∠BCO and angle ∠CBO will be congruent. Because they are angles of an isosceles triangle.
We know that the sum of all the interior angles of the triangle will be 180°. Then the measure of the angle ∠BOC will be given as,
∠BOC + ∠CBO + ∠BCO = 180°
∠BOC + 41° + 41° = 180°
∠BOC = 98°
Then the measure of the angle ∠BAC will be
∠BAC = (1/2) ∠BOC
∠BAC = 1/2 x 98°
∠BAC = 49°
If the measure of the angle ∠BOC will be 98°. Then the measure of the angle ∠BAC will be 49°.
More about the circle link is given below.
https://brainly.com/question/11833983
#SPJ2
Two random samples were drawn from two employers to obtain information about hourly wages. Use the following information and the PopMeanDiff template to determine if there is a significant difference in wages across the two employers.
Kroger Wal-Mart
Sample size 80 60
Sample mean $6.75 $6.25
Population standard deviation $1.00 $0.95
The p-value is _____.
a. 0.0026
b. 0.0013
c. 0.0084
d. 0.0042
Answer:
a) 0.0026
P- value is 0.0026
Step-by-step explanation:
Step(i):-
Given data
first sample size n₁= 80
mean of the first sample x⁻₁= $6.75
Standard deviation of the first sample (σ₁) = $1.00
second sample size (n₂) = 60
mean of the second sample( x₂⁻) = $6.25
Standard deviation of the second sample (σ₂) = $0.95
step(ii):-
Test statistic
[tex]Z = \frac{x^{-} _{1} -x^{-} _{2} }{\sqrt{\frac{(S.D)_{1} ^{2} }{n_{1} } +\frac{(S.D)_{2} ^{2} }{n_{2} } } }[/tex]
Null Hypothesis :H₀: There is no significant difference in wages across the two employers.
x⁻₁= x₂⁻
Alternative Hypothesis :H₁: There is significant difference in wages across the two employers.
x⁻₁≠ x₂⁻
[tex]Z = \frac{6.75 -6.25 }{\sqrt{\frac{(1^{2} }{80 } +\frac{((0.95)^{2} }{60} } }[/tex]
Z = 3.01
P- value:-
Given data is two tailed test
The test statistic Z = 3.01
First we have to find the Probability of z-statistic
P(Z>3.01) = 1- P( z <3.01)
= 1- (0.5 + A(3.01)
= 0.5 - A(3.01)
= 0.5 - 0.49865 ( from normal table)
= 0.0013
P(Z>3.125) = 0.0013
Given two tailed test
P- value = 2 × P( Z > 3.01)
= 2 × 0.0013
= 0.0026
Final answer:-
The calculated value Z = 3.125 > 1.96 at 0.05 level of significance
null hypothesis is rejected
Conclusion:-
P- value is 0.0026
Write an equation in standard form for a line that passes through (2, 2) and (0, -3).
Answer:
y=(5/2)x-3
Step-by-step explanation:
slope of the line=(y2-y1)/(x2-x1)=(-3-2)/(0-2)=5/2
use any point to get the line:
y-(-3)=(5/2)(x-0)
y=(5/2)x-3
Can someone plz help me solved this problem! I’m giving you 10 points! I need help plz help me! Will mark you as brainiest!
Hey there! :)
Answer:
a. 3
b. -22
c. -2
d. -2
e. 5a + 8
f. a² + 6a + 3
Step-by-step explanation:
Calculate the answers by substituting the values inside of the parenthesis for 'x':
a. f(1) = 5(1) - 2 = 3
b. f(-4) = 5(-4) - 2 = -22
c. g(-3) = (-3)² + 2(-3) - 5 = 9 - 6 - 5 = -2
d. g(1) = 1² + 2(1) - 5 = 1 + 2 -5 = -2
e. f(a+ 2) = 5(a+2) - 2 = 5a + 10 - 2 = 5a + 8
f. g(a + 2) = (a + 2)² + 2(a + 2) - 5 = a² + 4a + 4 + 2a + 4 - 5 =
a² + 6a + 3
PLEASE ANSWER, URGENT!!! In a math exam, Zach, Wendy, and Lee have an average score 91. Wendy, Lee and Chen have an average score 89. Zach and Chen have an average score 95. What is Zach's score?
Answer:
98
Step-by-step explanation:
Z as Zach; W as Wendy; L as Lee; C as Chen
We know that average score of Z,W, and L is 91, so:
(z + w + l)/3 = 91
z + w + l = 273
Average score W, L, C = 89, so:
(w + l + c)/3 = 89
w + l + c = 267
We take both:
(z + w + l) – (w + l + c) = 273 – 267
z – c = 6
Average score Z and C = 95
(z + c)/2 = 95
z + c = 190
(z + c) – (z – c) = 184
2c = 184
c = 92
z + c = 190
z + 92 = 190
z = 98
So, Zachs score is 98