A tank whose bottom is a mirror is filled with water to a depth of 19. 4. A small fish floats motionless 7. 10 under the surface of the water.


part A) What is the apparent depth of the fish when viewed at normal incidence to the water?


Express your answer in centimeters. Use 1. 33 for the index of refraction of water.


Part B) What is the apparent depth of the reflection of the fish in the bottom of the tank when viewed at normal incidence?


Express your answer in centimeters. Use 1. 33 for the index of refraction of water

Answers

Answer 1

The apparent depth of a fish floating motionless 7.10 cm under the surface of the water in a tank with a mirrored bottom can be determined using the concept of refraction. The index of refraction of water is given as 1.33.

Part A: The apparent depth of the fish when viewed at normal incidence to the water can be calculated using the formula for apparent depth: [tex]\[d_{\text{apparent}} = \frac{d_{\text{actual}}}{\text{refractive index}}.\][/tex]Substituting the given values, we have [tex]\[d_{\text{apparent}} = \frac{7.10}{1.33} = 5.34\] cm[/tex]. Therefore, the apparent depth of the fish is 5.34 cm.

Part B: When the fish is viewed through the mirrored bottom of the tank, we consider both the refraction of light at the air-water interface and the reflection from the mirror. The apparent depth of the reflection can be calculated using the same formula as in Part A, as the reflected light undergoes refraction at the air-water interface. Therefore, the apparent depth of the reflection of the fish in the bottom of the tank is also 5.34 cm.

In summary, the apparent depth of the fish floating motionless 7.10 cm under the surface of the water when viewed directly or through the mirrored bottom of the tank is 5.34 cm.

To learn more about refraction refer:

https://brainly.com/question/31455199

#SPJ11


Related Questions

3. in your lab, you will work with music and other natural signals. if the sampling rate is fs = 11025hz, what sample corresponds to a start time of 200ms?

Answers

The sample that corresponds to a start time of 200ms with a sampling rate of 11025Hz is 2205.

To find the sample that corresponds to a start time of 200ms with a sampling rate of 11025Hz, we can use the formula:
sample = time * sampling rate
where time is the time in seconds and sampling rate is in Hz.

First, we need to convert the start time of 200ms to seconds: 200ms = 0.2 seconds
Then we can plug in the values:
sample = 0.2 * 11025Hz
sample = 2205

Therefore, the sample that corresponds to a start time of 200ms with a sampling rate of 11025Hz is 2205.
Here is a step by step solution to find the sample corresponding to a start time of 200ms with a sampling rate of fs = 11025Hz:

1. Convert the start time from milliseconds (ms) to seconds (s) by dividing by 1000: 200ms / 1000 = 0.2s.
2. Multiply the start time in seconds by the sampling rate: 0.2s * 11025Hz = 2205 samples.

So, the sample corresponding to a start time of 200ms with a sampling rate of 11025Hz is the 2205th sample.

Learn more about sampling data

https://brainly.com/question/14227406
#SPJ11

A muon has a mass of 106 MeV/c2 . What is this in atomic mass units? I answered 1.88*10^-28 kg, but its incorrect, this is what it says Your answer contains correct dimensions of mass, but you need to use a different SI unit or prefix for the unit

Answers

The atomic mass units of muon which has a mass of 106 MeV/c2 is approximately: 0.113 atomic mass units (amu).

To convert the mass of a muon from MeV/c² to atomic mass units, we need to use the relationship between mass and energy expressed by Einstein's famous equation, E=mc².

We can rearrange this equation to solve for mass, which gives us m=E/c².

First, we convert the mass of the muon from MeV/c² to kg using the conversion factor 1 MeV/c² = 1.78 x 10^-30 kg, which gives us:
m = 106 MeV/c² x (1.78 x 10^-30 kg/MeV/c²) = 1.89 x 10^-28 kg

Next, we can convert the mass in kg to atomic mass units (amu) using the conversion factor 1 amu = 1.66 x 10^-27 kg:
m = (1.89 x 10^-28 kg) / (1.66 x 10^-27 kg/amu) = 0.113 amu

Therefore, the mass of a muon is approximately 0.113 atomic mass units.

To know more about "Einstein's famous equation" refer here:

https://brainly.com/question/10809666#

#SPJ11

The original 24m edge length x of a cube decreases at the rate of 3m/min3.a) When x=1m, at what rate does the cube's surface area change?b) When x=1m, at what rate does the cube's volume change?

Answers

When x=1m, the cube's volume changes at a rate of -9 m³/min. We can use the formulas for surface area and volume of a cube:

Surface area = 6x²

Volume = x³

Taking the derivative with respect to time t of both sides of the above formulas, we get:

d(Surface area)/dt = 12x dx/dt

d(Volume)/dt = 3x² dx/dt

a) When x=1m, at what rate does the cube's surface area change?

Given, dx/dt = -3 m/min

x = 1 m

d(Surface area)/dt = 12x dx/dt

= 12(1)(-3)

= -36 m²/min

Therefore, when x=1m, the cube's surface area changes at a rate of -36 m²/min.

b) When x=1m, at what rate does the cube's volume change?

Given, dx/dt = -3 m/min

x = 1 m

d(Volume)/dt = 3x² dx/dt

                      = 3(1)²(-3)

                      = -9 m³/min

Therefore, when x=1m, the cube's volume changes at a rate of -9 m³/min.

To know more about surface area refer here

brainly.com/question/29298005#

#SPJ11

find the minimum diameter of a 49.5-m-long nylon string that will stretch no more than 1.49 cm when a load of 71.9 kg is suspended from its lower end. assume that ynylon = 3.51⋅⋅109 n/m2.

Answers

The minimum diameter of the nylon string is approximately 29.6 mm.

To find the minimum diameter of the nylon string, we can use the formula for the elongation of a hanging string:
ΔL = FL/2Ay
Where ΔL is the elongation, F is the force (in Newtons), L is the length of the string, A is the cross-sectional area, and y is the Young's modulus.
First, we need to convert the load of 71.9 kg to Newtons:
F = m*g = (71.9 kg)*(9.81 m/s^2) = 705.14 N
Next, we can rearrange the formula to solve for A:
A = FL/2ΔL
Substituting in the given values, we get:
A = (705.14 N)*(49.5 m)/(2*(0.0149 m)*(3.51*10^9 N/m^2))
A = 5.94*10^-8 m^2
Finally, we can solve for the diameter using the formula for the area of a circle:
A = (π/4)*d^2
Substituting in the calculated value of A, we get:
5.94*10^-8 m^2 = (π/4)*d^2
Solving for d, we get:
d = √(4*(5.94*10^-8 m^2)/π)
d = 3.88*10^-4 m
Therefore, the minimum diameter of the nylon string is 3.88*10^-4 m.

To know more about diameter visit :-

https://brainly.com/question/5501950

#SPJ11

fill in the blank. the orbits of the electron in the bohr model of the hydrogen atom are those in which the electron's _______________ is quantized in integral multiples of h/2π.

Answers

The orbits of the electron in the Bohr model of the hydrogen atom are those in which the electron's angular momentum is quantized in integral multiples of h/2π.

This means that the electron can only occupy certain discrete energy levels, rather than any arbitrary energy level. This concept is a fundamental aspect of quantum mechanics, which describes the behavior of particles on a very small scale. The reason for this quantization is related to the wave-like nature of electrons. In the Bohr model, the electron is treated as a particle orbiting around the nucleus.

However, according to quantum mechanics, the electron also behaves like a wave. The wavelength of this wave is related to the momentum of the electron. When the electron is confined to a specific orbit, its momentum must be quantized, and therefore its wavelength is also quantized. The quantization of angular momentum in the Bohr model of the hydrogen atom has important consequences for the emission and absorption of radiation.

When an electron moves from a higher energy level to a lower energy level, it emits a photon with a specific frequency. The frequency of the photon is determined by the difference in energy between the two levels. Conversely, when a photon is absorbed by an electron, it can only cause the electron to move to a specific higher energy level, corresponding to the energy of the photon.

know more about angular momentum here:

https://brainly.com/question/4126751

#SPJ11

The force per meter between the two wires of a jumper cable being used to start a stalled car is 0.225 N/m. (a) What is the current in the wires, given they are separated by 2.00 cm? (b) Is the force attractive or repulsive?

Answers

The force per meter between the two wires of a jumper cable being used to start a stalled car is 0.225 N/m. (a) We have to find the current in the wires, given they are separated by 2.00 cm. (b) We have to state whether the force attractive or repulsive.

(a) The force per meter between the two wires of a jumper cable is 0.225 N/m, and they are separated by 2.00 cm (0.02 m). Using Ampere's Law, the force between two current-carrying wires can be calculated as:

F/L = μ₀ * I₁ * I₂ / (2 * π * d)
where F/L is the force per unit length (0.225 N/m), μ₀ is the permeability of free space (4π × 10⁻⁷ T·m/A), I₁ and I₂ are the currents in the wires (assumed to be equal), and d is the separation between the wires (0.02 m).

Rearranging the formula for the current, we get:
I = sqrt[(F/L) * (2 * π * d) / μ₀]
=>I = sqrt[(0.225 N/m) * (2 * π * 0.02 m) / (4π × 10⁻⁷ T·m/A)]
=>I ≈ 270 A
So, the current in the wires is approximately 270 Amperes.

(b) The force between the wires is attractive when the currents flow in the same direction, and repulsive when the currents flow in opposite directions. In the case of jumper cables used to start a stalled car, the current flows in the same direction, so the force between the wires is attractive.

Learn more about force at: https://brainly.com/question/12785175

#SPJ11

What is the correct order for the following events in excision repair of DNA? (1) DNA polymerase I adds correct nucleotides by 5′-to-3′ replication; (2) damaged nucleotides are recognized; (3) DNA ligase seals the new strand to existing DNA; (4) part of a single strand is excised.

Answers

The complex process of excision repair ensures that damaged nucleotides are removed and replaced with correct ones to maintain the integrity of the DNA molecule.

The correct order for the events in excision repair of DNA is as follows:      Damaged nucleotides are recognized by specific enzymes, such as endonucleases or glycosylases, which cleave the damaged base from the sugar-phosphate backbone. Part of a single strand containing the damaged nucleotide is excised by exonucleases, leaving a gap in the DNA strand.

DNA polymerase I adds the correct nucleotides by 5′-to-3′ replication, using the intact complementary strand as a template to fill the gap. 4. Finally, DNA ligase seals the new strand to the existing DNA by catalyzing the formation of a phosphodiester bond between the 3′-OH end of the new strand and the 5′-phosphate group of the adjacent nucleotide.

To know more about phosphodiester visit :-

https://brainly.com/question/30053480

#SPJ11

A uniform sign is supported by two red pins, each the same distance to the sign's center. Find the magnitude of the force exerted by pin 2 if M = 32 kg, H = 1.3 m, d = 2 m, and h = 0.9 m. Assume each pin's reaction force has a vertical component equal to half the sign's weight.

Answers

The magnitude of the force exerted by pin 2 is 697.6 N.

To solve this problem, we can use the principle of moments, which states that the sum of the moments of forces acting on an object is equal to the moment of the resultant force about any point.

We can choose any point as the reference point for calculating moments, but it is usually convenient to choose a point where some of the forces act along a line passing through the point, so that their moment becomes zero.

In this case, we can choose point 1 as the reference point, since the vertical component of the reaction force at pin 1 passes through this point and therefore does not produce any moment about it. Let F be the magnitude of the force exerted by pin 2, and let W be the weight of the sign. Then we have:

Sum of moments about point 1 = Moment of force F about point 1 - Moment of weight W about point 1

Since the sign is uniform, its weight acts through its center of mass, which is located at the midpoint of the sign. So, the moment of weight W about point 1 is simply the weight W multiplied by the horizontal distance between point 1 and the center of mass, which is d/2:

Moment of weight W about point 1 = W * (d/2)

Since each pin's reaction force has a vertical component equal to half the sign's weight, the magnitude of the weight is:

W = M * g = 32 kg * 9.81 m/s^2 = 313.92 N

The vertical component of the reaction force at each pin is therefore:

Rv = W/2 = 156.96 N

To find the horizontal component of the reaction force at each pin, we can use trigonometry. The angle between the sign and the horizontal is given by:

θ = arctan(h/H) = arctan(0.9/1.3) = 34.99 degrees

Therefore, the horizontal component of the reaction force at each pin is:

Rh = Rv * tan(θ) = 156.96 N * tan(34.99) = 108.05 N

Since the sign is in equilibrium, the sum of the horizontal components of the reaction forces at the two pins must be zero. Therefore, we have:

Rh1 + Rh2 = 0

Rh2 = -Rh1 = -108.05 N

Now we can use the principle of moments to find the magnitude of the force exerted by pin 2. The distance between point 1 and pin 2 is h, so the moment of force F about point 1 is:

Moment of force F about point 1 = F * h

Setting the sum of moments equal to zero, we have:

F * h - W * (d/2) = 0

Solving for F, we get:

F = (W * d) / (2 * h) = (313.92 N * 2 m) / (2 * 0.9 m) = 697.6 N

For more question on magnitude click on

https://brainly.com/question/30337362

#SPJ11

Since the sign is in equilibrium, the sum of the forces and torques acting on it must be zero. Taking the torques about the point where pin 1 supports the sign, we have:

τ = F2(d/2) - (Mg)(H/2) = 0

where F2 is the magnitude of the force exerted by pin 2, M is the mass of the sign, g is the acceleration due to gravity, H is the height of the sign, and d is the distance between the two pins.

Since each pin's reaction force has a vertical component equal to half the sign's weight, the magnitude of the force exerted by pin 1 is Mg/2. Therefore, the magnitude of the force exerted by pin 2 is also Mg/2.

Substituting these values into the torque equation, we get:

F2(d/2) - (Mg)(H/2) = 0

(0.5Mg)(d/2) - (0.5Mg)(H/2) = 0

0.25Mg(d - H) = 0

d - H = 0

Therefore, the height of the sign is equal to the distance between the two pins:

h = d/2

Substituting the given values for h and M, we get:

h = 0.9 m, M = 32 kg

We can then calculate the weight of the sign:

W = Mg = (32 kg)(9.81 m/s^2) = 313.92 N

Each pin's reaction force has a vertical component equal to half the sign's weight, so the magnitude of the force exerted by each pin is:

F = W/2 = 313.92 N/2 = 156.96 N

Therefore, the magnitude of the force exerted by pin 2 is also 156.96 N.

Learn more about magnitude here : brainly.com/question/15681399

#SPJ11

helium gas with a volume of 3.50 ll, under a pressure of 0.180 atmatm and at a temperature of 41.0 ∘c∘c, is warmed until both pressure and volume are doubled.What is the final temperature?How many grams of helium are there?

Answers

The final temperature is approximately 851 K.There are approximately 0.0905 grams of helium.

We can solve this problem using the ideal gas law:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.

First, we need to convert the initial conditions to SI units:

V1 = 3.50 L = 0.00350[tex]m^3[/tex]

P1 = 0.180 atm = 18,424 Pa

T1 = 41.0°C = 314.15 K

Next, we can solve for the initial number of moles:

n = (P1 V1) / (R T1) = (18,424 Pa) (0.00350 m^3) / [(8.31 J/mol/K) (314.15 K)] ≈ 0.0226 mol

At the final state, the pressure and volume are doubled:

P2 = 2P1 = 36,848 Pa

V2 = 2V1 = 0.00700[tex]m^3[/tex]

We can solve for the final temperature using the ideal gas law again:

T2 = (P2 V2) / (n R) = (36,848 Pa) (0.00700 m^3) / [(0.0226 mol) (8.31 J/mol/K)] ≈ 851 K

Therefore, the final temperature is approximately 851 K.

To find the mass of helium, we can use the molar mass of helium, which is approximately 4.00 g/mol. The mass of helium is then:

m = n M = (0.0226 mol) (4.00 g/mol) ≈ 0.0905 g.

Learn more about ideal gas law here:

https://brainly.com/question/28257995

#SPJ11

A thermal neutron has a speed v at temperature T = 300 K and kinetic energy m_n v^2/2 = 3 kT/2. Calculate its deBroglie wavelength. State whether a beam of these neutrons could be diffracted by a crystal, and why? (b) Use Heisenberg's Uncertainty principle to estimate the kinetic energy (in MeV) of a nucleon bound within a nucleus of radius 10^- 15 m.

Answers

a) The deBroglie wavelength is h/√(2m_nkT/3). This wavelength is on the order of the spacing between atoms in a crystal, which suggests that a beam of these neutrons could be diffracted by a crystal.

b) The estimated kinetic energy of a nucleon bound within a nucleus of radius 10⁻¹⁵ m is approximately 20 MeV.

In physics, the deBroglie wavelength is a concept that relates the wave-like properties of matter, such as particles like neutrons, to their momentum. Heisenberg's Uncertainty principle, on the other hand, states that there is an inherent uncertainty in the position and momentum of a particle. In this problem, we will use these concepts to determine the deBroglie wavelength of a neutron and estimate the kinetic energy of a nucleon bound within a nucleus.

(a) The deBroglie wavelength of a particle is given by the equation λ = h/p, where λ is the wavelength, h is Planck's constant, and p is the momentum of the particle. For a neutron with kinetic energy 3 kT/2, we can use the expression for kinetic energy in terms of momentum, which is given by 1/2 mv² = p²/2m, to find the momentum of the neutron as p = √(2m_nkT/3), where m_n is the mass of a neutron. Substituting this into the expression for deBroglie wavelength, we get λ = h/√(2m_nkT/3).

Plugging in the values of h, m_n, k, and T, we get λ = 1.23 Å. This wavelength is on the order of the spacing between atoms in a crystal, which suggests that a beam of these neutrons could be diffracted by a crystal.

(b) Heisenberg's Uncertainty principle states that the product of the uncertainties in the position and momentum of a particle is always greater than or equal to Planck's constant divided by 2π. Mathematically, this is expressed as ΔxΔp ≥ h/2π, where Δx is the uncertainty in position, and Δp is the uncertainty in momentum.

For a nucleon bound within a nucleus of radius 10⁻¹⁵ m, we can take the uncertainty in position to be roughly the size of the nucleus, which is Δx ≈ 10⁻¹⁵ m. Using the mass of a nucleon as m = 1.67 x 10⁻²⁷ kg, we can estimate the momentum uncertainty as Δp ≈ h/(2Δx). Substituting these values into the Uncertainty principle, we get:

ΔxΔp = (10⁻¹⁵ m)(h/2Δx) = h/2 ≈ 5.27 x 10⁻³⁵ J s

We can use the expression for kinetic energy in terms of momentum to find the kinetic energy associated with this momentum uncertainty. The kinetic energy is given by K = p²/2m, so we can estimate it as:

K ≈ Δp²/2m = (h^2/4Δx²)/(2m) = h²/(8mΔx²) ≈ 20 MeV

Therefore, the estimated kinetic energy of a nucleon bound within a nucleus of radius 10^-15 m is approximately 20 MeV.

Learn more about wavelength at: https://brainly.com/question/27892029

#SPJ11

suppose the speed of light in a particular medium is 2.012 × 108 m/s. Calculate the index of refraction for the medium.

Answers

The index of refraction for the medium is 1.67. The ratio of the speed of light in a vacuum to the speed of light in the medium.

The index of refraction is a dimensionless quantity that describes how much the speed of light is reduced in a medium compared to its speed in a vacuum. A higher index of refraction indicates a slower speed of light in the medium, and it plays an important role in the behavior of light as it travels through different media and interacts with surfaces and boundaries.

The index of refraction (n) can be calculated using the formula n = c/v,

c = speed of light in a vacuum (3 × 108 m/s)

v = speed of light in the particular medium (2.012 × 108 m/s).

Thus, n = 3 × 108/2.012 × 108 = 1.67.

To know more about the refraction index visit:

https://brainly.com/question/13939543

#SPJ11

if a capacitor of plate area 200 mm and plate separation 6 mm is connected to the supply voltafe 0.5v to charge,what will be the accumulated charge in this capacitor

Answers

The accumulated charge in the capacitor is approximately 1.475 × 10⁻¹¹ Coulombs.

The accumulated charge in a capacitor can be calculated using the formula Q=CV, where Q is the charge, C is the capacitance, and V is the voltage applied.

In this case, the capacitance can be calculated as C = εA/d, where ε is the permittivity of the medium (assuming air with a value of 8.85 x 10^-12 F/m), A is the plate area (200 mm = 0.2 m), and d is the plate separation (6 mm = 0.006 m).

So, C = (8.85 x 10^-12 F/m)(0.2 m)/(0.006 m) = 2.95 x 10^-9 F

Now, using the formula Q=CV and the voltage applied of 0.5V, we get:

Q = (2.95 x 10^-9 F)(0.5V) = 1.48 x 10^-9 C

Therefore, the accumulated charge in the capacitor is 1.48 x 10^-9 coulombs.
To calculate the accumulated charge in the capacitor, we need to use the formula Q = C * V, where Q is the charge, C is the capacitance, and V is the voltage.

First, let's find the capacitance (C) using the formula C = ε₀ * A / d, where ε₀ is the vacuum permittivity (8.85 × 10⁻¹² F/m), A is the plate area (200 mm²), and d is the plate separation (6 mm).

1. Convert area and separation to meters:
  A = 200 mm² × (10⁻³ m/mm)² = 2 × 10⁻⁴ m²
  d = 6 mm × 10⁻³ m/mm = 6 × 10⁻³ m

2. Calculate the capacitance (C):
  C = (8.85 × 10⁻¹² F/m) * (2 × 10⁻⁴ m²) / (6 × 10⁻³ m) ≈ 2.95 × 10⁻¹¹ F

3. Calculate the accumulated charge (Q) using Q = C * V:
  Q = (2.95 × 10⁻¹¹ F) * (0.5 V) ≈ 1.475 × 10⁻¹¹ C

To know more about capacitor visit:-

https://brainly.com/question/17176550

#SPJ11

a force of 200 n is applied at a point 1.3 m from the axis of rotation, causing a revolving door to accelerate at 6.2 rad/s^2. what is the moment of inertia of the door from its axis of rotation?

Answers

The moment of inertia of the revolving door from its axis of rotation is 49.4 kg⋅m².

The moment of inertia (I) of a rotating object is a measure of its resistance to rotational acceleration and is calculated using the equation:

τ = Iα

where τ is the torque applied to the object, and α is its angular acceleration.

In this problem, we are given the applied force (F) of 200 N, the distance (r) from the axis of rotation to the point of force application as 1.3 m, and the angular acceleration (α) of the revolving door as 6.2 rad/s².

Firstly, we calculate the torque (τ) generated by the force applied at a distance of 1.3 m from the axis of rotation using the formula:

τ = Fr

τ = 200 N × 1.3 m

τ = 260 N⋅m

Now, substituting the values of τ and α in the above equation, we get:

I = τ/α

I = (260 N⋅m)/(6.2 rad/s²)

I = 41.94 kg⋅m²

learn more about moment of inertia here:

https://brainly.com/question/15246709

#SPJ11

true/false. question content area using a naive forecasting method, the forecast for next week’s sales volume equals

Answers

Using a naive forecasting method, the forecast for next week’s sales volume equals. The given statement is true because naive forecasting is a straightforward method that assumes the future will resemble the past

It relies on the most recent data point (in this case, the current week's sales volume) as the best predictor for future values (next week's sales volume). This method is simple, easy to understand, and can be applied to various content areas.

However, it's essential to note that naive forecasting may not be the most accurate or reliable method for all situations, as it doesn't consider factors such as trends, seasonality, or external influences that may impact sales volume. Despite its limitations, naive forecasting can be useful in specific scenarios where data is limited, patterns are relatively stable, and when used as a baseline for comparison with more sophisticated forecasting techniques. So therefore the given statement is true because naive forecasting is a straightforward method that assumes the future will resemble the past, so the forecast for next week’s sales volume equals.

Learn more about naive forecasting here:

https://brainly.com/question/31580569

#SPJ11

bjorn is standing at x =600m. firecracker 1 explodes at the origin and firecracker 2 explodes at x =900m. the flashes from both explosions reach bjorn's eye at t= 5.0μs. At what time did each firecracker explode?

Answers

According to the given solution, Firecracker 2 exploded at t = 3.00 x 10^-6 seconds.

To solve this problem, we need to use the formula for the speed of light: c = 3.00 x 10^8 m/s. We also need to know that the flashes from the firecrackers are traveling at the speed of light and that they take different amounts of time to reach Bjorn's eye.
Let's start with Firecracker 1. The distance from the origin to Bjorn is 600m. The time it takes for the flash to reach Bjorn's eye is 5.0μs or 5.0 x 10^-6 seconds. We can use the formula:
distance = speed x time
600m = (3.00 x 10^8 m/s) x t
t = 2.00 x 10^-6 seconds
Therefore, Firecracker 1 exploded at t = 2.00 x 10^-6 seconds.
Now, let's move on to Firecracker 2. The distance from Firecracker 2 to Bjorn is 900m. The time it takes for the flash to reach Bjorn's eye is also 5.0μs or 5.0 x 10^-6 seconds. We can use the same formula:
distance = speed x time
900m = (3.00 x 10^8 m/s) x t
t = 3.00 x 10^-6 seconds
In conclusion, Firecracker 1 exploded at t = 2.00 x 10^-6 seconds and Firecracker 2 exploded at t = 3.00 x 10^-6 seconds. It's amazing to think that the flashes from the firecrackers traveled at the speed of light and reached Bjorn's eye in such a short amount of time, creating explosions that we can see and hear.

To know more about firecracker visit:

brainly.com/question/13944798

#SPJ11

A hydrogen atom is in a d state. In the absence of an external magnetic field the states with different ml have (approximately) the same energy. Consider the interaction of the magnetic field with the atom's orbital magnetic dipole moment. Calculate the splitting (in electron volts) of the ml levels when the atom is put in a 0.200-T magnetic field that is in the + z - direction. Which ml level will have the lowest energy? Which level will have the lowest energy? ml=−2 ml=−1 ml=0 ml=1 ml=2

Answers

The level ml = -2 has the lowest energy state with a magnetic field of 0.2T with the absence of an external magnetic field. Thus, option A is correct.

From the given, By using the Zeeman effect of splitting, In the presence of a magnetic field, the spectral lines are split into two or more lines with different frequency.

The hydrogen atom is in the d-state.

Magnetic Field, B = 0.2 T

Zeeman splitting,

U = ml×μ×B, B is the bohr magneton, B=5.79×10⁻⁵eV/T

For l=2 and m=-2

U = -4.63×10⁻⁵eV/T

l=2 and ml= -1

U = -2.32×10⁻⁵eV/T

l=2 and ml = 0, U =0

l=2 and ml = 1, U = 2.32×10⁻⁵eV/T

l=2 and ml = 2, U = 4.63×10⁻⁵eV/T

Thus, ml = -2 has the lowest energy of other levels. Hence, option A is correct.

To learn more about the Zeeman effect:

https://brainly.com/question/32138427

#SPJ1

a wave has angular frequency 30.0 rad/srad/s and wavelength 2.10 mm What is its wave number? What is its wave speed?

Answers

The wave number of the given wave is 1.50 × 10^6 m^-1, and its wave speed is 63.0 m/s. wave number, represented by the symbol 'k', is the number of waves that exist per unit length. It is calculated by dividing the angular frequency of the wave (ω) by its speed (v): k = ω/v. I

n this case, the angular frequency is given as 30.0 rad/s, and we need to convert the wavelength from mm to m (1 mm = 1 × 10^-3 m) to obtain the wave speed. Thus, v = fλ = ω/kλ, where f is the frequency of the wave. Solving for k gives k = ω/λ = 1.50 × 10^6 m^-1.

Wave speed is the product of frequency and wavelength. In this case, the frequency is not given, but we can use the given angular frequency and convert the wavelength to meters as mentioned above. Thus, the wave speed is v = ω/kλ = (30.0 rad/s)/(1.50 × 10^6 m^-1 × 2.10 × 10^-3 m) = 63.0 m/s.

Learn more about wavelength here:

https://brainly.com/question/13533093

#SPJ11

Bats use sound waves to catch insects. bats can detect frequencies up to 108 khz. if the sound waves travel through air at a speed of v = 332 m/s, what is the wavelength of the sound waves (in mm)?

Answers

To determine the wavelength of the sound waves that bats use to catch insects, with a frequency of up to 108 kHz and a speed of 332 m/s, you can follow these steps:

1. Convert the frequency from kHz to Hz: 108 kHz = 108,000 Hz


2. Use the wave speed equation, v = fλ, where v is the speed of sound (332 m/s), f is the frequency (108,000 Hz), and λ is the wavelength.


3. Rearrange the equation to solve for the wavelength: λ = v / f


4. Plug in the values: λ = 332 m/s / 108,000 Hz


5. Calculate the wavelength: λ ≈ 0.00307 m


6. Convert the wavelength to millimeters: 0.00307 m * 1000 = 3.07 mm



The wavelength of the sound waves that bats use to catch insects is approximately 3.07 mm.

To know more about wavelength refer here

https://brainly.com/question/31143857#

#SPJ11

An AC circuit has a voltage source amplitude of 200 V, a resistance of 500 ohms, an inductor of 0.4 mH, and a capacitor of 100 pF and an angular frequency of 5.00x10^5 rad/s.
a) What is the impedance?
b) What is the current amplitude?
c) What is the voltage amplitude read by a voltmeter across the inductor, the resistor and the capacitor?
d) What is tthe voltage amplitude read by a voltmeter across the inductor and capacitor together?

Answers

(a) The impedance of the circuit is 19,806.3 ohms.

(b) The current amplitude is 0.01 A.

(c) The voltage amplitude read by a voltmeter across the inductor, the resistor and the capacitor is 198.1 V.

(d) The voltage amplitude across the inductor and capacitor together is 198 V.

What is the impedance of the circuit?

The impedance of the circuit is calculated as follows;

Z = √(R² + (Xl - Xc)²)

where;

R is the resistanceXl is the inductive reactanceXc is the capacitive reactance

R = 500 ohms

Xl = ωL = 5 x 10⁵ rad/s x 0.4 mH = 200 ohms

Xc = 1 / (ωC) = 1 / (5 x 10⁵ rad/s x 100 pF) = 20,000 ohms

Z = √(500² + (20,000 - 200)²)

Z = 19,806.3 ohms

The current amplitude is calculated as follows;

I = V/Z

where;

V is the voltage source amplitude

I = 200 V / 19,806.3  ohms = 0.01 A

The voltage amplitude across each component can be calculated using Ohm's Law;

Vr = IR = 0.01 A x 500 ohms = 5 V

Vl = IXl = 0.01 A x 200 ohms = 2 V

Vc = IXc = 0.01 A x 20,000 ohms = 200 V

V = √(VR² + (Vl - Vc)²

V = √5² + (200 - 2²)

V = 198.1 V

The voltage amplitude across the inductor and capacitor together is calculated as;

VL-C = √((Vl - Vc)²)

VL-C = √((200 - 2)²)

VL-C = 198 V

Learn more about amplitude voltage here: https://brainly.com/question/7465255

#SPJ4

use the parallel axis theorem to get the total moment of inertia for a pendulum of length L with a ball of radius r.
I is the moment of inertia about an axis through the pivot, m is the mass of the ball, g is Earths gravitational constant, b is the distance from the pivot at the top of the string to the center of mass if the ball. The moment of inertia of the ball about an axis through the center of the ball is Iball=(2/5)mr^2

Answers

To use the parallel axis theorem to calculate the total moment of inertia for a pendulum with a ball, we need to consider the individual moments of inertia and their distances from the axis of rotation.

The moment of inertia of the ball about an axis through the center of the ball is given as Iball = (2/5)mr^2, where m is the mass of the ball and r is the radius of the ball.

The total moment of inertia for the pendulum is the sum of the moment of inertia of the ball and the moment of inertia about the axis through the pivot.

Using the parallel axis theorem, the moment of inertia about the pivot axis can be calculated as follows:

I = Iball + mb^2

Where I is the total moment of inertia, m is the mass of the ball, b is the distance from the pivot at the top of the string to the center of mass of the ball.

Therefore, the total moment of inertia for the pendulum is I = (2/5)mr^2 + mb^2.

This equation takes into account both the rotation of the ball about its own axis and the rotation of the pendulum as a whole about the pivot point.

Learn more about the **parallel axis theorem** and its applications in physics here:

https://brainly.com/question/30460015?referrer=searchResults

#SPJ11

A person with a mass of 72 kg and a volume of 0.096m3 floats quietly in water.
A. What is the volume of the person that is above water?
B. If an upward force F is applied to the person by a friend, the volume of the person above water increases by 0.0027 m3. Find the force F.

Answers

The force required to increase the person's volume above water by 0.0027 m³ is 732.85 N.

When an object floats in water, it displaces an amount of water equal to its own weight, which is known as the buoyant force. Using this concept, we can find the volume of the person above water and the force required to increase their volume.

A. To find the volume of the person above water, we need to find the volume of water displaced by the person. This is equal to the weight of the person, which can be found by multiplying their mass by the acceleration due to gravity (9.81 m/s²):

weight of person = 72 kg × 9.81 m/s² = 706.32 N

The volume of water displaced is equal to the weight of the person divided by the density of water (1000 kg/m³):

volume of water displaced = weight of person / density of water = 706.32 N / 1000 kg/m³ = 0.70632 m³

Since the person's volume is given as 0.096 m³, the volume of the person above water is:

volume above water = person's volume - volume of water displaced = 0.096 m³ - 0.70632 m³ = -0.61032 m³

This result is negative because the person's entire volume is submerged in water, and there is no part of their volume above water.

B. When an upward force F is applied to the person, their volume above water increases by 0.0027 m³. This means that the volume of water displaced by the person increases by the same amount:

change in volume of water displaced = 0.0027 m³

The weight of the person remains the same, so the buoyant force also remains the same. However, the upward force now has to counteract both the weight of the person and the weight of the additional water displaced:

F = weight of person + weight of additional water displaced

F = 706.32 N + (change in volume of water displaced) × (density of water) × (acceleration due to gravity)

F = 706.32 N + 0.0027 m³ × 1000 kg/m³ × 9.81 m/s²

F = 732.85 N

Therefore, the force required to increase the person's volume above water by 0.0027 m³ is 732.85 N.

Learn more about force at: https://brainly.com/question/25545050

#SPJ11

Propose a hypothesis for the question: What is the effect of changing the net force on the acceleration of an object?

Answers

Hypothesis: Increasing the net force acting on an object will result in a proportional increase in its acceleration.

According to Newton's second law of motion, the acceleration of an object is directly proportional to the net force applied to it and inversely proportional to its mass. By keeping the mass constant and manipulating the net force, we can propose that changing the net force will have a direct effect on the object's acceleration. If the net force increases, the acceleration will also increase. This hypothesis aligns with the concept that the acceleration of an object is directly related to the magnitude of the force acting on it. However, it is important to consider other factors such as friction and air resistance, which can influence the overall acceleration and may need to be taken into account in specific experimental conditions.

learn more about force here:

https://brainly.com/question/30507236

#SPJ11

Calculate the inductance of an lc circuit that oscillates at 120 hz when the capacitance is 8.00 f.

Answers

An LC circuit is a circuit that consists of an inductor (L) and a capacitor (C) connected in parallel or in series. In an LC circuit, the energy is transferred back and forth between the inductor  inductance of the LC circuit is approximately 2.64 × [tex]10^{-4} H.[/tex]

The frequency of oscillation is given by: f = 1 / (2π√(LC)) where f is the frequency in hertz (Hz), L is the inductance in henrys (H), and C is the capacitance in farads (F).

We are given the frequency f = 120 Hz and the capacitance C = 8.00 F. We can rearrange the above formula to solve for the inductance L:

[tex]L = (1 / (4π^2f^2C))\\L = (1 / (4π^2(120 Hz)^2(8.00 F)))\\L = 2.64 × 10^-4 H[/tex]

Therefore, the inductance of the LC circuit is approximately 2.64 × 10^-4 H.

Know more about capacitance here:

https://brainly.com/question/31871398

#SPJ11

Pls someone help with this!!!!!



Fill in the blanks:


1. ) So even though liquid and solid water at 0 degrees C both have the same _______, they may have different thermal energy levels because the temperature doesn’t account for the _________ _________ that thermal energy includes.


2. ) Liquid water has greater________ energy as the molecules can move more freely away from one another (increasing their _______________ potential energy)


3. ) When heat is added to an object, the particles of the object take in the energy as __________ energy until reaching a ___________ state.


4. ) While in the ___________ state, the particles will no longer gain kinetic energy and ___________ energy begins to increase, causing the particles to move away from one another

Answers

1. Temperature is the measure of the average kinetic energy of the molecules of a substance. So even though liquid and solid water at 0 degrees Celsius both have the same temperature, they may have different thermal energy levels because the temperature doesn’t account for the kinetic energy that thermal energy includes.

2. Liquid water has greater kinetic energy as the molecules can move more freely away from one another, increasing their potential energy.

3. When heat is added to an object, the particles of the object take in the energy as kinetic energy until reaching a thermal equilibrium state.

4. While in the gaseous state, the particles will no longer gain kinetic energy and potential energy begins to increase, causing the particles to move away from one another

learn more about kinetic energy Refer: https://brainly.com/question/999862

#SPJ11

the power output of a car engine running at 2800 rpmrpm is 400 kwkw
How much work is done per cycle if the engine's thermal efficiency is 40.0%?Give your answer in kJ.
How much heat is exhausted per cycle if the engine's thermal efficiency is 40.0%?Give your answer in kJ.

Answers

The power output of a car engine running at 2800 rpmrpm is 400 kwkw. The work done per cycle is 8 kJ, and the heat exhausted per cycle is 12 kJ.

The first law of thermodynamics states that the work done by the engine is equal to the heat input minus the heat output. If we assume that the engine operates on a Carnot cycle, then the thermal efficiency is given by

Efficiency = W/Q_in = 1 - Qout/Qin

Where W is the work done per cycle, Qin is the heat input per cycle, and Qout is the heat output per cycle.

We are given that the power output of the engine is 400 kW, which means that the work done per second is 400 kJ. To find the work done per cycle, we need to know the number of cycles per second. Assuming that the engine is a four-stroke engine, there is one power stroke per two revolutions of the engine, or one power stroke per 0.02 seconds (since the engine is running at 2800 rpm). Therefore, the work done per cycle is

W = (400 kJ/s) x (0.02 s/cycle) = 8 kJ/cycle

To find the heat input per cycle, we can use the equation

Qin = W/efficiency = (8 kJ/cycle)/(0.4) = 20 kJ/cycle

Finally, to find the heat output per cycle, we can use the equation

Qout = Qin - W = (20 kJ/cycle) - (8 kJ/cycle) = 12 kJ/cycle

Therefore, the work done per cycle is 8 kJ, and the heat exhausted per cycle is 12 kJ.

To know more about work done here

https://brainly.com/question/28813425

#SPJ4

a charge 2.5 nc is placed at (2,3,2) m and another charge 4.9 nc is placed at (3,-3,0) m. what is the electric field at (3,1,3) m?

Answers

The electric field at the point (3,1,3) m is 0.424 i - 1.667 j + 1.057 k N/C.

When two charged particles are placed in space, they create an electric field that exerts a force on any other charged particle that enters that field. The electric field is a vector field that represents the force per unit charge at each point in space. To calculate the electric field at a specific point in space, we need to consider the contributions from each of the charged particles, which can be determined using Coulomb's law.

In this case, we have two charged particles with magnitudes of 2.5 nC and 4.9 nC located at positions (2,3,2) m and (3,-3,0) m, respectively. We want to calculate the electric field at the point (3,1,3) m.

The electric field at a point in space due to a point charge can be calculated using Coulomb's law:

E = k*q/r^2 * r_hat

where E is the electric field vector, k is Coulomb's constant (9 x 10⁹ N m²/C²), q is the charge of the particle creating the electric field, r is the distance from the particle to the point in space where the electric field is being calculated, and r_hat is a unit vector pointing from the particle to the point in space.

To calculate the total electric field at the point (3,1,3) m due to both charges, we need to calculate the electric field contribution from each charge and add them together as vectors.

Electric field contribution from the first charge:

r1 = √((3-2)² + (1-3)² + (3-2)²) = √(11)

r1_hat = [(3-2)/√(11), (1-3)/√(11), (3-2)/√(11)]

E1 = k*q1/r1² * r1_hat = (9 x 10⁹N m²/C²) * (2.5 x 10⁻⁹ C)/(11 m²) * [(1/√(11)), (-2/√(11)), (1/√(11))] = [0.424 i - 0.849 j + 0.424 k] N/C

Electric field contribution from the second charge:

r2 = √((3-3)² + (1-(-3))² + (3-0)²) = sqrt(19)

r2_hat = [(3-3)/√(19), (1-(-3))/√(19), (3-0)/√(19)] = [0.000 i + 0.789 j + 0.615 k]

E2 = k*q2/r2² * r2_hat = (9 x 10⁹ N m^2/C²) * (4.9 x 10⁻⁹ C)/(19 m²) * [0.000 i + 0.789 j + 0.615 k] = [0 i + 0.818 j + 0.633 k] N/C

Therefore, the total electric field at the point (3,1,3) m is:

E_total = E1 + E2 = [0.424 i - 1.667 j + 1.057 k] N/C

So the electric field at the point (3,1,3) m is 0.424 i - 1.667 j + 1.057 k N/C.

Learn more about electric field at: https://brainly.com/question/19878202

#SPJ11

A public address system puts out 5.92 W of power. What will be the intensity at a distance that results in a surface area of 9.47 m?? 0 355 W/m2 0 56.1 W/m2 O 160 W/m2 O 0.625 W/m2

Answers

The intensity at a distance that results in a surface area of 9.47 m is 0.625 W/m2. Option(d)

To calculate the weight of a sound wave at a distance, we can use the formula:

Intensity = Power / Area.

In this case, the public address system has a power output of 5.92 W and a surface area of ​​9.47 m².

Insert these values ​​into the formula:

Density = 5.

Calculating 92 kilos 9.47 kilos

these instructions, we see that

≈ uses 0.625 W/m².

Therefore, the intensity of the sound waves makes the area 9 at a certain distance.

47 m², approx. 0.625 W/m².

It is important to remember that density is defined as the strength of a field. In this case, it represents sound energy passing through a gap. The unit of use is watt/m2 (W/m²).

The answer given in the question is the correct value according to the calculation of 0.625 W/m². It represents the power of a sound wave over a distance.

The other answer options given by

(0, 355 W/m², 56.1 W/m² and 160 W/m²) do not match the calculation.

The correct answer is 0.625 W/m², which indicates suitable sound intensity away from public housing.  Option(d)

For more such questions on intensity

https://brainly.com/question/4431819

#SPJ11

Why is the magnetic field uniform unside the HC (Helmholtz coil)?

Answers

The magnetic field is uniform inside the Helmholtz coil because the coil is designed to produce a precise and consistent magnetic field. The Helmholtz coil is composed of two identical coils placed parallel to each other with a specific distance and current flowing in the same direction.

The resulting magnetic field produced by the coils is consistent and parallel to the axis of the coil, which creates a uniform field inside. This uniformity is essential for many scientific experiments, particularly those involving the manipulation of magnetic fields. Therefore, the Helmholtz coil is a useful tool in many fields of research, including physics, biology, and chemistry.
The magnetic field is uniform inside the Helmholtz coil due to the specific arrangement and spacing of the two identical magnetic coils. These coils are placed parallel to each other and have a distance equal to their radius. This configuration generates overlapping magnetic fields, resulting in a region of uniform magnetic field between the coils. The uniformity of the magnetic field inside the Helmholtz coil is essential for precise and consistent experimental results in various applications.

To know more about magnetic field visit:

https://brainly.com/question/14848188

#SPJ11

A radioactive substance is dissolved in a large body of water so that S y-rays are emitted per cm3/sec throughout the water. (a) Show that the uncollided flux at any point in the water is given by ᵠu = S/µ
(b) Show that the buildup flux is given by ᵠb = S/µ ∑ An/ 1+ɑn where An, and ɑn are parameters for the Taylor form of the buildup factor .

Answers

The uncollided flux of gamma rays in water can be expressed as S/µ using the inverse square law and the linear attenuation coefficient. The buildup flux, which accounts for scattered gamma rays, can be expressed as S/µ ∑ An/ (1+ɑn) using the Taylor form of the buildup factor.

(a) The uncollided flux at any point in the water can be obtained by considering the emitted gamma rays as a source of radiation and using the inverse square law. The uncollided flux is defined as the number of gamma rays passing through a unit area per unit time without any interaction. Therefore, the uncollided flux at any point in the water can be expressed as:

ᵠu = S/(4πr²)

where S is the rate of gamma ray emission per unit volume of water (cm³/s), r is the distance from the source of radiation (cm), and the factor of 4πr² is the surface area of a sphere with radius r.

The attenuation of gamma rays as they travel through the water can be described by the linear attenuation coefficient, µ. Therefore, the uncollided flux can also be expressed as:

ᵠu = Sexp(-µr)

where exp is the exponential function.

By equating the two expressions for the uncollided flux, we obtain:

S/(4πr²) = Sexp(-µr)

Simplifying this expression, we get:

ᵠu = S/µ

(b) The buildup flux refers to the contribution of the scattered gamma rays to the total flux at a point in the water. The buildup factor (B) is the ratio of the total flux (Φ) to the uncollided flux (ᵠu) at a point in the water. The total flux can be obtained by summing up the contributions from all the scattered gamma rays at that point. The Taylor form of the buildup factor can be expressed as:

B = ∑ An/ (1+ɑn)

where An and ɑn are parameters that depend on the geometry of the problem and the energy of the gamma rays.

The buildup flux (ᵠb) can be obtained by multiplying the uncollided flux with the buildup factor:

ᵠb = Bᵠu

Substituting the expression for the uncollided flux from part (a), we get:

ᵠb = S/µ ∑ An/ (1+ɑn)

Therefore, the buildup flux at any point in the water is given by the above expression.

To learn more about uncollided flux

https://brainly.com/question/13814830

#SPJ4

(a) The uncollided flux at any point in the water is given by ᵠu = S/µ, where S represents the rate of γ-rays emitted per cm³/sec throughout the water and µ denotes the linear attenuation coefficient.

(b) The buildup flux is given by ᵠb = S/µ ∑ An/(1+ɑn), where An and ɑn are parameters for the Taylor form of the buildup factor.

Find the the uncollided flux?

(a) To derive the uncollided flux, we consider the rate of γ-rays emitted per unit volume (S) and divide it by the linear attenuation coefficient (µ).

The linear attenuation coefficient represents the probability of γ-rays being absorbed or scattered as they traverse through the water. Dividing S by µ yields the uncollided flux (ᵠu) at any point in the water.

Therefore, the uncollided flux at any location within the water is determined by dividing the rate of γ-ray emission per cm³/sec (S) by the linear attenuation coefficient (µ).

Determine the buildup flux?

(b) The buildup flux (ᵠb) accounts for the effects of both uncollided and collided γ-rays. It is obtained by multiplying the uncollided flux (S/µ) by the buildup factor, which quantifies the increase in γ-ray flux due to multiple scattering events.

The buildup factor is represented as ∑ An/(1+ɑn), where the parameters An and ɑn are derived from the Taylor series expansion of the buildup factor. Summing over the terms in the Taylor series provides an approximation of the total buildup effect on the flux.

Therefore, The buildup flux, ᵠb, is calculated by multiplying the rate of γ-ray emission per cm³/sec (S/µ) by the sum of An/(1+ɑn), where An and ɑn are parameters used in the Taylor series representation of the buildup factor.

To know more about buildup flux, refer here:

https://brainly.com/question/31963781#

#SPJ4

An 8.60-cm-diameter, 320 g solid sphere is released from rest at the top of a 1.60-m-long, 19.0 ∘ incline with no slipping. What is the sphere's angular velocity at the bottom of the incline? What fraction of its kinetic energy is rotational?

Answers

The sphere's angular velocity at the bottom of the incline is about 31.4 rad/s, and about 9.0% of its kinetic energy is rotational.

we can use conservation of energy and conservation of angular momentum. First, let's find the gravitational potential energy of the sphere at the top of the incline:

U_i = mgh = (0.32 kg)(9.81 m/s²)(1.6 m sin 19°) ≈ 1.17 J

At the bottom of the incline, all of this potential energy will have been converted to kinetic energy, both translational and rotational:

K_f = 1/2 mv² + 1/2 Iω²

where v is the translational velocity of the sphere, I is the moment of inertia of the sphere, and ω is the angular velocity of the sphere.

Next, let's find the translational velocity of the sphere at the bottom of the incline:

h = 1.6 m sin 19°

d = h/cos 19° ≈ 1.68 m

v = √(2gh) = √(2(9.81 m/s²)(d)) ≈ 5.05 m/s

To find the moment of inertia of the sphere, we can use the formula for the moment of inertia of a solid sphere:

I = 2/5 mr²

where r is the radius of the sphere. So:

I = 2/5 (0.32 kg)(0.043 m)² ≈ 4.03×10⁻⁴ kg·m²

Now we can use conservation of energy to find the sphere's angular velocity at the bottom of the incline:

K_f = K_i

1/2 mv² + 1/2 Iω² = U_i

1/2 (0.32 kg)(5.05 m/s)² + 1/2 (4.03×10⁻⁴ kg·m²)ω² = 1.17 J

Solving for ω, we get:

ω ≈ 31.4 rad/s

Finally, we can find the fraction of the kinetic energy that is rotational:

K_rotational/K_total = 1/2 Iω² / (1/2 mv² + 1/2 Iω²)

K_rotational/K_total ≈ (1/2)(4.03×10⁻⁴ kg·m²)(31.4 rad/s)² / [(1/2)(0.32 kg)(5.05 m/s)² + (1/2)(4.03×10⁻⁴ kg·m²)(31.4 rad/s)²]

K_rotational/K_total ≈ 0.090 or about 9.0%

learn more about conservation of energy :

brainly.com/question/29519719

#SPJ4

Other Questions
2. how many grams of khp, khcsh.os, are needed to react with 38.56 ml of a0.2500 m sodium hydroxide solution? Determine whether the geometric series is convergent or divergent. 10 - 6 + 18/5 - 54/25 + . . .a. convergentb. divergent Historically demand has averaged 1102 units per week with a standard deviation of 770. The company currently has 2857 units in stock. What is the probability of a stockout? Z = (X u)/o A. 228 % B.98.87 %C. 50% D. 48.87%E. 1.130% A vortex and a uniform flow are superposed. These elements are described by: vortex: u, = 0 Ug = -40/ uniform flow: u = 15 V = 40 What is the x-component of the resulting velocity V at the point (7,0) =(2,30)? the contingency model of leadership maintains that leaders are extremely flexible in their behavior. group startstrue or false WHICH STATEMENT EXPLAINS HOW THE PRODUCT OF 1/6 AND 1/2 RELATS TO 1/6 A sealed rigid vessel contains air at STP. It is heated to bring the air to a temperature of 80 C.What will be the ratio of the mean free path of the air molecules at 80 C to their mean free path at STP? what would y be if the intercept equals 12.34 and the b equals 2.12 for an x of 8? the following table lists the ages (in years) and the prices (in thousands of dollars) for a sample of six houses.Age 27 15 3 35 14 18Price 165 182 205 178 180 161 The standard deviation of errors for the regression of y on x, rounded to three decimal places, is: how do you think this tax law change affected ex-dividend stock prices? (2pts) please clearly draw and upload the mechanism for halogenation of acetanilide: Mt. Mitchell is 6,683 feet tall. If an object is thrown upward from the top of the mountain at an initial upward velocity of 29 feet per second, its height t seconds after it is thrown is modeled by the function h (t) = 16t + 29t + 6683. How long until the object reaches the highest point? Solve the given initial-value problem. The DE is a Bernoulli equation. Yy? dy + y3/2 1, y(o) = 9 dx Solve the given differential equation by using an appropriate substitution: The DE is homogeneous. (x-Y) dx + xdy = 0 Solve the given differential equation by using an appropriate substitution: The DE is a Bernoulli equation_ 2 dy +y2 = ty dt What are the essential methods are needed for a JFrame object to display on the screen (even though it runs)?a. object.setVisible(true)b. object.setSize(width, height)c. object.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)d. object.setTitle(String title) The force acting at the rim of the rotor multiplied by the radius from the center of the rotor is called the ________.A) horsepowerB) torqueC) rotor speedD) angular momentum What is the pH of a buffer that results when 0. 50 mole of H3PO4 is mixed with 0. 25 mole of NaOH and diluted with water to 1. 00 L?(The acid dissociation constants of phosphoric acid are Ka1 = 7. 5 x 10^-3, Ka2 = 6. 2 x 10^-8, and Ka3 = 3. 6 x 10^-13) Any investment expenditure by a government is part of this expenditures approach for calculating the GDP.Responsesgross importsgross importssum of all the country's businesses spending on capitalsum of all the country's businesses spending on capitalgross exportsgross exportsconsumer spendingconsumer spendingsum of government spendingsum of government spending Description: In class, we will see how to use the Decorator design pattern to build an order for coffee; decorating the basic black coffee with cream, sugar and extra shots. In this homework, you will take the code shown in class and add two more items that can be additions to a coffee order. You will then create a JavaFX program, utilizing the decorator design pattern included, that provides the user interface to make coffee orders and display them. To create your user interface, you must use FXML and CSS style sheets. You must have at least one of each: a controller class, a .fxml file and a .css file. The user interface must render only using this approach. Implementation Details: You will create a maven project, including unit tests, using the Maven project provided for this homework. The GUI: You must include a way to start a new order, delete an order, order each additional item and display the order and total cost when the order is complete. Once the order is complete, you must display the entire order including the cost of each item, the add ons and total cost of the order. For example: Black Coffee: $3.99 + extra shot: $1.20 + cream: $.50 + sugar: $.50 Total: 6.19 The user must be able to build another order after each order is completed. You must also create some kind of color/design scheme for you app, it can not just be the defaults. Otherwise, you are free to be creative with your user interface. CS 342 Homework #6 Fall 2021 The Code: Your orders must be built utilizing the design pattern code included. For example, if I wanted to order a coffee with an extra shot, cream and sugar, it would be built like this: Coffee order = new Sugar(new Cream( new ExtraShot(new BasicCoffee()))); For this HW, it is assumed that every coffee order will start with BasicCoffee. You do not need to include functionality to remove certain items once they are added. The user can just delete the order and start again. You must add two more "add ons" for a basic coffee. This will require two new classes that follow the same construction as the Cream, Sugar and ExtraShot classes. Hint 1: You will want to utilize a separate class to control the building of the orders. This class could have a data member (Coffee order) and methods that add items to the order (order = new Cream(order);). You could initialize the data member order to a BasicCoffee in the constructor since each order starts with that. Hint 2: Remember nested classes share data members with the enclosing class. You do not need to keep all the classes in separate files. You may also add code to the existing files if need be but not remove any code that already exists. Test Cases: You must include a minimum of 10 unit tests in the CoffeeDecoratorTest.java file provided in the Maven template project. These must run with the maven command "test". Brenda types 15 words per minute. How long will it take her to type 750 words? which of these is not a freight document? a. freight claims form b. routing guide c. freight bill d. bill of lading