A tank contains 3.2 kmol of a gas mixture with a gravimetric composition of 50% methane, 40% hydrogen, and the remainder is carbon monoxide. What is the mass of carbon monoxide in the mixture? Express your answer in kg.

Answers

Answer 1

To determine the mass of carbon monoxide in the gas mixture, we need to calculate the number of moles of carbon monoxide (CO) present and then convert it to mass using the molar mass of CO.

Given:

Total number of moles of gas mixture = 3.2 kmol

Gravimetric composition of the mixture:

Methane (CH4) = 50%

Hydrogen (H2) = 40%

Carbon monoxide (CO) = Remaining percentage

To find the number of moles of CO, we first calculate the number of moles of methane and hydrogen:

Moles of methane = 50% of 3.2 kmol = 0.50 * 3.2 kmol

Moles of hydrogen = 40% of 3.2 kmol = 0.40 * 3.2 kmol

Next, we can find the number of moles of carbon monoxide by subtracting the moles of methane and hydrogen from the total number of moles:

Moles of carbon monoxide = Total moles - Moles of methane - Moles of hydrogen

Now, we calculate the mass of carbon monoxide by multiplying the number of moles by the molar mass of CO:

Mass of carbon monoxide = Moles of carbon monoxide * Molar mass of CO

The molar mass of CO is the sum of the atomic masses of carbon (C) and oxygen (O), which is approximately 12.01 g/mol + 16.00 g/mol = 28.01 g/mol.

Finally, we convert the mass from grams to kilograms:

Mass of carbon monoxide (in kg) = Mass of carbon monoxide (in g) / 1000

By performing the calculations, we can find the mass of carbon monoxide in the gas mixture.

To know more about molar mass visit

https://brainly.com/question/30120067?

#SPJ11


Related Questions

what is a procedure to repair air brake leakage

Answers

Repairing air brake leakage involves a systematic procedure that includes identifying the source of the leak, inspecting and cleaning the affected components, replacing faulty parts or seals, and performing a thorough system test. The process ensures the proper functioning of the air brake system and helps maintain safety standards.

When dealing with air brake leakage, the first step is to identify the source of the leak. This can be done by closely inspecting the brake system for visible signs of damage or listening for air escaping. Common areas where leaks occur include connections, valves, hoses, and air chambers. Once the source of the leak is identified, the affected components need to be inspected and cleaned. This involves removing any debris, corrosion, or damaged parts that could be contributing to the leakage. It's important to ensure that the components are in good condition and properly aligned.

If a specific part or seal is found to be faulty, it should be replaced with a new one. This may involve disassembling certain sections of the air brake system to access and replace the defective component. It's essential to use the correct replacement parts and follow manufacturer guidelines during the replacement process.

After completing the repairs, a thorough system test should be performed to verify the effectiveness of the repair work. This typically involves pressurizing the system and checking for any signs of leakage. If no leaks are detected and the system functions as intended, the repair process can be considered successful.

Overall, the procedure for repairing air brake leakage involves identifying the source, inspecting and cleaning components, replacing faulty parts, and conducting a comprehensive system test to ensure the air brake system operates safely and efficiently.

Learn more about leakage here: https://brainly.com/question/30529405

#SPJ11

Check the stability of the continuous transfer function and draw the pole- zero plot: Gw(s) = s 1/ s² √2s1 Then check the result in MATLAB using the Matlab function: "linearSystemAnalyzer".

Answers

To check the stability of the continuous transfer function Gw(s) = s/(s² √2s + 1), we need to examine the locations of the poles in the complex plane. If all the poles have negative real parts, the system is stable.

First, let's find the poles and zeros of the transfer function Gw(s):

Gw(s) = s/(s² √2s + 1)

To determine the poles, we need to solve the equation s² √2s + 1 = 0.

The transfer function Gw(s) has one zero at s = 0, which means it has a pole at infinity (unobservable pole) since the degree of the numerator is less than the degree of the denominator.

To find the remaining poles, we can factorize the denominator of the transfer function:

s² √2s + 1 = 0

(s + j√2)(s - j√2) = 0

Expanding the equation gives us:

s² + 2j√2s - 2 = 0

The solutions to this quadratic equation are:

s = (-2j√2 ± √(2² - 4(-2))) / 2

s = (-2j√2 ± √(4 + 8)) / 2

s = (-2j√2 ± √12) / 2

s = -j√2 ± √3

Therefore, the transfer function Gw(s) has two poles at s = -j√2 + √3 and s = -j√2 - √3.

Now let's plot the pole-zero plot of Gw(s) using MATLAB:

```matlab

num = [1 0];

den = [1 sqrt(2) 1 0];

sys = t f (num, den);

pzmap(sys)

```

The `num` and `den` variables represent the numerator and denominator coefficients of the transfer function, respectively. The `t f` function creates a transfer function object in MATLAB, and the `pzmap` function is used to plot the pole-zero map.

After running this code, you will see a plot showing the pole-zero locations of the transfer function Gw(s).

To further verify the stability of the system using the "linearSystemAnalyzer" function in MATLAB, you can follow these steps:

1. Define the transfer function:

```matlab

num = [1 0];

den = [1 sqrt(2) 1 0];

sys = t f (num, den);

```

2. Open the Linear System Analyzer:

```matlab

linearSystemAnalyzer(sys)

```

3. In the Linear System Analyzer window, you can check various properties of the system, including stability, by observing the step response, impulse response, and pole-zero plot.

By analyzing the pole-zero plot and the system's response in the Linear System Analyzer, you can determine the stability of the system represented by the transfer function Gw(s).

Learn more about MATLAB: https://brainly.com/question/30641998

#SPJ11

Assume that we have a machine that dispenses coffee, tea, and milk. The machine has a button (input line) for each of the three choices: C for Coffee, T for Tea, and M for Milk. In order to ensure that a customer can select at most one of the three choices every time she or he makes an order, an output variable V is introduced to verify that only one choice has been selected.
(a) Diagram the system inputs and outputs.
(b) Produce a truth table for the system inputs and output.
(c) Find the algebraic expression for the system output.

Answers

Algebraic expression for the system output (V):

V = C'T'M' + CT'M' + C'TM' + C'TM

(a) Diagram of the system inputs and outputs:

makefile

Copy code

Inputs:

C (Coffee button)

T (Tea button)

M (Milk button)

Output:

V (Verification variable)

lua

Copy code

  +---+     +---+

-->| C |     | V |

  +---+     +---+

 

  +---+     +---+

-->| T | --> |   |

  +---+     | V |

            +---+

           

  +---+     +---+

-->| M |     |   |

  +---+     | V |

            +---+

(b) Truth table for the system inputs and output:

markdown

Copy code

| C | T | M | V |

-----------------

| 0 | 0 | 0 | 0 |

| 1 | 0 | 0 | 1 |

| 0 | 1 | 0 | 1 |

| 0 | 0 | 1 | 1 |

| 1 | 1 | 0 | 0 |

| 1 | 0 | 1 | 0 |

| 0 | 1 | 1 | 0 |

| 1 | 1 | 1 | 0 |

Know more about system outputhere:

https://brainly.com/question/32583242

#SPJ11

Turning one cast iron belt wheel whose outer circle diameter is 300mm,If the cutting speed is 60m/ Try to find out lathe spindle speed?

Answers

The lathe spindle speed is 636.62 rpm.

Given, Outer circle diameter of belt wheel = 300mm

= 0.3m

Cutting speed = 60 m/min

We need to find the lathe spindle speed.

Lathe Spindle speedThe spindle speed formula can be used to determine the speed of the spindle.

N₁ = (cutting speed × 1000) / (π × D₁)

Where,

N₁ = spindle speedD₁ = Diameter of the workpiece in m

Given, Diameter of the workpiece (belt wheel) = 300 mm

= 0.3 mN₁

= (60 × 1000) / (π × 0.3)N₁

= 636.62 rpm

Therefore, the lathe spindle speed is 636.62 rpm.

Know more about speed here:

https://brainly.com/question/13943409

#SPJ11

Two generators, G1 and G2, have no-load frequencies of 61.5 Hz and 61.0 Hz, respectively. They are connected in parallel and supply a load of 2.5 MW at a 0.8 lagging power factor. If the power slope of Gi and G2 are 1.1 MW per Hz and 1.2 MW per Hz, respectively, a. b. Determine the system frequency (6) Determine the power contribution of each generator. (4) If the load is increased to 3.5 MW, determine the new system frequency and the power contribution of each generator.

Answers

Determination of system frequency the system frequency can be determined by calculating the weighted average of the two individual frequencies: f (system) = (f1 P1 + f2 P2) / (P1 + P2) where f1 and f2 are the frequencies of the generators G1 and G2 respectively, and P1 and P2 are the power outputs of G1 and G2 respectively.

The power contribution of each generator can be determined by multiplying the difference between the system frequency and the individual frequency of each generator by the power slope of that generator:

Determination of new system frequency and power contribution of each generator If the load is increased to 3.5 MW, the total power output of the generators will be 2.5 MW + 3.5 MW = 6 MW.

To know more about load visit:

https://brainly.com/question/2288570

#SPJ11

A commercial enclosed gear drive consists of 200 spur pinions having 16 teeth driving a 48-tooth gear. The pinion speed is 300 rev/min, the face width is 50 mm, the gears have constant thickness, and the module is 4 mm. The gears are grade-1 steel with 200 Brinell Hardness Number, made to No. 6 quality standard, uncrowned and are to be rigidly mounted to a uniform loading and straddle- mounted pinion of S/S < 0.175 (S, is the location of the gear measured from the center of the shaft. S is the total length of the shaft). Operating temperature of the gear drive is less than 100 °C. Assuming a pinion life of 108 cycles and a reliability of 0.90 with 4 kW power transmission, using AGMA (American Gear Manufacturers Association) standard: s O Design the pinion against Bending. [15 marks] (ii) Design the gear against Contact [15 marks] (ii) What material property should be changed to increase the AGMA (American Gear Manufacturers Association) bending and contact safety factors? Explain your answer. (5 marks]

Answers

To design the pinion against bending and the gear against contact, we need to calculate the necessary parameters and compare them with the allowable limits specified by the AGMA standard.

Let's go through the calculations step by step:

Given:

Number of pinions (N) = 200

Number of teeth on pinion (Zp) = 16

Number of teeth on gear (Zg) = 48

Pinion speed (Np) = 300 rev/min

Face width (F) = 50 mm

Module (m) = 4 mm

Hardness (H) = 200 Brinell

Reliability (R) = 0.90

Power transmission (P) = 4 kW

Pinion life (L) = 10^8 cycles

(i) Designing the pinion against bending:

1. Determine the pinion torque (T) transmitted:

T = (P * 60) / (2 * π * Np)

2. Calculate the bending stress on the pinion (σb):

σb = (T * K) / (m * F * Y)

where K is the load distribution factor and Y is the Lewis form factor.

3. Calculate the allowable bending stress (σba) based on the Brinell hardness:

σba = (H / 3.45) - 50

4. Calculate the dynamic factor (Kv) based on the reliability and pinion life:

Kv = (L / 10^6)^b

where b is the exponent determined based on the AGMA standard.

5. Calculate the allowable bending stress endurance limit (σbe) using the dynamic factor:

σbe = (σba / Kv)

6. Compare σb with σbe to ensure the bending safety factor (Sf) is greater than 1:

Sf = (σbe / σb)

(ii) Designing the gear against contact:

1. Calculate the contact stress (σc):

σc = (K * P) / (F * m * Y)

2. Calculate the allowable contact stress (σca) based on the Brinell hardness:

σca = (H / 2.8) - 50

3. Calculate the contact stress endurance limit (σce):

σce = (σca / Kv)

4. Compare σc with σce to ensure the contact safety factor (Sf) is greater than 1:

Sf = (σce / σc)

(iii) Increasing AGMA safety factors:

To increase the AGMA bending and contact safety factors, we need to improve the material properties. Increasing the hardness of the gears can enhance their resistance to bending and contact stresses, thereby increasing the safety factors. By using a material with a higher Brinell hardness number, the allowable bending and contact stresses will increase, leading to higher safety factors.

Note: Detailed calculations involving load distribution factor (K), Lewis form factor (Y), dynamic factor (Kv), exponent (b), and other specific values require referencing AGMA standards and performing iterative calculations. These calculations are typically performed using gear design software or detailed hand calculations based on AGMA guidelines.

To know more about dynamic factor, click here:

https://brainly.com/question/12561874

#SPJ11

A static VAR compensator (SVC), consisting of five thyristor-switched capacitors (TSCs) and two TCRs, at a particular point of operation needs to provide 200 MVAr reactive power into a three-phase utility grid. The TSCs and TCRS are rated at 60 MVAr. The utility grid line-to- line RMS voltage at the SVC operation point is 400 kV. Calculate: (i) How many TSCs and TCRs of the SVC are needed to handle the demanded reactive power? (ii) The effective SVC per phase reactance corresponding to the above condition.

Answers

Four TSCs and four TCRs are needed to handle the demanded reactive power. (ii) The effective SVC per phase reactance is approximately 57.74 Ω.

How many TSCs and TCRs are required in an SVC to handle a demanded reactive power of 200 MVAr, and what is the effective SVC per phase reactance in a specific operating condition?

In this scenario, a Static VAR Compensator (SVC) is required to provide 200 MVAr of reactive power into a three-phase utility grid.

The SVC consists of five thyristor-switched capacitors (TSCs) and two Thyristor-Controlled Reactors (TCRs), each rated at 60 MVAr.

To determine the number of TSCs and TCRs needed, we divide the demanded reactive power by the rating of each unit: 200 MVAr / 60 MVAr = 3.33 units. Since we cannot have a fraction of a unit, we round up to four units of both TSCs and TCRs.

Therefore, four TSCs and four TCRs are required to handle the demanded reactive power.

To calculate the effective SVC per phase reactance, we divide the rated reactive power of one unit (60 MVAr) by the line-to-line RMS voltage of the utility grid (400 kV).

The calculation is as follows: 60 MVAr / (400 kV ˣ sqrt(3)) ≈ 57.74 Ω. Thus, the effective SVC per phase reactance corresponding to the given conditions is approximately 57.74 Ω.

Learn more about demanded reactive

brainly.com/question/30843855

#SPJ11

Butane at 1.75bar is kept in a piston-cylinder device. Initially, the butane required 50kJ of work to compress the gas until the volume dropped three times lesser than before while maintaining the temperature. Later, heat will be added until the temperature rises to 270°C during the isochoric process. Butane then will undergo a polytropic process with n=3.25 until 12 bar and 415°C. After that, the butane will expand with n=0 until 200 liters. Next, butane will undergo an isentropic process until the temperature drops twice as before. Later, butane undergoes isothermal compression to 400 liters. Finally, the butane will be cooled polytropically to the initial state. a) Sketch the P-V diagram b) Find mass c) Find all P's, V's and T's d) Calculate all Q's e) Determine the nett work of the cycle

Answers

In the given scenario, the thermodynamic processes of butane in a piston-cylinder device are described. The processes include compression, heating, expansion, cooling, and isothermal compression. By analyzing the provided information, we can determine the mass of butane, as well as the pressure, volume, and temperature values at various stages of the cycle. Additionally, the heat transfer and net work for the entire cycle can be calculated.

To analyze the thermodynamic processes of butane, we start by considering the compression phase. The compression process reduces the volume of butane by a factor of three while maintaining the temperature. The work done during compression is given as 50 kJ. Next, heat is added to the system until the temperature reaches 270°C in an isochoric process, meaning the volume remains constant. After that, butane undergoes a polytropic process with n = 3.25 until reaching a pressure of 12 bar and a temperature of 415°C.

Subsequently, butane expands with a polytropic process of n = 0 until the volume reaches 200 liters. Then, an isentropic process occurs, resulting in the temperature decreasing by a factor of two compared to a previous stage. The isothermal compression process follows, bringing the volume to 400 liters. Finally, butane is cooled polytropically to return to its initial state.

By applying the ideal gas law and the given information, we can determine the pressure, volume, and temperature values at each stage. These values, along with the known processes, allow us to calculate the heat transfer (Q) for each process. To find the mass of butane, we can use the ideal gas law in conjunction with the given pressure, volume, and temperature values.

The net work of the cycle can be determined by summing up the work done during each process, taking into account the signs of the work (positive for expansion and negative for compression). By following these calculations and analyzing the provided information, we can obtain the necessary values and parameters, including the P-V diagram, mass, pressure, volume, temperature, heat transfer, and net work of the cycle.

Learn more about  compression here: https://brainly.com/question/13707757

#SPJ11

Name and explain several Practical (Hands-On
and typically not desk-based careers) oriented jobs that are linked
to Mechanical Engineering and
Sustainability?

Answers

Mechanical engineering is a type of engineering that concentrates on the design, construction, and maintenance of various mechanical devices and systems. Sustainability, on the other hand, focuses on maintaining the Earth's natural systems and improving the quality of life for all individuals in a fair and equitable manner.

Several practical (hands-on and typically not desk-based) careers that are connected to mechanical engineering and sustainability include:

1. Mechanical engineering technicians:

They assist mechanical engineers in the creation of mechanical systems, such as solar panels and wind turbines, that generate clean energy.

They use computer-aided design software to design mechanical components and test and troubleshoot these systems. 2. Renewable Energy Technician:

They work on the installation and maintenance of wind turbines, solar panels, and other renewable energy systems.

They also troubleshoot issues and make repairs as needed to ensure that these systems are operational and contributing to a sustainable energy future. 3. HVAC Technician: HVAC (heating, ventilation, and air conditioning) technicians design, install, and maintain energy-efficient HVAC systems in residential and commercial buildings.

In summary, mechanical engineering and sustainability are closely linked, and there are numerous hands-on careers that are connected to both. These careers focus on developing and maintaining mechanical systems that promote environmental conservation and the use of renewable energy sources.

To know more about construction visit:

https://brainly.com/question/29775584

#SPJ11

Gaseous carbon dioxide (CO2) enters a tube at 3 MPa and 227ºC, with a flow of
2kg/sec. That CO2 cools isobarically while passing through the tube, and at the exit, the
temperature drops to 177°C. Determine the specific volume of corrected CO2
through the compressibility factor at the outlet. pressure is: (show in detail
all your calculations)
(a) 0.0282 m3/kg (b) 0.0315 m²/kg (c) 0.0271 m²/kg (d) 0.03087 m²/kg (e) 28.2 m3/kg

Answers

The specific volume of the CO2 at the outlet, determined using the compressibility factor, is 0.0271 m³/kg.

Given data:

Initial pressure, P1 = 3 MPa = 3 × 10^6 Pa

Initial temperature, T1 = 227°C = 500 K

Mass flow rate, m = 2 kg/s

Specific gas constant for CO2, R = 0.1889 kJ/kg·K

Step 1: Calculate the initial specific volume (V1)

Using the ideal gas law: PV = mRT

V1 = (mRT1) / P1

= (2 kg/s × 0.1889 kJ/kg·K × 500 K) / (3 × 10^6 Pa)

≈ 0.20944 m³/kg

Step 2: Determine the compressibility factor (Z) at the outlet

From the compressibility chart, at the given reduced temperature (Tr = T2/Tc) and reduced pressure (Pr = P2/Pc):

Tr = 450 K / 304.2 K ≈ 1.478

Pr = 3 × 10^6 Pa / 7.38 MPa ≈ 0.407

Approximating the compressibility factor (Z) from the chart, Z ≈ 0.916

Step 3: Calculate the final specific volume (V2)

Using the compressibility factor:

V2 = Z × V2_ideal

= Z × (R × T2) / P2

= 0.916 × (0.1889 kJ/kg·K × 450 K) / (3 × 10^6 Pa)

≈ 0.0271 m³/kg

To know more about compressibility factor, visit:

https://brainly.com/question/32314576

#SPJ11

2. Determine the impedance of the circuit of Figure 4.2 at frequencies of 20 Hz, 1 kHz and 20 kHz. 120 mH Figure 4.2 500 mH

Answers

Therefore, the impedance of the circuit at frequencies of 20 Hz, 1 kHz, and 20 kHz are:

Z1 = 136.35 Ω, 6016.89 Ω, and 300,002.55 Ω (approx)Z2 = 482.59 Ω, 34,034.34 Ω, and 152,353.63 Ω (approx)

The impedance of the given circuit can be found using the formula,

`Z = sqrt(R² + (ωL - 1/ωC)²)`.

Here, R = 0 (because there is no resistance in the circuit), L1 = 120 mH, L2 = 500 mH, and C = 1 μF.

ω is the angular frequency and is given by the formula `ω = 2πf`, where f is the frequency of the AC source.

Let's calculate the impedance of the circuit at frequencies of 20 Hz, 1 kHz, and 20 kHz.1. At 20 Hz:

ω = 2πf = 2π × 20 = 40π rad/s.

Z1 = sqrt(R² + (ωL1 - 1/ωC)²)

Z1 = sqrt(0² + ((40π × 120 × 10⁻³) - 1/(40π × 1 × 10⁻⁶))²)

Z1 = sqrt(1.44 + 18,641)Z1 = 136.35 Ω (approx)

Z2 = sqrt(R² + (ωL2 - 1/ωC)²)

Z2 = sqrt(0² + ((40π × 500 × 10⁻³) - 1/(40π × 1 × 10⁻⁶))²)

Z2 = sqrt(100 + 232,839)

Z2 = 482.59 Ω (approx)2.

At 1 kHz:

ω = 2πf = 2π × 1000 = 2000π rad/s.

Z1 = sqrt(R² + (ωL1 - 1/ωC)²)

Z1 = sqrt(0² + ((2000π × 120 × 10⁻³) - 1/(2000π × 1 × 10⁻⁶))²)

Z1 = sqrt(144 + 3.60 × 10⁷)

Z1 = 6016.89 Ω (approx)

Z2 = sqrt(R² + (ωL2 - 1/ωC)²)

Z2 = sqrt(0² + ((2000π × 500 × 10⁻³) - 1/(2000π × 1 × 10⁻⁶))²)

Z2 = sqrt(10⁴ + 1.16 × 10⁹)

Z2 = 34,034.34 Ω (approx)3. At 20 kHz:ω = 2πf = 2π × 20,000 = 40,000π rad/s.

Z1 = sqrt(R² + (ωL1 - 1/ωC)²)

Z1 = sqrt(0² + ((40,000π × 120 × 10⁻³) - 1/(40,000π × 1 × 10⁻⁶))²)

Z1 = sqrt(144 + 9 × 10¹⁰)

Z1 = 300,002.55 Ω (approx)

Z2 = sqrt(R² + (ωL2 - 1/ωC)²)

Z2 = sqrt(0² + ((40,000π × 500 × 10⁻³) - 1/(40,000π × 1 × 10⁻⁶))²)

Z2 = sqrt(10⁶ + 2.32 × 10¹⁰)

Z2 = 152,353.63 Ω (approx)Therefore, the impedance of the circuit at frequencies of 20 Hz, 1 kHz, and 20 kHz are:

Z1 = 136.35 Ω, 6016.89 Ω, and 300,002.55 Ω (approx)Z2 = 482.59 Ω, 34,034.34 Ω, and 152,353.63 Ω (approx)

To know more about impedance  visit:

https://brainly.com/question/30475674

#SPJ11

A material has a modulus of elasticity E and a shear modulus of 0.4x E. The Poisson's ratio of this material is a. 2.5 b. 0.25 c. 0.5 d. 0.4

Answers

Modulus of elasticity and shear modulus.The modulus of elasticity (E) and the shear modulus (G) are two important physical properties of materials.

Poisson's ratio Poisson's ratio is a material property that describes how much a material will compress laterally when stretched in the axial direction.A formula is used to calculate Poisson's ratio, which is expressed as follows:ν = Lateral strain/longitudinal strain Where ν is the Poisson's ratio, lateral strain is the change in width, and longitudinal strain is the change in length. We can use the given data to solve the problem.

Here is how it can be done :

Elastic Modulus (E) = (Tensile stress/Tensile Strain)

The formula for Shear Modulus (G)

= (Shear Stress/Shear Strain)

Shear Modulus (G)

= 0.4 x E

When we compare the formula for Shear modulus and Young’s modulus, we get that :

G = E / (2 x (1 + Poisson’s ratio))

On substituting the given values, we get:0.4 x E

= E / (2 x (1 + Poisson’s ratio))

On solving the above equation, we get :

Poisson’s ratio = 0.4/1.4

= 0.2857 approx

= 0.4

(Option d)Therefore, option d is the correct answer.

To know more about Modulus  visit:

https://brainly.com/question/30756002

#SPJ11

System Reliability Q1 Consider a system that consists of three components A, B and C, all of which must operate in order for the system to function. Let RA, Rg and Rc be the reliability of component A, B and C respectively. They are RA = 0.99, RB = 0.90 and Rc =0.95. The components A, B and C are independent of one another. 1) What is the reliability of this system? 2) If a fourth component D, with Rp = 0.95, were added in series to the previous system. What is the reliability of the system? What does happen? 3) What is the reliability of the revised system if an extra component B is added to perform the same function as follows? 4) Suppose the component A is made redundant instead of B (A is the most reliable component in the system), What would the system reliability become? Normal distribution in reliability Q2 A 75W light bulb has a mean life of 750h with a standard deviation of 50h. What is the reliability at 850h? The Exponential distribution in reliability Q3 Determine the reliability at t = 30 for the example problem where the mean life for a constant failure rate was 40h. Q4 Suppose that the mean-time-to-failure of a piece of equipment that has an exponential failure distribution is 10,000 hours. What is its failure rate per hour of operation, and what is its reliability for a period of 2000 hours? The Weibull Distribution in Reliability Q5 The failure pattern of a new type of battery fits the Weibull distribution with slope 4.2 and mean life 103 h. Determine reliability at 120 h.

Answers

In the given system, components A, B, and C must all operate for the system to function. The reliability of each component is known, and they are independent. The questions ask about the reliability of the system, the effect of adding a fourth component, the reliability of the revised system with an additional component, reliability calculations using the normal distribution, exponential distribution, and Weibull distribution.

1) The reliability of the system is the product of the reliabilities of its components since they are independent. The reliability of the system is calculated as RA * RB * RC = 0.99 * 0.90 * 0.95. 2) If a fourth component D with reliability Rp = 0.95 is added in series to the previous system, the reliability of the system decreases. The reliability of the system with the fourth component is calculated as RA * RB * RC * RD = 0.99 * 0.90 * 0.95 * 0.95. 3) Adding an extra component B to perform the same function does not affect the reliability of the system since B is already part of the system. The reliability remains the same as calculated in question 1. 4) If component A is made redundant instead of B, the system reliability increases. The reliability of the system with redundant component A is calculated as (RA + (1 - RA) * RB) * RC = (0.99 + (1 - 0.99) * 0.90) * 0.95.

5) To determine the reliability at 120 hours for the battery with a Weibull distribution, the reliability function of the Weibull distribution needs to be evaluated using the given parameters. The reliability at 120 hours can be calculated using the formula: R(t) = exp(-((t / θ)^β)), where θ is the mean life and β is the slope parameter of the Weibull distribution. These calculations and concepts in reliability analysis help evaluate the performance and failure characteristics of systems and components under different conditions and configurations.

Learn more about reliability from here:

https://brainly.com/question/32282742

#SPJ11

magine you are walking down the central aisle of a subway train at a speed of 1 m's relative to the car, whereas the train is moving at 17.50 m's relative to the tracks. Consider your weight as XY kg (a) What's your kinetic energy relative to the train? (b) What's your kinetic energy relative to the tracks? (c) What's your kinetic energy relative to a frame moving with the person?

Answers

Kinetic energy relative to the train = 1/2 XY Joule; Kinetic energy relative to the tracks = 1618.12 XY Joule; Kinetic energy relative to a frame moving with the person = 0 Joule.

Your speed relative to the train = 1 m/s

Speed of the train relative to the tracks = 17.50 m/s

Weight of the person = XY kg

Kinetic energy relative to the train, tracks, and a frame moving with the person

Kinetic energy is defined as the energy that an object possesses due to its motion. Kinetic energy relative to the train

When a person is moving down the central aisle of a subway train, his kinetic energy relative to the train is given as:

K = 1/2 m v²

Here, m = mass of the person = XY

kgv = relative velocity of the person with respect to the train= 1 m/s

Kinetic energy relative to the train = 1/2 XY (1)² = 1/2 XY Joule

Kinetic energy relative to the tracks

The train is moving with a velocity of 17.50 m/s relative to the tracks.

Therefore, the velocity of the person with respect to the tracks can be found as:

Velocity of the person relative to the tracks = Velocity of the person relative to the train + Velocity of the train relative to the tracks= 1 m/s + 17.50 m/s = 18.50 m/s

Now, kinetic energy relative to the tracks = 1/2 m v²= 1/2 XY (18.50)² = 1618.12 XY Joule

Kinetic energy relative to a frame moving with the person

When the frame is moving with the person, the person appears to be at rest. Therefore, the kinetic energy of the person in the frame of the person is zero.

To know more about Kinetic energy visit:

https://brainly.com/question/72216

#SPJ11

A drive for a punch press requires 40 hp with the pinion speed of 800 rpm and the gear speed of 200 rpm. Diametral pitch is 4, the steel pinion has 24 teeth and the steel gear has 95 teeth. Gear teeth are 20°, full-depth, involute shape. Calculating the required allowable bending and contact stresses for each gear. Also, select the suitable steel for the pinion and gear and specify it. Use the following parameters and calculate the ones which are not given!
Km = 1.22
Ks = 1.05 Ko= 1.75
KB = 1.00
Av = 10
SF = 1.25
KR = 1.25
F = 3.00 in
Ncp=1.35 × 10⁹ cycles NCG-3.41 × 10⁸ cycles

Answers

Calculation of gear material: As per the value of stress, SAE 1035 steel should be used for the pinion, and SAE 1040 should be used for the gear.Diametral pitch Pd = 4Number of teeth z = 24Pitch diameter = d = z / Pd = 24 / 4 = 6 inches

Calculation of pitch diameter of gear:
Diametral pitch Pd = 4Number of teeth z = 95Pitch diameter = d = z / Pd = 95 / 4 = 23.75 inches

Calculation of the transmitted power:
[tex]P = hp * 746/ SF = 40 * 746 / 1.25 = 2382.4 watts[/tex]

Calculation of the tangential force:
[tex]FT = P / vT= (P * 33000) / (2 * pi * F) = (2382.4 * 33000) / (2 * 3.1416 * 3) = 62036.4 N[/tex]

Calculation of the torque:
[tex]FT = T / dT = FT * d = 62036.4 * 6 = 372218.4 N-mm[/tex]

Calculation of the stress number:
[tex]SN = 60 * n * SF / NcSN = 60 * 800 * 1.25 / 1.35 × 109SN = 0.44[/tex]

Calculation of contact stress:Allowable contact stress
[tex]σc = SN * sqrt (FT / (d * Face width))= 0.44 * sqrt (62036.4 / (6 * 10))= 196.97 N/mm²[/tex]

Calculation of bending stress:Allowable bending stress
=[tex]SN * Km * Ks * Ko * KB * ((FT * d) / ((dT * Face width) * J))= 0.44 * 1.22 * 1.05 * 1.75 * 1.00 * ((62036.4 * 6) / ((372218.4 * 10) * 0.1525))= 123.66 N/mm²[/tex]

Calculation of the load-carrying capacity of gear YN:
[tex]YN = (Ag * b) / ((Yb / σb) + (Yc / σc))Ag = pi / (2 * Pd) * (z + 2) * (cosα / cosΦ)Ag = 0.3641 b = PdYb = 1.28Yc = 1.6σc = 196.97σb = 123.66YN = (0.3641 * 4) / ((1.28 / 123.66) + (1.6 / 196.97))= 5504.05 N[/tex]

Calculation of the design load of gear ZN:
[tex]ZN = YN * SF * KR = 5504.05 * 1.25 * 1.25 = 8605.07 N[/tex]

Calculation of the module:
[tex]M = d / zM = 6 / 24 = 0.25 inches[/tex]

Calculation of the bending strength of the gear teeth:
[tex]Y = 0.0638 * M + 0.584Y = 0.0638 * 0.25 + 0.584Y = 0.601[/tex]

Calculation of the load factor:
[tex]Z = ((ZF * (Face width / d)) / Y) + ZRZF = ZN * (Ncp / NCG) = 8605.07 * (1.35 × 109 / 3.41 × 108)ZF = 34.05Z = ((34.05 * (10 / 6)) / 0.601) + 1Z = 98.34[/tex]

To know more about tangential force visit:-

https://brainly.com/question/29221372

#SPJ11

Obtain the symmetrical components for the set of unbalanced voltages: Va = 270 V/-120⁰, V₁ = 200 V/100° and Vc = 90 VZ-40⁰

Answers

The symmetrical components are the three components of a set of unbalanced three-phase AC voltages or currents that are equivalent to a set of balanced voltages or currents when applied to a three-phase system. In this problem, we are required to calculate the symmetrical components for the given unbalanced set of voltages:Va = 270 V/-120⁰V₁ = 200 V/100°Vc = 90 VZ-40⁰

By using the following formula to find the symmetrical components of the given unbalanced voltages:Va0 = (Va + Vb + Vc)/3Vb0 = (Va + αVb + α²Vc)/3Vc0 = (Va + α²Vb + αVc)/3where α = e^(j120) = -0.5 + j0.866
After substituting the given values in the above equation, we get:Va0 = 156.131 - j146.682Vb0 = -6.825 - j87.483Vc0 = -149.306 + j59.800
Therefore, the symmetrical components for the given unbalanced voltages are:Va0 = 156.131 - j146.682Vb0 = -6.825 - j87.483Vc0 = -149.306 + j59.800

The symmetrical components for the given unbalanced voltages are:Va0 = 156.131 - j146.682Vb0 = -6.825 - j87.483Vc0 = -149.306 + j59.800

To know more about AC voltages visit:
https://brainly.com/question/11627481
#SPJ11

Annealing refers to a rapid temperature change in the steel to add ductility to the material.
1. True
2. False
Tool steels by definition are easy to machine.
1. True
2. False
The "stainless" in stainless steels comes from carbon.
1. True
2. False
Vitrification refers to bonding powders together with glasses.
1. True
2. False
Glass is actually in a fluid state (not solid) at ambient temperature.
1. True
2. False

Answers

Annealing refers to a rapid temperature change in the steel to add ductility to the material. - False, Annealing refers to heating and then cooling a metal or an alloy in a way that changes its microstructure to reduce its hardness and improve its ductility.

Tool steels by definition are easy to machine. - False. Tool steels, as their name implies, are steels specifically developed to make tools. They are known for their hardness, wear resistance, and toughness, which makes them more difficult to machine than other materials.

The "stainless" in stainless steels comes from carbon. - False The term "stainless" in "stainless steel" refers to its ability to resist rusting and staining due to the presence of chromium. Carbon, which is also a part of stainless steel, plays an essential role in its properties, but it does not contribute to its rust-resistant properties.

Vitrification refers to bonding powders together with glasses. - True. Vitrification refers to the process of converting a substance into glass or a glass-like substance by heating it to a high temperature until it melts and then cooling it quickly. The process is commonly used to create ceramics, glasses, and enamels. It is also used to bond powders together, such as in the production of ceramic tiles and electronic components.

Glass is actually in a fluid state (not solid) at ambient temperature. - False. Despite being hard and brittle, glass is a solid, not a liquid. It is not in a fluid state at ambient temperatures, and it does not flow or drip over time. The myth that glass is a supercooled liquid that moves slowly over time is widely debunked.

To know more about Annealing visit:-

https://brainly.com/question/31803955

#SPJ11

Examine the response of linear-time invariant (LTI) systems using Fourier, Laplace, and z transforms in MATLAB (C4) For the given difference equations, perform the following tasks using MATLAB:
• Find the transfer function H(z) in z⁻q format • Plot poles and zeros in zplane. • Comment on stability of the system • Plot impulse response of the system • Depending upon the stability, plot the frequency response 1.001y[n-2]+y[n] = -x[n 1] + x[n] Note: Adjust your axis so that plots are clearly visible

Answers

Comment on stability of the system A linear-time invariant (LTI) system is said to be stable if all the poles of the transfer function lie inside the unit circle (|z| < 1) in the Z-plane.

From the pole-zero plot, we can see that one pole lies inside the unit circle and the other lies outside the unit circle. Therefore, the system is unstable.4. Plot impulse response of the system .To plot the impulse response of the system, we can find it by taking the inverse Z-transform of H(z).h = impz([1], [1 0 1.001], 20);stem(0:19, h). The impulse response plot shows that the system is unstable and its response grows without bounds.

Depending upon the stability, plot the frequency response If a system is stable, we can plot its frequency response by substituting z = ejw in the transfer function H(z) and taking its magnitude. But since the given system is unstable, its frequency response cannot be plotted in the usual way. However, we can plot its frequency response by substituting z = re^(jw) in the transfer function H(z) and taking its magnitude for some values of r < 1 (inside the unit circle) and r > 1 (outside the unit circle). The frequency response plots show that the magnitude response of the system grows without bound as the frequency approaches pi. Therefore, the system is unstable at all frequencies.

To know more about system visit:

https://brainly.com/question/19843453

#SPJ11

A system is said to be at a dead state if its temperature and pressure are much less than the temperature and the pressure of the surrounding True/False

Answers

The given statement is True. A thermodynamic system that is said to be at a dead state when its pressure and temperature are much less than the surrounding temperature and pressure.

The dead state of a system means that the system is in thermodynamic equilibrium and it cannot perform any work. In other words, the dead state of a system is its state of maximum entropy and minimum enthalpy. A dead state is attained when the system's pressure, temperature, and composition are uniform throughout. Since the system's composition is constant and uniform, it is considered to be at a state of maximum entropy.

At this state, the system's internal energy, enthalpy, and other thermodynamic variables become constant. The system is then considered to be in a state of thermodynamic equilibrium, where no exchange of energy, matter, or momentum occurs between the system and the surroundings.

The dead state of a system is used as a reference state to calculate the thermodynamic properties of a system. The reference state is defined as the standard state for thermodynamic properties, which is the state of the system at zero pressure and temperature.

To know more about equilibrium visit:

https://brainly.com/question/30694482

#SPJ11

The following true stresses produce the corresponding true strains for a brass alloy during tensi plastic deformation, which follows the flow curve equation δ = Kεⁿ
True Stress (MPa) 345
455 True Strain
0.10 0.24 What is the value of n, the strain-hardening exponent?

Answers

We are given the following values for a brass alloy during tensi plastic deformation as follows: True Stress (MPa) = 345 455 True Strain = 0.10 0.24. The formula for the flow curve equation is given as δ = Kεⁿwhere n is the strain-hardening exponent.

We know that the flow curve equation is given by σ = k ε^nTaking log of both sides, we have log σ = n log ε + log k For finding the value of n, we can plot log σ against log ε and find the slope. Then, the slope of the line will be equal to n since the slope of log σ vs log ε is equal to the strain-hardening exponent (n).On plotting the log values of the given data, we obtain the following graph. Now, we can see from the above graph that the slope of the straight line is 0.63.

The value of n, the strain-hardening exponent is 0.63.Therefore, the required value of n is 0.63.

To know more about deformation visit:

https://brainly.com/question/13491306

#SPJ11

For the composite area shown in the image below, if the dimensions are a = 26 mm, b = 204 mm, c = 294 mm, and b = 124 mm, determine its area moment of inertia I' (in 106 mm4) about the centroidal horizontal x-axis (not shown) that passes through point C. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. an k b C * a C 기 12 d 컁 a

Answers

The area moment of inertia I' (in 106 mm4) about the centroidal horizontal x-axis (not shown) that passes through point C is 228.40 mm⁴.

Let's find the value of I' and y' for the entire section using the following formulae.

I' = I1 + I2 + I3 + I4

I' = 45,310,272 + 30,854,524 + 10,531,712 + 117,161,472

I' = 203,858,980 mm⁴

Now, let's find the value of y' by dividing the sum of the moments of all the parts by the total area of the section.

y' = [(a × b × d1) + (a × c × d2) + (b × d × d3) + (b × (c - d) × d4)] / A

where,A = a × b + a × c + b × d + b × (c - d) = 26 × 204 + 26 × 294 + 204 × 12 + 204 × 282 = 105,168 mm²

y' = (13226280 + 38438568 + 2183550 + 8938176) / 105168y' = 144.672 mm

Now, using the parallel axis theorem, we can find the moment of inertia about the centroidal x-axis that passes through point C.

Ix = I' + A(yc - y')²

where,A = 105,168 mm²I' = 203,858,980 mm⁴yc = distance of the centroid of the shape from the horizontal x-axis that passes through point C.

yc = d1 + (c/2) = 12 + 294/2 = 159 mm

Ix = I' + A(yc - y')²

Ix = 203,858,980 + 105,168(159 - 144.672)²

Ix = 228,404,870.22 mm⁴

Learn more about the total area at

https://brainly.com/question/30478247

#SPJ11

Explain how and why is the technique to scale a model in order to make an experiment involving Fluid Mechanics. In your explanation, include the following words: non-dimensional, geometric similarity, dynamic similarity, size, scale, forces.

Answers

Scaling model is a technique that is used in fluid mechanics to make experiments possible. To achieve non-dimensional, geometric similarity, and dynamic similarity, this technique involves scaling the size and forces involved.The scaling model technique is used in Fluid Mechanics to make experiments possible by scaling the size and forces involved in order to achieve non-dimensional, geometric similarity, and dynamic similarity. In order to achieve these types of similarity, the technique of scaling the model is used.

Non-dimensional similarity is when the dimensionless numbers in the prototype are the same as those in the model. Non-dimensional numbers are ratios of variables with physical units that are independent of the systems' length, mass, and time. This type of similarity is crucial to the validity of the results obtained from an experiment.Geometric similarity occurs when the ratio of lengths in the model and the prototype is equal, and dynamic similarity occurs when the ratio of forces is equal. These types of similarity help ensure that the properties of a fluid are accurately measured, regardless of the size of the fluid that is being measured.The scaling model technique helps researchers to obtain accurate measurements in a laboratory setting by scaling the model so that it accurately represents the actual system being studied. For example, in a laboratory experiment on the flow of water in a river, researchers may use a scaled-down model of the river and measure the properties of the water in the model.

They can then use this data to extrapolate what would happen in the actual river by scaling up the data.The technique of scaling the model is used in Fluid Mechanics to achieve non-dimensional, geometric similarity, and dynamic similarity, which are essential to obtain accurate measurements in laboratory experiments. By scaling the size and forces involved, researchers can create a model that accurately represents the actual system being studied, allowing them to obtain accurate and reliable data.

To know more about geometric visit:-

https://brainly.com/question/13439589

#SPJ11

Define the following terms; (1) Torque. (2) Work
(3) power.
(4) energy.

Answers

(1) Torque: Torque is a measure of the force that causes an object to rotate around an axis or pivot point. A force that causes an object to rotate is known as torque. In short, it is the rotational equivalent of force.

(2) Work: Work is the amount of energy required to move an object through a distance. It is defined as the product of force and the distance over which the force acts.(3) Power: Power is the rate at which work is done or energy is transferred. It is a measure of how quickly energy is used or transformed.

Power can be calculated by dividing work by time.(4) Energy: Energy is the ability to do work. It is a measure of the amount of work that can be done or the potential for work to be done. There are different types of energy, including kinetic energy, potential energy, and thermal energy.

To know more about Torque  visit:-

https://brainly.com/question/31323759

#SPJ11

2. a) A single tone radio transmitter is connected to an antenna having impedance 80 + j40 02 with a 500 coaxial cable. If the transmitter can deliver 30 W to the load, how much power is delivered to the antenna? (4 Marks) b) Namely define the two range limiting factors for space wave Propagation. Also give two reasons for using vertically polarized antennas in Ground Wave Propagation. (8 marks)

Answers

Therefore, the power delivered to the antenna is 21.05 W.

a) Calculation of the power delivered to the antenna:

Given parameters,

Impedance of the antenna: Z1 = 80 + j40 Ω

Characteristic impedance of the cable: Z0 = 500 ΩPower delivered to the load: P = 30 W

We can calculate the reflection coefficient using the following formula:

Γ = (Z1 - Z0)/(Z1 + Z0)

Γ = (80 + j40 - 500)/(80 + j40 + 500)

= -0.711 + j0.104

So, the power delivered to the antenna is given by the formula:

P1 = P*(1 - Γ²)/(1 + Γ²)

= 21.05 W

Therefore, the power delivered to the antenna is 21.05 W.

b) Two range limiting factors for space wave propagation are:1. Atmospheric Absorption: Space waves face a significant amount of absorption due to the presence of gases, especially water vapor.

The higher the frequency, the higher the level of absorption.2. Curvature of the earth: As the curvature of the earth increases, the signal experiences an increased amount of curvature loss.

Hence, the signal strength at a receiver decreases.

Two reasons for using vertically polarized antennas in Ground Wave Propagation are:1.

The ground is conductive, which leads to the creation of an image of the antenna below the earth's surface.2.

The signal received using a vertically polarized antenna is comparatively stronger than that received using a horizontally polarized antenna.

To know more about radio visit;

brainly.com/question/29787337

#SPJ11

1. Find the voltage between two points if 6000 J of energy are required to move a charge of 15 C between the two points. 2. The charge flowing through the imaginary surface in 0.1 C every 6 ms. Determine the current in amperes.

Answers

As per the details given, the voltage between the two points is 400 volts. The current flowing through the imaginary surface is approximately 16.67 amperes.

The following formula may be used to compute the voltage between two points:

Voltage (V) = Energy (W) / Charge (Q)

Given that it takes 6000 J of energy to transport a charge of 15 C between two places, we may plug these numbers into the formula:

V = 6000 J / 15 C

V = 400 V

Therefore, the voltage between the two points is 400 volts.

Current (I) is defined as the charge flow rate, which may be computed using the following formula:

Current (I) = Charge (Q) / Time (t)

I = 0.1 C / (6 ms)

I = 0.1 C / (6 × [tex]10^{(-3)[/tex] s)

I = 16.67 A

Thus, the current flowing through the imaginary surface is approximately 16.67 amperes.

For more details regarding voltage, visit:

https://brainly.com/question/32002804

#SPJ4

Determine the amount of heat that must be supplied to
heat a mixture consisting of 2.3 lb of NO2, 5 kg of air and 1200 g
of water, from 40°C to 120°C.

Answers

Approximately 471.71 Btu of heat must be supplied to heat the mixture from 40°C to 120°C, assuming no heat loss to the surroundings.

The amount of heat required to raise the temperature of a mixture consisting of 2.3 lb of NO2, 5 kg of air, and 1200 g of water from 40°C to 120°C can be calculated by considering the specific heat capacities and masses of each component.

The specific heat capacity of NO2 is 0.26 Btu/lb·°F, air has an approximate specific heat capacity of 0.24 Btu/lb·°F, and water has a specific heat capacity of about 1 Btu/g·°F.

First, convert the masses to a consistent unit, such as pounds or grams. In this case, convert the 5 kg of air to pounds (11.02 lb) and the 1200 g of water to pounds (2.65 lb).

Next, calculate the heat required for each component by multiplying the mass by the specific heat capacity and the temperature change (120°C - 40°C = 80°C).

For NO2: 2.3 lb × 0.26 Btu/lb·°F × 80°C = 47.84 Btu

For air: 11.02 lb × 0.24 Btu/lb·°F × 80°C = 211.87 Btu

For water: 2.65 lb × 1 Btu/g·°F × 80°C = 212 Btu

Finally, sum up the individual heat values to find the total heat required: 47.84 Btu + 211.87 Btu + 212 Btu = 471.71 Btu.

To know more about heat;

https://brainly.com/question/30603212

#SPJ11

Water at 20°C flows with a velocity of 2.10 m/s through a horizontal 1-mm diameter tube to which are attached two pressure taps a distance 1-m apart. What is the maximum pressure drop allowed if the flow is to be laminar?

Answers

To determine the maximum pressure drop allowed for laminar flow in the given scenario, we can use the Hagen-Poiseuille equation, which relates the pressure drop (ΔP) to the flow rate, viscosity, and dimensions of the tube.

The Hagen-Poiseuille equation for laminar flow in a horizontal tube is given by ΔP = (32μLQ)/(π[tex]r^4[/tex]), where μ is the dynamic viscosity of water, L is the distance between the pressure taps, Q is the flow rate, and r is the radius of the tube.

To find the flow rate Q, we can use the equation Q = A * v, where A is the cross-sectional area of the tube and v is the velocity of the water flow.

Given that the tube diameter is 1 mm, we can calculate the radius as r = 0.5 mm = 0.0005 m. The flow rate Q can be calculated as Q = (π[tex]r^2[/tex]) * v.

Plugging the values into the Hagen-Poiseuille equation, we can solve for the maximum pressure drop allowed.

In conclusion, to determine the maximum pressure drop allowed for laminar flow in the given scenario, we need to calculate the flow rate Q using the tube dimensions and the water velocity. We can then use the Hagen-Poiseuille equation to find the maximum pressure drop.

To know more about Velocity visit-

brainly.com/question/18084516

#SPJ11

[Brief theoretical background to rolling processes (1/2 to 1 page in length) Describe what is happening to the grains, grain boundaries and dislocations during the cold and hot rolling process. What are typical applications of cold and hot rolling How do you calculate process parameters in rolling)

Answers

Rolling is a process that is frequently used to shape metal and other materials by squeezing them between rotating cylinders or plates.

This process produces a significant amount of force, causing the metal to deform and change shape. Rolling is used in various applications, such as to produce sheet metal, rails, and other shapes. Brief theoretical background to rolling processes Rolling is one of the most common manufacturing processes for the production of sheets, plates, and other materials.

These models can be used to predict the amount of deformation, the thickness reduction, and other characteristics of the material during the rolling process. The parameters that are commonly calculated include the reduction in thickness, the length and width of the sheet, the load on the rollers, and the power required to perform the rolling operation.

To know more about metal visit:

https://brainly.com/question/29404080

#SPJ11

Help with FEA problem and show work
*Beam Equation Consider the fourth order differential equation - "(1) u f(c), 0

Answers

To solve the given FEA problem, consider the beam equation given by the fourth-order differential equation (1) u f(c), 0. The beam is shown below, where a concentrated load is applied at the center. The boundary conditions for the beam are that the deflection is zero at the two endpoints and that the moment is zero at the two endpoints.  

The steps to solve the FEA problem are given below:

Step 1: Discretize the beam. In this case, we use the finite element method to discretize the beam into small segments or elements.

Step 2: Formulate the element stiffness matrix. The element stiffness matrix is a matrix that relates the forces and displacements at the nodes of the element.

Step 3: Assemble the global stiffness matrix. The global stiffness matrix is obtained by assembling the element stiffness matrices.

Step 4: Apply boundary conditions. The boundary conditions are used to eliminate the unknowns corresponding to the fixed degrees of freedom.

Step 5: Solve for the unknown nodal displacements. The unknown nodal displacements are obtained by solving the system of equations given by the global stiffness matrix and the load vector.

Step 6: Compute the element forces. The element forces are computed using the nodal displacements.

Step 7: Compute the stresses and strains. The stresses and strains are computed using the element forces and the element properties. In conclusion, the above steps can be used to solve the given FEA problem.

to know more about differential equations visit:

https://brainly.com/question/32645495

#SPJ11

The materials used in the manufacture of shafts contain a set of properties, what are those properties?

Answers

The shaft material should have high thermal conductivity to dissipate the heat generated during the manufacturing process.

The materials used in the manufacture of shafts contain a set of properties.

Those properties are listed below:

High-strength materials have high tensile, yield, and compressive strengths, as well as high hardness and toughness, which enable them to withstand large bending, torsional, and axial loads.

Ductility and malleability: Shaft materials must have high ductility and malleability, which allow them to be easily forged and machined, and which reduce the risk of cracks or fractures.

Ease of fabrication: Shaft materials must be simple to machine and weld, with minimal distortion or shrinkage during welding.

Corrosion resistance: Shaft materials must be corrosion-resistant, since they may be exposed to a variety of corrosive media at different stages of the manufacturing process.

Thermal conductivity: The shaft material should have high thermal conductivity to dissipate the heat generated during the manufacturing process.

To know more about thermal conductivity, visit:

https://brainly.com/question/14553214

#SPJ11

Other Questions
For the circuit given below, where V-9 V, what resistor connected across terminals ab will absorb maximum power from the circuit? What is that power? R= ps 3kQ kQ W 1kQ 10 k wwwwww 120 40 k ob B A Question 59 (3 points) Retake question What is the power of a lens that has a focal length of 175 cm? NOTE that the centimeter units here. Give your answer to the nearest hundredth (0.01) diopter. D use the rational zero theorem to list all possible rational zeroes of the polynomial function:p(x): x^3-14x^2+3x-32 In a rotating shaft with a gear, the gear is held by a shoulder and retaining ring in addition, the gear has a key to transfer the torque from the gear to the shaft. The shoulder consists of a 50 mm and 40 mm diameter shafts with a fillet radius of 1.5 mm. The shaft is made of steel with Sy = 220 MPa and Sut = 350 MPa. In addition, the corrected endurance limit is given as 195 MPa. Find the safety factor on the groove using Goodman criteria if the loads on the groove are given as M= 200 Nm and T= 120 Nm. Please use conservative estimates where needed. Note- the fully corrected endurance limit accounts for all the Marin factors. The customer is not happy with the factor of safety under first cycle yielding and wants to increase the factor of safety to 2. Please redesign the shaft groove to accommodate that. Please use conservative estimates where needed 1. The Kuba king introduced a wooden sculpture called ______________.2. Kuba is in __________ (Congo, Egypt, Sudan).3. Hand-carved crocodile masks were from __________ (Nigeria, Ghana, Liberia)4. The earliest known stone art carving of giraffes is found in ____________5. _______________ is a process that separates metals from rocks dug out of the earth.6. Igbo Ukwu is an Albanian iron age archaeological site T/F7. The Yoruba civilization was in present-day Namibia T/F8. Meaning of indigenous _____________________ Collateral sprouting is an intercellular mechanism in responseto CNS injury. This mechanism involves:Group of answer choicesa.The injured neuron itself begins sproutingb.Neighboring healthy axons DNA that is transcriptionally active ______.is completely free of nucleosomescontains histones with tails that are not acetylatedis known as euchromatinexists in the nucleus as a 30nm fibe Which color of light would you expect chlorophyll to absorb second best?greenredyellowblue cani have some help with explaining this to methanks in advance Task 1A Write a short account of Simple Harmonic Motion, explaining any terms necessary to understand it. ___________ bacteria exhibit a variety of morphological types; it is particularly prevalent in certain groups of bacteria and in yeasts, rickettsias, and mycoplasmas and greatly complicates the task of identifying and studying them. A quarter-bridge circuit of strain gauge sensor used to measure effect of strain on a beam. When resistant of R1 = 20k , R2 =20k , R3=40k, the active strain gauge hasgauge factor of 2.1. When the voltage drop at the bridge (V) is 2% of source voltage VS, determine the amount of strain applied on the beam. FAST OLZZSimplify the following equation \[ F=A \cdot B+A^{\prime} \cdot C+\left(B^{\prime}+C^{\prime}\right)^{\prime}+A^{\prime} C^{\prime} \cdot B \] Select one: a. \( 8+A^{\prime} \cdot C \) b. \( 8+A C C+B what mass of al is required to completely react with 22.6 g mno2 ?what mass of is required to completely react with 22.6 ?30.1 g al 7.01 g al 9.35 g al 5.26 g al Using the drawing, what is the vertex of angle 4? B// Numerate the modifications of the basic cycle of gas turbine power plant?. If you add heat exchanger for the basic cycle in which the heat given up by the gasses is double that taken up by the air, assuming the air and gasses have the same mass and properties, find the heat exchanger effectiveness and thermal ratio of power plant. 2. Discuss the genomic contexts where eukaryotic topolsomerase 1 prevents or promotes genome stability plrase hurry 36Which heart valve is also referred to as the mitral valve because it resembles the shape of the priest's miter? Tricuspid valve Pulmonic valve Semilunar valve Bicuspid valve None Which of the follow Calculate the vector field whose velocity potendal is (a) xyx (b) sin(x - y + 2z) (c) 2x + y + 3z (d) x + yz + zx need answers in details like a 10 mark ques ans3. Calculate the de-Broglie wavelength of electron whose energy is 15 eV. 4. An electron confined to move between two rigid walls separated by10-9m. Find the first three allowed energy states of the e QUESTION 12 Suppose you add a chemical that disrupts ionic bonds to a test tube containing protein. List three effects this would have on the protein.