The probability that one of the new 4-bit codewords is transmitted with an undetected error is 1/4.
In the given scenario, a single-digit parity check is added to the original set of codewords. This parity check adds one additional bit to each codeword to ensure that the total number of 1s in the codeword (including the parity bit) is always even.
Now, let's analyze the probability of an undetected error occurring in the transmission of a 4-bit codeword. Since the error probability of the symmetric binary channel is given as 1/4, it means that there is a 1/4 chance that any individual bit will be received incorrectly. To have an undetected error, the incorrect bit must be in the parity bit position, as any error in the data bits would result in an odd number of 1s and would be detected.
Considering that the parity bit is the most significant bit (MSB) in the new 4-bit codewords, an undetected error would occur if the MSB is received incorrectly, and the other three bits are received correctly. The probability of this event is 1/4 * (3/4)^3 = 27/256.
Therefore, the probability that one of the new 4-bit codewords is transmitted with an undetected error is 27/256.
Now, let's calculate the probability of at least one error occurring in the transmission of a 4-bit word by this channel. Since each bit has a 1/4 probability of being received incorrectly, the probability of no error occurring in a single bit transmission is (1 - 1/4) = 3/4. Therefore, the probability of all four bits being received correctly is (3/4)^4 = 81/256.
Hence, the probability of at least one error occurring in the transmission of a 4-bit word is 1 - 81/256 = 175/256.
Learn more about probability click here: brainly.com/question/31828911
#SPJ11
Suppose that the functions g and f are defined as follows. g(x)=(-5+x)(-4+x) f(x)=-7+8x (a) Find ((g)/(f))(1). (b) Find all values that are NOT in the domain of (g)/(f).
To find the equation of the tangent line at a given point, we follow the steps given below: We find the partial derivatives of the given function w.r.t x and y separately and then substitute the given point (1, 1) to get the derivative of the curve at that point.
In order to calculate ((g)/(f))(1), we need to first calculate g/f. Hence, let's calculate both g(x) and f(x)g(x) = (-5 + x)(-4 + x)
= 20 - 9x + x^2
and f(x) = -7 + 8x
Now, let's divide g(x) by f(x)g/f = g(x)/f(x)
= ((20 - 9x + x^2))/(8x - 7)
Now, let's substitute x = 1g/f (1)
= ((20 - 9(1) + (1)^2))/(8(1) - 7)
= (12/1)
= 12
Therefore, the denominator cannot be 0. Therefore, let's set the denominator to 0 and solve for x 8x - 7 = 0
⇒ 8x = 7
⇒ x = 7/8
Therefore, the denominator becomes 0 at x = 7/8.
Hence, x = 7/8 is not in the domain of (g)/(f).
Therefore, ((g)/(f))(1) = 12.
And, x = 7/8 is not in the domain of (g)/(f). In order to calculate ((g)/(f))(1), we need to first calculate g/f. Hence, let's calculate both g(x) and f(x)g(x) = (-5 + x)(-4 + x)
= 20 - 9x + x^2 and
f(x) = -7 + 8x
Now, let's divide g(x) by f(x)g/f = g(x)/f(x)
= ((20 - 9x + x^2))/(8x - 7)
For (g)/(f) to be defined, the denominator cannot be 0. Therefore, let's set the denominator to 0 and solve for x 8x -7 = 0 ⇒ 8x = 7
⇒ x = 7/8
Therefore, the denominator becomes 0 at x = 7/8.
Hence, x = 7/8 is not in the domain of (g)/(f).
To know more about derivatives visit:
https://brainly.com/question/29144258
#SPJ11
The weight of Royal Gala apples has a mean of 170g and a standard deviation of 18g. A random sample of 36 Royal Gala apples was selected.
Show step and equation.
e) What are the mean and standard deviation of the sampling distribution of sample mean?
f) What is the probability that the average weight is less than 170?
g) What is the probability that the average weight is at least 180g?
h) In repeated samples (n=36), over what weight are the heaviest 33% of the average weights?
i) State the name of the theorem used to find the probabilities above.
The probability that the average weight is less than 170 g is 0.5. In repeated samples (n=36), the heaviest 33% of the average weights are over 163.92 g.
Sampling distribution refers to the probability distribution of a statistic gathered from random samples of a specific size taken from a given population. It is computed for all sample sizes from the population.
It is essential to estimate and assess the properties of population parameters by analyzing these distributions.
To find the mean and standard deviation of the sampling distribution of the sample mean, the formulas used are:
The mean of the sampling distribution of the sample mean = μ = mean of the population = 170 g
The standard deviation of the sampling distribution of the sample mean is σx = (σ/√n) = (18/√36) = 3 g
The central limit theorem (CLT) is a theorem used to find the probabilities above. It states that, under certain conditions, the mean of a sufficiently large number of independent random variables with finite means and variances will be approximately distributed as a normal random variable.
To find the probability that the average weight is less than 170 g, we need to use the standard normal distribution table or z-score formula. The z-score formula is:
z = (x - μ) / (σ/√n),
where x is the sample mean, μ is the population mean, σ is the population standard deviation, and n is the sample size. Plugging in the given values, we get
z = (170 - 170) / (18/√36) = 0,
which corresponds to a probability of 0.5.
Therefore, the probability that the average weight is less than 170 g is 0.5.
To find the probability that the average weight is at least 180 g, we need to calculate the z-score and use the standard normal distribution table. The z-score is
z = (180 - 170) / (18/√36) = 2,
which corresponds to a probability of 0.9772.
Therefore, the probability that the average weight is at least 180 g is 0.9772.
To find the weight over which the heaviest 33% of the average weights lie, we need to use the inverse standard normal distribution table or the z-score formula. Using the inverse standard normal distribution table, we find that the z-score corresponding to a probability of 0.33 is -0.44. Using the z-score formula, we get
-0.44 = (x - 170) / (18/√36), which gives
x = 163.92 g.
Therefore, in repeated samples (n=36), the heaviest 33% of the average weights are over 163.92 g.
Sampling distribution is a probability distribution that helps estimate and analyze the properties of population parameters. The mean and standard deviation of the sampling distribution of the sample mean can be calculated using the formulas μ = mean of the population and σx = (σ/√n), respectively. The central limit theorem (CLT) is used to find probabilities involving the sample mean. The z-score formula and standard normal distribution table can be used to find these probabilities. In repeated samples (n=36), the heaviest 33% of the average weights are over 163.92 g.
To know more about z-score visit:
brainly.com/question/31871890
#SPJ11
Use the first derivative test to determine all local minimum and maximum points of the function y=(1)/(4)x^(3)-3x.
Therefore, the local minimum is at (2, -5) and the local maximum is at (-2, 1).
To determine the local minimum and maximum points of the function y = (1/4)x³ - 3x using the first derivative test, follow these steps:
Step 1: Find the first derivative of the function.
Taking the derivative of y = (1/4)x³ - 3x, we get:
y' = (3/4)x - 3
Step 2: Set the first derivative equal to zero and solve for x.
To find the critical points, we set y' = 0 and solve for x:
(3/4)x² - 3 = 0
(3/4)x² = 3
x² = (4/3) * 3
x² = 4
x = ±√4
x = ±2
Step 3: Determine the intervals where the first derivative is positive or negative.
To determine the intervals, we can use test values or create a sign chart. Let's use test values:
For x < -2, we can plug in x = -3 into y' to get:
y' = (3/4)(-3)² - 3
y' = (3/4)(9) - 3
y' = 27/4 - 12/4
y' = 15/4 > 0
For -2 < x < 2, we can plug in x = 0 into y' to get:
y' = (3/4)(0)² - 3
y' = -3 < 0
For x > 2, we can plug in x = 3 into y' to get:
y' = (3/4)(3)² - 3
y' = (3/4)(9) - 3
y' = 27/4 - 12/4
y' = 15/4 > 0
Step 4: Determine the nature of the critical points.
Since the first derivative changes from positive to negative at x = -2 and from negative to positive at x = 2, we have a local maximum at x = -2 and a local minimum at x = 2.
Therefore, the local minimum is at (2, -5) and the local maximum is at (-2, 1).
TO know more about derivative visit:
https://brainly.com/question/29144258
#SPJ11
How would you describe the end behavior of the function f(x)=-5x^(9)? Extends from quadrant 2 to quadrant 1
In summary, the graph of the function [tex]f(x) = -5x^9[/tex] extends from quadrant 2 to quadrant 1, as it approaches negative infinity in both directions.
The end behavior of the function [tex]f(x) = -5x^9[/tex] can be described as follows:
As x approaches negative infinity (from left to right on the x-axis), the function approaches negative infinity. This means that the graph of the function will be in the upper half of the y-axis in quadrant 2.
As x approaches positive infinity (from right to left on the x-axis), the function also approaches negative infinity. This means that the graph of the function will be in the lower half of the y-axis in quadrant 1.
To know more about function,
https://brainly.com/question/29593026
#SPJ11
Find the volume of the parallelepiped with one vertex at (−2,−2,−5), and adjacent vertices at (−2,5,−8), (−2,−8,−7), and (−7,−9,−1)
The to find the volume of the parallelepiped is V = |A · B × C| where A, B, and C are vectors representing three adjacent sides of the parallelepiped and | | denotes the magnitude of the cross product of two vectors.
The cross product of two vectors is a vector that is perpendicular to both the vectors, and its magnitude is equal to the product of the magnitudes of the two vectors multiplied by the sine of the angle between the two vectors he three adjacent sides of the parallelepiped can be represented by the vectors v1, v2, and v3, and these vectors can be found by subtracting the coordinates of the vertices
:v1 = (-2, 5, -8) - (-2, -2, -5)
= (0, 7, -3)v2 = (-2, -8, -7) - (-2, -2, -5)
= (0, -6, -2)v3 = (-7, -9, -1) - (-2, -2, -5)
= (-5, -7, 4)
Using the formula V = |A · B × C|, we can find the volume of the parallelepiped as follows:
V = |v1 · (v2 × v3)|
where v2 × v3 is the cross product of vectors v2 and v3, and v1 · (v2 × v3) is the dot product of vector v1 and the cross product v2 × v3.Using the determinant formula for the cross-product, we can find that:
v2 × v3
= (-6)(4)i + (-2)(5)j + (-6)(-7)k
= -48i - 10j + 42k
To know more about vectors visit:
https://brainly.com/question/30907119
#SPJ11
Help Ly dia by making an x->y table. What values of x could you choose (between -150 and 150) to make all of the y-values in your table integers? Everyone should take a few moments on his or her own to think about how to create some values for the table.
To make all of the y-values in the table integers, you need to use a multiple of 1 as the increment of x values.
Let's create an x→y table and see what we can get. x y -150 -225 -149 -222.75 -148 -220.5 ... 148 222 149 224.25 150 225
We'll use the equation y = -1.5x to make an x→y table, where x ranges from -150 to 150. Since we want all of the y-values to be integers, we'll use an increment of 1 for x values.For example, we can start by plugging in x = -150 into the equation: y = -1.5(-150)y = 225
Since -150 is a multiple of 1, we got an integer value for y. Let's continue with this pattern and create an x→y table. x y -150 -225 -149 -222.75 -148 -220.5 ... 148 222 149 224.25 150 225
We can see that all of the y-values in the table are integers, which means that we've successfully found the values of x that would make it happen.
To create an x→y table where all the y-values are integers, we used the equation y = -1.5x and an increment of 1 for x values. We started by plugging in x = -150 into the equation and continued with the same pattern. In the end, we got the values of x that would make all of the y-values integers.\
To know more about integers visit
brainly.com/question/15276410
#SPJ11
Given the function f(x)=2(x-3)2+6, for x > 3, find f(x). f^-1x)= |
The given function equation is f⁻¹(x) = √[(x - 6)/2] + 3, for x > 6.
The function is given by: f(x) = 2(x - 3)² + 6, for x > 3We are to find f(x) and f⁻¹(x). Finding f(x)
We are given that the function is:f(x) = 2(x - 3)² + 6, for x > 3
We can input any value of x greater than 3 into the equation to find f(x).For x = 4, f(x) = 2(4 - 3)² + 6= 2(1)² + 6= 2 + 6= 8
Therefore, f(4) = 8.Finding f⁻¹(x)To find the inverse of a function, we swap the positions of x and y, then solve for y.
Therefore:f(x) = 2(x - 3)² + 6, for x > 3 We have:x = 2(y - 3)² + 6
To solve for y, we isolate it by subtracting 6 from both sides and dividing by
2:x - 6 = 2(y - 3)²2(y - 3)² = (x - 6)/2y - 3 = ±√[(x - 6)/2] + 3y = ±√[(x - 6)/2] + 3y = √[(x - 6)/2] + 3, since y cannot be negative (otherwise it won't be a function).
Therefore, f⁻¹(x) = √[(x - 6)/2] + 3, for x > 6.
To know more about function visit:
brainly.com/question/29103939
#SPJ11
Let f(z)=ez/z, where z ranges over the annulus 21≤∣z∣≤1. Find the points where the maximum and minimum values of ∣f(z)∣ occur and determine these values.
The maximum value of |f(z)| occurs at z = i/2, with a value of 2|e^(i/2)|. The minimum value of |f(z)| occurs at z = -i/2, with a value of 2|e^(-i/2)|.
To find the points where the maximum and minimum values of |f(z)| occur for the function f(z) = e^z/z in the annulus 1/2 ≤ |z| ≤ 1, we can analyze the behavior of the function in that region.
First, let's rewrite the function as:
f(z) = e^z / z = e^z * (1/z).
We observe that the function f(z) has a singularity at z = 0. Since the annulus 1/2 ≤ |z| ≤ 1 does not include the singularity at z = 0, we can focus on the behavior of the function on the boundary of the annulus, which is the circle |z| = 1/2.
Now, let's consider the modulus of f(z):
|f(z)| = |e^z / z| = |e^z| / |z|.
For z on the boundary of the annulus, |z| = 1/2. Therefore, we have:
|f(z)| = |e^z| / (1/2) = 2|e^z|.
To find the maximum and minimum values of |f(z)|, we need to find the maximum and minimum values of |e^z| on the circle |z| = 1/2.
The modulus |e^z| is maximized when the argument z is purely imaginary, i.e., when z = iy for some real number y. On the circle |z| = 1/2, we have |iy| = |y| = 1/2. Therefore, the maximum value of |e^z| occurs at z = i(1/2).
Similarly, the modulus |e^z| is minimized when the argument z is purely imaginary and negative, i.e., when z = -iy for some real number y. On the circle |z| = 1/2, we have |-iy| = |y| = 1/2. Therefore, the minimum value of |e^z| occurs at z = -i(1/2).
Substituting these values of z into |f(z)| = 2|e^z|, we get:
|f(i/2)| = 2|e^(i/2)|,
|f(-i/2)| = 2|e^(-i/2)|.
The values of |e^(i/2)| and |e^(-i/2)| can be calculated as |cos(1/2) + i sin(1/2)| and |cos(-1/2) + i sin(-1/2)|, respectively.
Therefore, the maximum value of |f(z)| occurs at z = i/2, and the minimum value of |f(z)| occurs at z = -i/2. The corresponding maximum and minimum values of |f(z)| are 2|e^(i/2)| and 2|e^(-i/2)|, respectively.
To learn more about functions visit : https://brainly.com/question/11624077
#SPJ11
What percent of 80 is 32?
F) 25%
G) 2.5%
H) 0.4%
J) 40%
K) None
Answer:
40%
Step-by-step explanation:
you divide the little number by the bigger number than move the decimal point two places to the right
J is the correct answer since 80×(40/100) = 32
HOPE IT HELPS
PLEASE MARK ME AS BRAINLIEST
Solve the differential equation (27xy + 45y²) + (9x² + 45xy)y' = 0 using the integrating factor u(x, y) = (xy(2x+5y))-1.
NOTE: Do not enter an arbitrary constant.
The general solution is given implicitly by
The given differential equation is `(27xy + 45y²) + (9x² + 45xy)y' = 0`.We have to solve this differential equation by using integrating factor `u(x, y) = (xy(2x+5y))-1`.The integrating factor `u(x,y)` is given by `u(x,y) = e^∫p(x)dx`, where `p(x)` is the coefficient of y' term.
Let us find `p(x)` for the given differential equation.`p(x) = (9x² + 45xy)/ (27xy + 45y²)`We can simplify this expression by dividing both numerator and denominator by `9xy`.We get `p(x) = (x + 5y)/(3y)`The integrating factor `u(x,y)` is given by `u(x,y) = (xy(2x+5y))-1`.Substitute `p(x)` and `u(x,y)` in the following formula:`y = (1/u(x,y))* ∫[u(x,y)* q(x)] dx + C/u(x,y)`Where `q(x)` is the coefficient of y term, and `C` is the arbitrary constant.To solve the differential equation, we will use the above formula, as follows:`y = [(3y)/(x+5y)]* ∫ [(xy(2x+5y))/y]*dx + C/[(xy(2x+5y))]`We will simplify and solve the above expression, as follows:`y = (3x^2 + 5xy)/ (2xy + 5y^2) + C/(xy(2x+5y))`Simplify the above expression by multiplying `2xy + 5y^2` both numerator and denominator, we get:`y(2xy + 5y^2) = 3x^2 + 5xy + C`This is the general solution of the differential equation.
To know more about differential equation, visit:
https://brainly.com/question/32645495
#SPJ11
Cheryl was taking her puppy to get groomed. One groomer. Fluffy Puppy, charges a once a year membership fee of $120 plus $10. 50 per
standard visit. Another groomer, Pristine Paws, charges a $5 per month membership fee plus $13 per standard visit. Let f(2) represent the
cost of Fluffy Puppy per year and p(s) represent the cost of Pristine Paws per year. What does f(x) = p(x) represent?
f(x) = p(x) when x = 24, which means that both groomers will cost the same amount per year if Cheryl takes her puppy for grooming services 24 times in one year.
The functions f(x) and p(x) represent the annual cost of using Fluffy Puppy and Pristine Paws for grooming services, respectively.
In particular, f(2) represents the cost of using Fluffy Puppy for 2 standard visits in one year. This is equal to the annual membership fee of $120 plus the cost of 2 standard visits at $10.50 per visit, or:
f(2) = $120 + (2 x $10.50)
f(2) = $120 + $21
f(2) = $141
Similarly, p(x) represents the cost of using Pristine Paws for x standard visits in one year. The cost consists of a monthly membership fee of $5 multiplied by 12 months in a year, plus the cost of x standard visits at $13 per visit, or:
p(x) = ($5 x 12) + ($13 x x)
p(x) = $60 + $13x
Therefore, the equation f(x) = p(x) represents the situation where the annual cost of using Fluffy Puppy and Pristine Paws for grooming services is the same, or when the number of standard visits x satisfies the equation:
$120 + ($10.50 x) = $60 + ($13 x)
Solving this equation gives:
$10.50 x - $13 x = $60 - $120
-$2.50 x = -$60
x = 24
So, f(x) = p(x) when x = 24, which means that both groomers will cost the same amount per year if Cheryl takes her puppy for grooming services 24 times in one year.
Learn more about cost from
https://brainly.com/question/25109150
#SPJ11
A foundation invests $70,000 at simple interest, a part at 7%, twice that amount at 3%, and the rest at 6.5%. What is the most that the foundation can invest at 3% and be guaranteed $4095 in interest
The maximum amount that the foundation can invest at 3% and be guaranteed $4095 in interest is $56,000. Therefore, the option (B) is correct.
Foundation invested $70,000 at simple interest, a part at 7%, twice that amount at 3%, and the rest at 6.5%.The foundation wants to invest at 3% and be guaranteed $4095 in interest. To Find: The maximum amount that the foundation can invest at 3%Simple interest is the interest calculated on the original principal only. It is calculated by multiplying the principal amount, the interest rate, and the time period, then dividing the whole by 100.The interest (I) can be calculated by using the following formula; I = P * R * T, Where, P = Principal amount, R = Rate of interest, T = Time period. In this problem, we will calculate the interest on the amount invested at 3% and then divide the guaranteed interest by the calculated interest to get the amount invested at 3%.1) Let's calculate the interest for 3% rate;I = P * R * T4095 = P * 3% * 1Therefore, P = 4095/0.03P = $136,5002) Now, we will find out the amount invested at 7%.Let X be the amount invested at 7%,Then,2X = Twice that amount invested at 3% since the amount invested at 3% is half of the investment at 7% amount invested at 6.5% = Rest amount invested. Now, we can find the value of X,X + 2X + Rest = Total Amount X + 2X + (70,000 - 3X) = 70,000X = 28,000The amount invested at 7% is $28,000.3) The amount invested at 3% is twice that of 7%.2X = 2 * 28,000 = $56,0004) The amount invested at 6.5% is, Rest = 70,000 - (28,000 + 56,000) = $6,000.
Let's learn more about interest:
https://brainly.com/question/25720319
#SPJ11
Sets V and W are defined below.
V = {all positive odd numbers}
W {factors of 40}
=
Write down all of the numbers that are in
VOW.
The numbers that are in the intersection of V and W (VOW) are 1 and 5.
How to determine all the numbers that are in VOW.To find the numbers that are in the intersection of sets V and W (V ∩ W), we need to identify the elements that are common to both sets.
Set V consists of all positive odd numbers, while set W consists of the factors of 40.
The factors of 40 are: 1, 2, 4, 5, 8, 10, 20, and 40.
The positive odd numbers are: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, and so on.
To find the numbers that are in the intersection of V and W, we look for the elements that are present in both sets:
V ∩ W = {1, 5}
Therefore, the numbers that are in the intersection of V and W (VOW) are 1 and 5.
Learn more about intersection at https://brainly.com/question/29185601
#SPJ1
Let φ ≡ x = y*z ∧ y = 4*z ∧ z = b[0] + b[2] ∧ 2 < b[1] < b[2] < 5. Complete the definition of σ = {x = , y = , z = 5, b = } so that σ ⊨ φ. If some value is unconstrained, give it a greek letter name (δ, ζ, η, your choice).
To complete the definition of σ = {x = , y = , z = 5, b = } so that σ ⊨ φ, we need to assign appropriate values to the variables x, y, and b based on the given constraints in φ.
Given:
φ ≡ x = y*z ∧ y = 4*z ∧ z = b[0] + b[2] ∧ 2 < b[1] < b[2] < 5
We can start by assigning the value of z as z = 5, as given in the definition of σ.
Now, let's assign values to x, y, and b based on the constraints:
From the first constraint, x = y * z, we can substitute the known values:
x = y * 5
Next, from the second constraint, y = 4 * z, we can substitute the known value of z:
y = 4 * 5
y = 20
Now, let's consider the third constraint, z = b[0] + b[2]. Since the values of b[0] and b[2] are not given, we can assign them arbitrary values using Greek letter names.
Let's assign b[0] as δ and b[2] as ζ.
Therefore, z = δ + ζ.
Now, we need to satisfy the constraint 2 < b[1] < b[2] < 5. Since b[1] is not assigned a specific value, we can assign it as η.
Therefore, the final definition of σ = {x = y * z, y = 20, z = 5, b = [δ, η, ζ]} satisfies the given constraints and makes σ a model of φ (i.e., σ ⊨ φ).
Note: The specific values assigned to δ, η, and ζ are arbitrary as long as they satisfy the constraints given in the problem.
To know more about constraints visit:
https://brainly.com/question/32387329
#SPJ11
find the equation for the circle with a diameter whose endpoints are (1,14) and (7,-12) write in standard form
To write the equation for a circle with a diameter whose endpoints are (1, 14) and (7, -12) in standard form, we'll need to follow the following steps:Step 1: Find the center of the circle by finding the midpoint of the diameter.
= [(x1 + x2)/2, (y1 + y2)/2]Midpoint
= [(1 + 7)/2, (14 + (-12))/2]Midpoint
= (4, 1)So, the center of the circle is (4, 1).Step 2: Find the radius of the circle. The radius of the circle is half the length of the diameter, which is the distance between the two endpoints. The distance formula can be used to find this distance. Diameter
= √((x2 - x1)² + (y2 - y1)²)Diameter
= √((7 - 1)² + (-12 - 14)²)Diameter
= √(6² + (-26)²)Diameter
= √(676)Diameter
= 26So, the radius of the circle is half the diameter or 26/2 = 13.Step 3: Write the equation of the circle in standard form, which is (x - h)² + (y - k)²
= r². Replacing the center (h, k) and radius r, we get:(x - 4)² + (y - 1)² = 13²Simplifying this equation, we get:x² - 8x + 16 + y² - 2y + 1 = 169x² + y² - 8x - 2y - 152
= 0
To know more about endpoints visit:
https://brainly.com/question/29164764?referrer=searchResults
#SPJ11
Find the arc length of the graph of the function over the indicated interval. (Round your answer to three decimal places.) y=ln(sin(x)), [ π/4, 3π/4]
The arc length of the graph of y = ln(sin(x)) over the interval [π/4, 3π/4] is ln|1 - √2| - ln|1 + √2| (rounded to three decimal places). Ee can use the arc length formula. The formula states that the arc length (L) is given by the integral of √(1 + (dy/dx)²) dx over the interval of interest.
First, let's find the derivative of y = ln(sin(x)). Taking the derivative, we have dy/dx = cos(x) / sin(x).
Now, we can substitute the values into the arc length formula and integrate over the given interval.
The arc length (L) can be calculated as L = ∫[π/4, 3π/4] √(1 + (cos(x) / sin(x))²) dx.
Simplifying the expression, we have L = ∫[π/4, 3π/4] √(1 + cot²(x)) dx.
Using the trigonometric identity cot²(x) = csc²(x) - 1, we can rewrite the integral as L = ∫[π/4, 3π/4] √(csc²(x)) dx.
Taking the square root of csc²(x), we have L = ∫[π/4, 3π/4] csc(x) dx.
Integrating, we get L = ln|csc(x) + cot(x)| from π/4 to 3π/4.
Evaluating the integral, L = ln|csc(3π/4) + cot(3π/4)| - ln|csc(π/4) + cot(π/4)|.
Using the values of csc(3π/4) = -√2 and cot(3π/4) = -1, as well as csc(π/4) = √2 and cot(π/4) = 1, we can simplify further.
Finally, L = ln|-√2 - (-1)| - ln|√2 + 1|.
Simplifying the logarithms, L = ln|1 - √2| - ln|1 + √2|.
Learn more about arc length here : brainly.com/question/15750671
#SPJ11
After a 12% discount, a calculator was sold for $16.50. What was its regular price?
The regular price of the calculator was approximately `$18.75`.
Let's denote the regular price by `x`.
The calculator is sold at a discount of `12%`, so the price is `100% - 12% = 88%` of the regular price.
Therefore, we have:0.88x = 16.5.
Solving for `x`:x = 16.5/0.88x ≈ $18.75.
So the regular price of the calculator was approximately `$18.75`.
Therefore, after a `12% discount`, the calculator was sold for `$16.50`.
Learn more about the discount:
https://brainly.com/question/1548141?cb=1687527083758
#SPJ11
Given A=⎣⎡104−2⎦⎤ and B=[6−7−18], find AB and BA. AB=BA= Hint: Matrices need to be entered as [(elements of row 1 separated by commas), (elements of row 2 separated by commas), (elements of each row separated by commas)]. Example: C=[142536] would be entered as [(1,2, 3),(4,5,6)] Question Help: □ Message instructor
If the matrices [tex]A= \left[\begin{array}{ccc}1\\0\\4\\ -2\end{array}\right][/tex] and [tex]B=\left[\begin{array}{cccc}6&-7&-1& 8 \end{array}\right][/tex], then products AB= [tex]\left[\begin{array}{cccc}6&-7&-1&8\\0&0&0&0\\24&-28&-4&32\\-12&14&2&-16\end{array}\right][/tex] and BA= [tex]\left[\begin{array}{c}-14\end{array}\right][/tex]
To find the products AB and BA, follow these steps:
If the number of columns in the first matrix is equal to the number of rows in the second matrix, then we can multiply them. The dimensions of A is 4×1 and the dimensions of B is 1×4. So the product of matrices A and B, AB can be calculated as shown below.On further simplification, we get [tex]AB= \left[\begin{array}{ccc}1\\0\\4\\ -2\end{array}\right]\left[\begin{array}{cccc}6&-7&-1& 8 \end{array}\right]\\ = \left[\begin{array}{cccc}6&-7&-1&8\\0&0&0&0\\24&-28&-4&32\\-12&14&2&-16\end{array}\right][/tex]Similarly, the product of BA can be calculated as shown below:[tex]BA= \left[\begin{array}{cccc}6&-7&-1& 8 \end{array}\right] \left[\begin{array}{ccc}1\\0\\4\\ -2\end{array}\right]\\ = \left[\begin{array}{c}6+0-4-16\end{array}\right] = \left[\begin{array}{c}-14\end{array}\right][/tex]Therefore, the products AB and BA of matrices A and B can be calculated.
Learn more about matrix:
brainly.com/question/11989522
#SPJ11
Given f(x)=x^2+3, find and simplify. (a) f(t−2) (b) f(y+h)−f(y) (c) f(y)−f(y−h) (a) f(t−2)= (Simplify your answer. Do not factor.)
The simplifed value of the function f(x) = x^2 +3 is f(t-2) = t^2 -4t +7. The simplified value of the function f(x) = x^2+3 is f(y+h) - f(y) = 2yh +h^2.
Given f(x)=x²+3, we have to find and simplify:
(a) f(t-2).The given function is f(x)=x²+3.
Substitute (t-2) for x:
f(t-2)=(t-2)²+3
Simplifying the equation:
(t-2)²+3 = t² - 4t + 7
Hence, (a) f(t-2) = t² - 4t + 7.
(b) f(y+h)−f(y).
The given function is f(x)=x²+3.
Substitute (y+h) for x and y for x:
f(y+h) - f(y) = (y+h)²+3 - (y²+3)
Simplifying the equation:
(y+h)²+3 - (y²+3) = y² + 2yh + h² - y²= 2yh + h²
Hence, (b) f(y+h)−f(y) = 2yh + h².
(c) f(y)−f(y−h).
The given function is f(x)=x²+3.
Substitute y for x and (y-h) for x:
f(y) - f(y-h) = y²+3 - (y-h)²-3
Simplifying the equation:
y² + 3 - (y² - 2yh + h²) - 3= 2yh - h²
Hence, (c) f(y)−f(y−h) = 2yh - h².
Let us know more about function : https://brainly.com/question/31062578.
#SPJ11
Write an equation for the line passing through the given pair of points. Give the final answer in (a) slope-intercept form and (b) standard form. Use the smallest possible positive integer coefficient for x when giving the equation in standard form. (−4,0) and (0,9) (a) The equation of the line in slope-intercept form is (Use integers or fractions for any numbers in the equation.) (b) The equation of the line in standard form is
The equation of the line for the given points in slope-intercept form is y = (9/4)x + 9 and the equation of the line for the given points in standard form is 9x - 4y = -36
(a) The equation of the line passing through the points (-4,0) and (0,9) can be written in slope-intercept form, y = mx + b, where m is the slope and b is the y-intercept.
To find the slope, we use the formula: m = (y₂ - y₁) / (x₂ - x₁), where (x₁, y₁) = (-4,0) and (x₂, y₂) = (0,9).
m = (9 - 0) / (0 - (-4)) = 9 / 4.
Next, we can substitute one of the given points into the equation and solve for b.
Using the point (-4,0):
0 = (9/4)(-4) + b
0 = -9 + b
b = 9.
Therefore, the equation of the line in slope-intercept form is y = (9/4)x + 9.
(b) To write the equation of the line in standard form, Ax + By = C, where A, B, and C are integers, we can rearrange the slope-intercept form.
Multiplying both sides of the slope-intercept form by 4 to eliminate fractions:
4y = 9x + 36.
Rearranging the terms:
-9x + 4y = 36.
Since we want the smallest possible positive integer coefficient for x, we can multiply the equation by -1 to make the coefficient positive:
9x - 4y = -36.
Therefore, the equation of the line in standard form is 9x - 4y = -36.
Learn more about slope-intercept form here : brainly.com/question/30381959
#SPJ11
. Suppose that X and Y are uniform on the triangle having vertices (0,0), (4,0), and (4,2). Find 1. The marginal pdfs 2. P(Y >1/X>1) 3. s.d.(X)
The standard deviation of X is: s.d.(X) = sqrt[Var(X)] = sqrt(4/3) = (2/3)sqrt(3).
1. The marginal PDFs Since X and Y are uniform on the triangle having vertices (0,0), (4,0), and (4,2), we have the following information:
X has the density function f(x) = 1/8 for 0 < x < 4, and
Y has the density function g(y) = 1/8 for 0 < y < 2.Therefore, the marginal PDF of X and Y respectively are given as follows:
The marginal PDF of X:
f(x) = ∫g(x, y) dy, integrated over all y values.
Since we have a uniform distribution over a triangle, we have a right-angle triangle, so we can split the integration area to obtain the integral limits:
∫[0, (2-x/2)]1/8 dy = [1/8 * (2-x/2)] = (1/4 - x/16), for 0 1/X > 1)We have:
P(Y > 1/X > 1) = ∫∫[y>1, x>1]f(x, y)dx dy/ ∫∫[x>1]f(x, y)dx dy.
The numerator of the fraction, which is the double integral, is as follows:
∫∫[y>1, x>1]f(x, y)dx dy
= ∫[1, 4]∫[max{0, (2-x/2)}, 2]1/8 dx dy
= ∫[1, 4][y/8 - x/32]dy
= [y^2/16 - xy/32] with limits [max{0, (2-x/2)}, 2] for x and [1, 4] for y.
= [8 - 5x/4] with limits [2, 4] for x.
Therefore, the numerator of the fraction equals:
∫∫[y>1, x>1]f(x, y)dx dy = ∫[2, 4][8 - 5x/4]dx
= [8x - (5/8)x^2] with limits [2, 4] for x.
= 22/8 = 11/4.The denominator of the fraction is the marginal PDF of X, so it equals:
∫∫[x>1]f(x, y)dx dy
= ∫[1, 4]∫[max{0, (2-x/2)}, 2]1/8 dy dx
= ∫[1, 4][(2-x/2)/8] dx
= (3/8)x - (1/16)x^2 with limits [1, 4] for x.
= 9/8.
Therefore, the conditional probability equals:
P(Y > 1/X > 1) = (11/4) / (9/8) = 22/9.3. s.d. (X)The variance of X is:
Var(X) = E[X^2] - E[X]^2,
where E[X] = ∫xf(x)dx = ∫[0, 4](1/4 - x/16)dx = 2,
and E[X^2] = ∫x^2f(x)dx = ∫[0, 4](1/8 - x^2/256)dx = 16/3.
Therefore, the variance of X is:
Var(X) = E[X^2] - E[X]^2 = (16/3) - 4 = 4/3.
Thus, the standard deviation of X is: s.d.(X) = sqrt[Var(X)] = sqrt(4/3) = (2/3)sqrt(3).
Learn more about: standard deviation
https://brainly.com/question/29115611
#SPJ11
1. Using f(x) = x² + 3x + 5 and several test values, consider the following questions:
(a) Is f(x+3) equal to f(x) + f(3)? (b) Is f(-x) equal to -f(x)? 2. Give an example of a quantity occurring in everyday life that can be computed by a function of three or more inputs. Identify the inputs and the output and draw the function diagram.
1a) No, f(x + 3) ≠ f(x) + f(3) as they both have different values.
1b) No, f(-x) ≠ -f(x) as they both have different values. 2) A real-life example of a function with three or more inputs is calculating the total cost of a trip, with inputs being distance, fuel efficiency, fuel price, and any additional expenses.
1a) Substituting x + 3 into the function yields
f(x + 3) = (x + 3)² + 3(x + 3) + 5 = x² + 9x + 23;
while f(x) + f(3) = x² + 3x + 5 + (3² + 3(3) + 5) = x² + 9x + 23.
As both expressions have the same value, the statement is true.
1b) Substituting -x into the function yields f(-x) = (-x)² + 3(-x) + 5 = x² - 3x + 5; while -f(x) = -(x² + 3x + 5) = -x² - 3x - 5. As both expressions have different values, the statement is false.
2) A real-life example of a function with three or more inputs is calculating the total cost of a trip. The inputs are distance, fuel efficiency, fuel price, and any additional expenses such as lodging and food.
The function diagram would show the inputs on the left, the function in the middle, and the output on the right. The output would be the total cost of the trip, which is calculated by multiplying the distance by the fuel efficiency and the fuel price, and then adding any additional expenses.
To learn more about efficiency
https://brainly.com/question/27432004
#SPJ11
the probability that i wear boots given that it's raining is 60%. the probability that it's raining is 20%. the probability that i wear boots is 9% what is the probability that it rains and i wear boots? state your answer as a decimal value.
The probability that it rains and I wear boots is 0.12.
To solve this problem, we will use the concept of conditional probability, which deals with the probability of an event occurring given that another event has already occurred.
First, let's assign some variables:
P(Boots) represents the probability of wearing boots.
P(Rain) represents the probability of rain.
According to the information provided, we have the following probabilities:
P(Boots | Rain) = 0.60 (the probability of wearing boots given that it's raining)
P(Rain) = 0.20 (the probability of rain)
P(Boots) = 0.09 (the probability of wearing boots)
To find the probability of both raining and wearing boots, we can use the formula for conditional probability:
P(Boots and Rain) = P(Boots | Rain) * P(Rain)
Substituting the given values, we get:
P(Boots and Rain) = 0.60 * 0.20 = 0.12
Therefore, the probability of both raining and wearing boots is 0.12 or 12%.
To know more about probability here
https://brainly.com/question/11234923
#SPJ4
A radiograph technique is 100 mA and 200 ms which produces an intensity of 120mR. Find the mAs value required to produce an intensity of 60mR a. 10 mAs b. 20mAs c. 40mAs d. 100mAs
The mAs value required to produce an intensity of 60mR is 120 mAs.The correct option is d) 120m.
The relationship between intensity and mAs can be expressed mathematically as:
Intensity = mAs/Exposure time
Given: mA = 100 ms = 200 intensity = 120mR
We can calculate the initial mAs value as:120 = mAs/200
=> mAs = (120 × 200) / 100
=> mAs = 240 mAs
Next, we need to find the mAs required to produce an intensity of 60mR.
Substituting the given values:60 = mAs/Exposure time
We can rearrange the formula and solve for the mAs value:
mAs = 60 × 200/100 = 120 mAs
Therefore, the mAs value required to produce an intensity of 60mR is 120 mAs.The correct option is d) 120m.
Know more about intensity here,
https://brainly.com/question/17583145
#SPJ11
\section*{Problem 2}
\subsection*{Part 1}
Which of the following arguments are valid? Explain your reasoning.\\
\begin{enumerate}[label=(\alph*)]
\item I have a student in my class who is getting an $A$. Therefore, John, a student in my class, is getting an $A$. \\\\
%Enter your answer below this comment line.
\\\\
\item Every Girl Scout who sells at least 30 boxes of cookies will get a prize. Suzy, a Girl Scout, got a prize. Therefore, Suzy sold at least 30 boxes of cookies.\\\\
%Enter your answer below this comment line.
\\\\
\end{enumerate}
\subsection*{Part 2}
Determine whether each argument is valid. If the argument is valid, give a proof using the laws of logic. If the argument is invalid, give values for the predicates $P$ and $Q$ over the domain ${a,\; b}$ that demonstrate the argument is invalid.\\
\begin{enumerate}[label=(\alph*)]
\item \[
\begin{array}{||c||}
\hline \hline
\exists x\, (P(x)\; \land \;Q(x) )\\
\\
\therefore \exists x\, Q(x)\; \land\; \exists x \,P(x) \\
\hline \hline
\end{array}
\]\\\\
%Enter your answer here.
\\\\
\item \[
\begin{array}{||c||}
\hline \hline
\forall x\, (P(x)\; \lor \;Q(x) )\\
\\
\therefore \forall x\, Q(x)\; \lor \; \forall x\, P(x) \\
\hline \hline
\end{array}
\]\\\\
%Enter your answer here.
\\\\
\end{enumerate}
\newpage
%--------------------------------------------------------------------------------------------------
The argument is invalid because just one student getting an A does not necessarily imply that every student gets an A in the class. There might be more students in the class who aren't getting an A.
Therefore, the argument is invalid. The argument is valid. Since Suzy received a prize and according to the statement in the argument, every girl scout who sells at least 30 boxes of cookies will get a prize, Suzy must have sold at least 30 boxes of cookies. Therefore, the argument is valid.
a. The argument is invalid. Let's consider the domain to be
[tex]${a,\; b}$[/tex]
Let [tex]$P(a)$[/tex] be true,[tex]$Q(a)$[/tex] be false and [tex]$Q(b)$[/tex] be true.
Then, [tex]$\exists x\, (P(x)\; \land \;Q(x))$[/tex] is true because [tex]$P(a) \land Q(a)$[/tex] is true.
However, [tex]$\exists x\, Q(x)\; \land\; \exists x \,P(x)$[/tex] is false because [tex]$\exists x\, Q(x)$[/tex] is true and [tex]$\exists x \,P(x)$[/tex] is false.
Therefore, the argument is invalid.
b. The argument is invalid.
Let's consider the domain to be
[tex]${a,\; b}$[/tex]
Let [tex]$P(a)$[/tex] be true and [tex]$Q(b)$[/tex]be true.
Then, [tex]$\forall x\, (P(x)\; \lor \;Q(x) )$[/tex] is true because [tex]$P(a) \lor Q(a)$[/tex] and [tex]$P(b) \lor Q(b)$[/tex] are true.
However, [tex]$\forall x\, Q(x)\; \lor \; \forall x\, P(x)$[/tex] is false because [tex]$\forall x\, Q(x)$[/tex] is false and [tex]$\forall x\, P(x)$[/tex] is false.
Therefore, the argument is invalid.
To know more about argument visit:
https://brainly.com/question/2645376
#SPJ11
From problem 3.23 in Dobrow: Consider the Markov chain with k states 1,2,…,k and with P 1j
= k
1
for j=1,2,…,k;P i,i−1
=1 for i=2,3,…,k and P ij
=0 otherwise. (a) Show that this is an ergodic chain, hence stationary and limiting distributions are the same. (b) Using R codes for powers of this matrix when k=5,6 from the previous homework, guess at and prove a formula for the stationary distribution for any value of k. Prove that it is correct by showing that it a left eigenvector with eigenvalue 1 . It is convenient to scale to avoid fractions; that is, you can show that any multiple is a left eigenvector with eigenvalue 1 then the answer is a version normalized to be a probability vector. 3.23 Consider a k-state Markov chain with transition matrix P= 1
2
3
k−2
k−1
k
0
1
1/k
1
0
⋮
0
0
0
2
1/k
0
1
⋮
0
0
0
3
1/k
0
0
⋮
0
0
⋯
⋯
⋯
⋯
⋯
⋮
⋯
⋯
0
k−2
1/k
0
0
⋮
0
1
1
k−1
1/k
0
0
⋮
0
0
0
k
1/k
0
0
⋮
0
0
⎠
⎞
. Show that the chain is ergodic and find the limiting distribution.
(a) The Markov chain is ergodic because it is irreducible and aperiodic. (b) the stationary distribution of the Markov chain is a vector of all 1/k's.
(a) The Markov chain is ergodic because it is irreducible and aperiodic. It is irreducible because there is a path from any state to any other state. It is aperiodic because there is no positive integer n such that P^(n) = I for some non-identity matrix I.
(b) The stationary distribution for the Markov chain can be found by solving the equation P * x = x for x. This gives us the following equation:
x = ⎝⎛
⎜⎝
1
1/k
1/k
⋯
1/k
1/k
⎟⎠
⎞
⎠ * x
This equation can be simplified to the following equation:
x = (k - 1) * x / k
Solving for x, we get x = 1/k. This means that the stationary distribution is a vector of all 1/k's.
To prove that this is correct, we can show that it is a left eigenvector of P with eigenvalue 1. The left eigenvector equation is:
x * P = x
Substituting in the stationary distribution, we get:
(1/k) * P = (1/k)
This equation is satisfied because P is a diagonal matrix with all the diagonal entries equal to 1/k.
Therefore, the stationary distribution of the Markov chain is a vector of all 1/k's.
To learn more about Markov chain here:
https://brainly.com/question/30465344
#SPJ4
Correct Question :
Consider the Markov chain with k states 1,2,…,k and with [tex]P_{1j[/tex]= 1/k for j=1,2,…,k; [tex]P_{i,i-1[/tex] =1 for i=2,3,…,k and [tex]P_{ij[/tex]=0 otherwise.
(a) Show that this is an ergodic chain, hence stationary and limiting distributions are the same.
(b) Using R codes for powers of this matrix when k=5,6 from the previous homework, guess at and prove a formula for the stationary distribution for any value of k. Prove that it is correct by showing that it a left eigenvector with eigenvalue 1 . It is convenient to scale to avoid fractions; that is, you can show that any multiple is a left eigenvector with eigenvalue 1 then the answer is a version normalized to be a probability vector.
Find f
(a) for f(x)=−7+10x−6x^2
f'(a)=
The value of function of f(a) is f(a) = [tex]-7+10a-6a^2[/tex] and the value of f'(a) is: f'(a) = -12a + 10
We have the following information available from the question is:
The function is given as:
f(x) = [tex]-7+10x-6x^2[/tex]
We have to find the function f(a) and f'(a)
Now, According to the question:
The function equation is :
f(x) = [tex]-7+10x-6x^2[/tex]
We put 'a' instead of 'x'
f(a) = [tex]-7+10a-6a^2[/tex]
Again, finding the f'(a)
It means find the first derivative of a
f'(a) = -12a + 10
Hence, The value of f(a) is f(a) = [tex]-7+10a-6a^2[/tex] and the value of f'(a) is:
f'(a) = -12a + 10
Learn more about Function at:
https://brainly.com/question/31062578
#SPJ4
Pre -event tickets for a local theater fundraiser cost $30 and $40 for at-the -door tickets. Organizers sell a total of 200 tickets and generate a total revenue of $6,650. How many pre -event and at -the -door tickets were sold?
135 pre-event tickets and 65 at-the-door tickets were sold.
Let's denote the number of pre-event tickets sold as "P" and the number of at-the-door tickets sold as "D".
According to the given information, we can set up a system of equations:
P + D = 200 (Equation 1) - represents the total number of tickets sold.
30P + 40D = 6650 (Equation 2) - represents the total revenue generated from ticket sales.
The second equation represents the total revenue generated from ticket sales, with the prices of each ticket type multiplied by the respective number of tickets sold.
Now, let's solve this system of equations to find the values of P and D.
From Equation 1, we have P = 200 - D. (Equation 3)
Substituting Equation 3 into Equation 2, we get:
30(200 - D) + 40D = 6650
Simplifying the equation:
6000 - 30D + 40D = 6650
10D = 650
D = 65
Substituting the value of D back into Equation 1, we can find P:
P + 65 = 200
P = 200 - 65
P = 135
Therefore, 135 pre-event tickets and 65 at-the-door tickets were sold.
To learn more about equations
https://brainly.com/question/29174899
#SPJ11
Find the mean, variance, and standard deviation of the following situation: The probabilicy of drawing a red marble from a bag is 0.4. You draw six red marbles with replacement. Give your answer as a
The mean (anticipated value) in this case is 2.4, the variance is roughly 2.8, and the standard deviation is roughly 1.67.
To find the mean, variance, and standard deviation in this situation, we can use the following formulas:
Mean (Expected Value):
The mean is calculated by multiplying each possible outcome by its corresponding probability and summing them up.
Variance:
The variance is calculated by finding the average of the squared differences between each outcome and the mean.
Standard Deviation:
The standard deviation is the square root of the variance and measures the dispersion or spread of the data.
In this case, the probability of drawing a red marble from the bag is 0.4, and you draw six red marbles with replacement.
Mean (Expected Value):
The mean can be calculated by multiplying the probability of drawing a red marble (0.4) by the number of marbles drawn (6):
Mean = 0.4 * 6 = 2.4
Variance:
To calculate the variance, we need to find the average of the squared differences between each outcome (number of red marbles drawn) and the mean (2.4).
Variance = [ (0 - 2.4)² + (1 - 2.4)² + (2 - 2.4)² + (3 - 2.4)² + (4 - 2.4)² + (5 - 2.4)² + (6 - 2.4)² ] / 7
Variance = [ (-2.4)² + (-1.4)² + (-0.4)² + (0.6)² + (1.6)² + (2.6)² + (3.6)² ] / 7
Variance ≈ 2.8
Standard Deviation:
The standard deviation is the square root of the variance:
Standard Deviation ≈ √2.8 ≈ 1.67
Therefore, in this situation, the mean (expected value) is 2.4, the variance is approximately 2.8, and the standard deviation is approximately 1.67.
Learn more about Mean on:
https://brainly.com/question/1136789
#SPJ11
7x+5y=21 Find the equation of the line which passes through the point (6,4) and is parallel to the given line.
Given equation of the line is 7x + 5y = 21. Find the equation of the line which passes through the point (6,4) and is parallel to the given line. We can start by finding the slope of the given line.
The given line can be written in slope-intercept form as follows:y = -(7/5)x + 21/5Comparing with y = mx + b, we see that the slope of the given line is m = -(7/5).Since the required line is parallel to the given line, it will have the same slope of m = -(7/5). Let the equation of the required line be y = -(7/5)x + b. We need to find the value of b. Since the line passes through (6,4), we have 4 = -(7/5)(6) + bSolving for b, we get:b = 4 + (7/5)(6) = 46/5Hence, the equation of the line which passes through the point (6,4) and is parallel to the given line 7x + 5y = 21 isy = -(7/5)x + 46/5.
To know more about equation visit:
https://brainly.com/question/29657983
#SPJ11