Answer:
Explanation:
In the whole process , potential energy of the cart is converted into kinetic energy . At the top of the vertical loop , the whole of potential energy is regained and kinetic energy becomes zero if we release the cart from a height of 2R because difference of height between lowest and highest point of motion is 2R . In that case kinetic energy at top = 0 , velocity v = 0
At the top , weight mg is acting which is providing centripetal force . So cart must have some velocity at the top . If it be v
mv²/R = mg
v = √ gR .
For that purpose , the cart must be released from a height greater than 2R .
The extra height beyond 2R will make the velocity at the top non-zero.
, puck 1 of mass m1 ! 0.20 kg is sent sliding across a frictionless lab bench, to undergo a one-dimensional elastic collision with stationary puck 2. Puck 2 then slides off the bench and lands a distance d from the base of the bench. Puck 1 rebounds from the collision and slides off the opposite edge of the bench, landing a distance 2d from the base of the bench. What is the mass of puck 2
Answer:
1 kg
Explanation:
Assuming that,
Δx(2) = v(2)t, where Δx(2) = d and v(2) = 2m1 / (m1 + m2) v1i
On the other hand again, if we assume that
Δx(1) = v(1)t, where Δx(1) = -2d, and v(1)t = m1 - m2 / m1 + m2 v1i
From the above, we proceed to dividing Δx(2) by Δx(1), so that we have
d/-2d = [2m1 / (m1 + m2) v1i] / [m1 - m2 / m1 + m2 v1i], this is further simplified to
1/-2 = [2m1 / (m1 + m2)] / [m1 - m2 / m1 + m2]
1/-2 = 2m1 / (m1 + m2) * m1 + m2 / m1 - m2
1/-2 = 2m1 / m1 - m2, if we cross multiply, we have
m1 - m2 = -2 * 2m1
m1 - m2 = -4m1
m2 = 5m1
From the question, we're told that m1 = 0.2 kg, if we substitute for that, we have
m2 = 5 * 0.2
m2 = 1 kg
A person pushes down on a lever with a force of 100 N. At the other end of the lever, a force of 200 N lifts a heavy object. What is the mechanical advantage of the lever?
A. 1/2, because the object will be lifted half the distance
B. -1, because the direction changes
C. 2, because the output force is twice the input force
D. 1, because the same amount of work is done
Answer:
Explanation:
C 200÷100=2
Output ÷ Input= MA
An atom undergoes nuclear decay, but its atomic number is not changed.
What type of nuclear decay did the atom undergo?
A. Gamma decay
B. Beta decay
C. Nuclear fission
D. Alpha decay
Answer:
A. Gamma decay
Explanation:
A form of nuclear decay in which the atomic number is unchanged is a gamma decay.
The atom has undergone a gamma decay.
In a gamma decay, no changes occur to the mass and atomic number of the substance.
Gamma rays have zero atomic and mass numbers. When they cause decay, they cause no change to the mass and atomic numbers. They simply produce gamma rays during such reactions and these rays are very energetic.On a winter day a child of mass 20.0 kg slides on a horizontal sidewalk covered in ice. Initially she is moving at 3.00 m>s, but due to friction she comes to a halt in 2.25 m. What is the magnitude of the constant friction force that acts on her as she slides
Answer:
40 N
Explanation:
According to the scenario, computation of given data are as follows:
Mass (m) = 20 kg
Initially moving (v) = 3
Actual distance (d) = 2.25 m
So, we can calculate friction (f) by using following formula,
f × d = [tex]\frac{1}{2} mv^{2}[/tex]
By putting the value, we get
f × 2.25 = [tex]\frac{1}{2}[/tex] × 20 × [tex]3^{2}[/tex]
f × 2.25 = 10 × 9
f = 90 ÷ 2.25
= 40 N.
A mass m is gently placed on the end of a freely hanging spring. The mass then falls 33 cm before it stops and begins to rise. What is the frequency of the oscillation
Answer:
Explanation:
The mass falls by .33 m before it begins to rise . At that point loss of potential energy is equal to gain of elastic energy .
1/2 k x² = mgx
.5 x k x .33² = m x 9.8 x .33
k / m = 59.4
frequency of oscillation = [tex]\frac{1}{2\pi} \times\sqrt{\frac{k}{m} }[/tex]
= [tex]\frac{1}{2\pi} \times\sqrt{59.4}[/tex]
= 1.22 per second .
Mary is trying to pull Julie on a sled across a flat snowy field. Mary pulls on the rope attached to the sled. Her pulling force is directed horizontally. Julie weighs 109 pounds. The sled weights 12 pounds. If the coefficient of static friction between the sled runners and the snow is 0.42, how much force must Mary pull with (in lbs) to start moving the sled
Answer: F = 498.04 lbs
Explanation: The forces acting on the sled and Julie are show in the figure below. In it, we notice that, for the sled and Julie to go accross the field, they only need force of friction, because, force of friction is a force that resists the relative motion of surfaces.
Force of friction is given by the formula
[tex]F_{f}=\mu.F_{N}[/tex]
where
μ is coefficient of friction
[tex]F_{N}[/tex] is normal force
Normal force is the force the surface exerts on the object. It is always perpendicular and a force of contact.
In the case of the sled, since it is on a horizontal plane, Normal Force has the same magnitude of Gravitational Force. So
[tex]F_{N}=m.g[/tex]
Coefficient of friction is how much friction exists between two surfaces.
Rearraging friction force is
[tex]F_{f}=\mu.m.g[/tex]
Mass for this system is the sum of Julie and the sled, therefore
m = 109 + 12
m = 121 lb
Calculating Friction Force:
[tex]F_{f}=0.42.121.9.8[/tex]
[tex]F_{f}=[/tex] 498.04 lbs
LBS is a unit of measurement referred as pound by weight.
In conclusion, force Mary needs to start moving the sled is 498.04 lbs
Which of the physical variables listed below will change when you change the area of the capacitor plates (while keeping the battery connected).
a. Capacitance
b. Charge on the plates
c. Voltage across the plates
d. Net electric field between the plates
e. Energy stored in the capacitor
Answer:
a. Capacitance
b. Charge on the plates
e. Energy stored in the capacitor
Explanation:
Let A be the area of the capacitor plate
The capacitance of a capacitor is given as;
[tex]C = \frac{Q}{V} = \frac{\epsilon _0 A}{d} \\\\[/tex]
where;
V is the potential difference between the plates
The charge on the plates is given as;
[tex]Q = \frac{V\epsilon _0 A}{d}[/tex]
The energy stored in the capacitor is given as;
[tex]E = \frac{1}{2} CV^2\\\\E = \frac{1}{2} (\frac{\epsilon _0 A}{d} )V^2[/tex]
Thus, the physical variables listed that will change include;
a. Capacitance
b. Charge on the plates
e. Energy stored in the capacitor
I don’t even understand anyone help please.
Answer:
a) A:170572.5 J
C: 55794.9J
b) 170572.5 J
c) 41.4413265306m
d) 2.7455874717m/s
Explanation:
a) Kinetic energy = 0.5*m*v²
KE at A = 0.5*420*28.5² = 170572.5 J
KE at C = 0.5*420*16.3² = 55794.9 J
b) Mechanical energy is the total kinetic energy plus potential energy at a point on the system. There is no potential energy at A.
ANSWER: 170572.5 J
c) v²=u²+2as
28.5²=2(9.8)s
812.25/19.6=s
s=41.4413265306m
d) h=height from part c, r=radius of loop
v²=u²+2as
v²=gr or a=v²/r
Ei=Ef
mgh=0.5mv²+mg(2r)
gh=0.5v²+2gr
h=0.5r+2r
h=5/2r
r=2/5h=(2/5)(41.4413265306)=16.5765306122
F=ma
mg=m(v²/r)
g=v²/r
v²=(9.8)(16.5765306122)
v=√162.45
=12.7455874717m/s
A car pulls on to an onramp with an initial speed of 23.8 mph. The length of the onramp is 852 ft and the car needs to be moving at 45.7 mph at the end of the ramp to merge with traffic. What constant rate of acceleration (in ft/sec2) is required in order to accomplish this
Answer:
The constant rate of acceleration required in order to accomplish this is 1.921 feet per square second.
Explanation:
Let suppose that car accelerates uniformly in a rectilinear motion. Given that initial and final speeds and travelled distances are known, then the acceleration needed by the vehicle ([tex]a[/tex]), measured in feet per square second, is determined by the following kinematic formula:
[tex]a = \frac{v_{f}^{2}-v_{o}^{2}}{2\cdot \Delta x }[/tex] (1)
Where:
[tex]v_{o}[/tex], [tex]v_{f}[/tex] - Initial and final speeds, measured in feet per second.
[tex]\Delta x[/tex] - Travelled distance, measured in feet.
If we know that [tex]v_{o} = 34.907\,\frac{ft}{s}[/tex], [tex]v_{f} = 67.027\,\frac{ft}{s}[/tex] and [tex]\Delta x = 852\,ft[/tex], then acceleration needed to accomplish the task is:
[tex]a = 1.921\,\frac{ft}{s^{2}}[/tex]
The constant rate of acceleration required in order to accomplish this is 1.921 feet per square second.
The electric field between two parallel plates is uniform, with magnitude 628 N/C. A proton is held stationary at the positive plate, and an electron is held stationary at the negative plate. The plate separation is 4.22 cm. At the same moment, both particles are released.
A. Calculate the distance (in cm) from the positive plate at which the two pass each other.
B. Repeat part (a) for a sodlum lon (Nat) and a chlorlde lon (CI).
Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
Data Given:
Electric Field between two parallel plates = 628 N/C
Separation = 4.22 cm
a) In this part, we are asked to calculate the distance from positive plate at which the electron and proton pass each other.
Solution:
First of all:
Force on proton due to the Electric field between the plates is:
[tex]F_{p}[/tex] = [tex]q_{p}[/tex]E
and, we know that, F = ma
So,
[tex]m_{p}[/tex]a = [tex]q_{p}[/tex]E
a = [tex]\frac{q_{p}.E }{m_{p} }[/tex] Equation 1
So,
The distance covered by the electron is:
S = ut + 1/2[tex]at^{2}[/tex]
Here, u = 0.
S = 1/2[tex]at^{2}[/tex]
Put equation 1 into the above equation:
S = 1/2 x ([tex]\frac{q_{p}.E }{m_{p} }[/tex] )[tex]t^{2}[/tex] Equation 2
So,
Similarly, the distance covered by electron will be:
(D-S) = 1/2 x ([tex]\frac{q_{e}.E }{m_{e} }[/tex] )[tex]t^{2}[/tex] Equation 3
We know that the charge of electron is equal to the charge of proton so,
[tex]q_{p}[/tex] = [tex]q_{e}[/tex] = q
By dividing the equation 2 by equation 3, we get:
[tex]\frac{S}{D-S}[/tex] = [tex]\frac{m_{e} }{m_{p} }[/tex]
Solve the above equation for S,
S[tex]m_{p}[/tex] = [tex]m_{e}[/tex]D - [tex]m_{e}[/tex]S
So,
S = [tex]\frac{m_{e}.D }{(m_{e} + m_{p}) }[/tex]
Plugging in the values,
As we know the mass of electron is 9.1 x [tex]10^{-31}[/tex] and the mass of proton is 1.67 x [tex]10^{-27}[/tex]
S = [tex]\frac{9.1 . 10^{-31} . 4.22 }{(9.1 . 10^{-31} + 1.67 . 10^{-27} }[/tex]
S = 0.002298 cm (Distance from the positive plate at which the two pass each other)
b) In this part, we to calculate distance for Sodium ion and chloride ion as above.
So,
we already have the equation, we need to put the values in it.
So,
S = [tex]\frac{m_{Cl}.D }{(m_{Cl} + m_{Na}) }[/tex]
As we know the mass of chlorine is 35.5 and of sodium is 23
S = [tex]\frac{35.5 . 4.22}{(35.5 + 23)}[/tex]
S = 2.56 cm
Which of the following is NOT a step used to perform a scientific inquiry
Answer:
b. Designing an uncontrolled experiment.
Explanation:
They always have it controlled.
Answer:
B. Designing an uncontrolled experiment.
Explanation:
Correct Answer!!!!!!
2.
Which is the value of a vector quantity?
A 200V
B 100kg/m
C 20m/s, east
D 50J/(kg°C)
А
B
C
D
3.
The diagrams show three uniform beams P Q and Reach pivoted at its centre
Answer:
c
Explanation:
a vector quantity has both magnitude and direction
The value of 20m/s, east is a vector quantity is Hence, option (C) is correct.
What is vector quantity?A physical quantity that has both directions and magnitude is referred to as a vector quantity.
A lowercase letter with a "hat" circumflex, such as "û," is used to denote a vector with a magnitude equal to one. This type of vector is known as a unit vector.
Given values 200V, 100kg/m, 50J/(kg°C) are denoting magnitude of different physical quantity. Hence, they and scalar quantity ( Physical quantities with merely magnitude and no direction are referred to as scalar quantities. These physical quantities can be explained just by their numerical value without any further guidance.).
But The value of 20m/s, east has a magnitude of 20 m/s and a direction along east. Hence, 20m/s, east denotes a vector quantity is Hence, option (C) is correct.
Learn more about vector quantity here:
https://brainly.com/question/774036
#SPJ2
A ball having mass 2 kg is connected by a string of length 2 m to a pivot point and held in place in a vertical position. A constant wind force of magnitude 13.2 N blows from left to right. Pivot Pivot F F (a) (b) H m m L L If the mass is released from the vertical position, what maximum height above its initial position will it attain? Assume that the string does not break in the process. The acceleration of gravity is 9.8 m/s 2 . Answer in units of m
Complete Question
A ball having mass 2 kg is connected by a string of length 2 m to a pivot point and held in place in a vertical position. A constant wind force of magnitude 13.2 N blows from left to right. Pivot Pivot F F (a) (b) H m m L L If the mass is released from the vertical position, what maximum height above its initial position will it attain? Assume that the string does not break in the process. The acceleration of gravity is 9.8 m/s 2 . Answer in units of m.What will be the equilibrium height of the mass?
Answer:
[tex]H_m=1.65m[/tex]
[tex]H_E=1.16307m[/tex]
Explanation:
From the question we are told that
Mass of ball [tex]M=2kg[/tex]
Length of string [tex]L= 2m[/tex]
Wind force [tex]F=13.2N[/tex]
Generally the equation for [tex]\angle \theta[/tex] is mathematically given as
[tex]tan\theta=\frac{F}{mg}[/tex]
[tex]\theta=tan^-^1\frac{F}{mg}[/tex]
[tex]\theta=tan^-^1\frac{13.2}{2*2}[/tex]
[tex]\theta=73.14\textdegree[/tex]
Max angle =[tex]2*\theta= 2*73.14=>146.28\textdegree[/tex]
Generally the equation for max Height [tex]H_m[/tex] is mathematically given as
[tex]H_m=L(1-cos146.28)[/tex]
[tex]H_m=0.9(1+0.8318)[/tex]
[tex]H_m=1.65m[/tex]
Generally the equation for Equilibrium Height [tex]H_E[/tex] is mathematically given as
[tex]H_E=L(1-cos73.14)[/tex]
[tex]H_E=0.9(1+0.2923)[/tex]
[tex]H_E=1.16307m[/tex]
Consider a swimmer that swims a complete round-trip lap of a 50 m long pool in 100 seconds. The swimmer's... average speed is 0 m/s and average velocity is 0 m/s. average speed is 0.5 m/s and average velocity is 0.5 m/s. average speed is 1 m/s and average velocity is 0 m/s. average speed is 0 m/s and average velocity is 1 m/s.What is the swimmers average speed and average velocity?
Answer:
average speed is 1 m/s and average velocity is 0 m/s.
Explanation:
Given that :
Length of round trip = 50 m
Time taken = 100 seconds
The average speed :
Total distance / total time taken
Length of complete round trip :
(50 + 50) m, total. Distance = 100 m
100 / 100 = 1m/s
The average velocity :
Total Displacement / total time taken
Total Displacement of round trip = end point - start point = 0
0 / 100 = 0
Average speed is 1 m/s and average velocity is 0 m/s.
The average speed is defined as the ratio of distance to time. Speed is a scalar quantity hence it does not take direction into account while velocity is a vector quantity hence it takes direction into account.
The speed is obtained from;
Speed = Distance/time = 2(50 m)/100 s = 1 m/s.
The velocity is 0 m/s since it is complete round-trip lap.
Learn more about speed: https://brainly.com/question/7359669
Which of these represent approaches to psychological science? (Choose every correct answer.)
Behavioral
Chemical
Investigative
Metaphysical
Sociocultural
Cognitive
Humanistic
Answer:
cognitive, humanistic, behavioral, sociocultural
Explanation:
Behavioral, sociocultural, cognitive, and humanistic are approaches to psychological science.
Psychology is a term to refer to the discipline that focuses on the study of various topics related to human thought such as:
The conductMental processes of individuals and human groups in different situations,Human experienceDue to the above, several subdisciplines have emerged that focus on the study of each of the topics. For example:
Behavioral psychology: focused on the study of human behavior.
Sociocultural psychology: focused on the study of human behavior and thought in different social situations.
Cognitive psychology: focused on mental processes related to learning.
Humanistic psychology: focused on the study of human thought from a comprehensive approach.
According to the above, options A, E, F, and G are correct because they mention different sub-disciplines of psychology while the other options mention terms that are not related to sub-disciplines or psychological sciences.
Learn more in: https://brainly.com/question/9807106
We should stress again that the Carnot engine does not exist in real life: It is a purely theoretical device, useful for understanding the limitations of heat engines. Real engines never operate on the Carnot cycle; their efficiency is hence lower than that of the Carnot engine. However, no attempts to build a Carnot engine are being made. Why is that
Answer:
The Carnot engine has zero power
Explanation:
Although theoretically the Carnot engine has more efficiency than the real engine. In practice however they tend to have zero power.
This is because all its processes are reversible (that is isothermic and adiabatic).
So the system equilibrates with its surroundings at every point in time. This makes work done very slow and the power generated is zero.
Carnot cycles requires attaining isothermal heat transfers which is quite difficult and take a long time. Also a pump that can handle liquid-vapour phase mixture will be required.
This is not practical.
take a picture of an object in your house, describe the
energy stores and transfers that happen with it. You can be as imaginative as you wish
with the object (choose something unusual), but the stores you identify and transfers
that happen must be real.
pls give me ideas of what to take a photo of for this I'm really stuck :(
A school is creating a small parking lot next to the school. They will need
998,140 grams of rock for the parking lot. How many pounds of rock does
the school need? (1 kg = 2.205 lb)
Answer:
2200.9lb
Explanation:
This is a conversion problem.
We have been given that:
Mass of rock the school needed = 998140g
Unknown:
Pound of rocks the park needed = ?
To solve this problem, we have to convert from:
grams to kilograms and then to pounds
1000g of the rock will weigh 1kg
So; 998140g of the rock will weight 998.14kg
Therefore:
1kg of a substance weighs 2.205lb
998.14g will weight2.205 x 998.14 = 2200.9lb
According to information found in an old hydraulics book, the energy loss per unit weight of fluid flowing through a nozzle connected to a hose can be estimated by the formula where h is the energy loss per unit weight, D the hose diameter, d the nozzle tip diameter, V the fluid velocity in the hose, and g the acceleration of gravity. Do you think this equation is valid in any system of units
This question is incomplete, the complete question is;
According to information found in an old hydraulics book, the energy loss per unit weight of fluid flowing through a nozzle connected to a hose can be estimated by the formula; h= (0.04 to 0.09)(D/d)⁴V²/2g
where h is the energy loss per unit weight, D the hose diameter, d the nozzle tip diameter, V the fluid velocity in the hose, and g the acceleration of gravity.
Do you think this equation is valid in any system of units
Answer:
YES, the equation is a general equation that is valid in any system of units
Explanation:
Given the data in the question;
h = (0.04 to 0.09)(D/d)⁴ × [tex]\frac{V^{2} }{2g}[/tex]
so
[ N.m/N ] = (0.04 to 0.09) ( m/m)² × (m²/s²)1/2 × (s²/m)
[ N.L/N ] = (0.04 to 0.09) ( L⁴/L⁴) × (L²/T²)1/2 × (T²/L)
∴ [ L ] = (0.04 to 0.09) [L]
So as each term in the equation must have the same dimensions, the constant term (0.04 to 0.09) must be without dimension.
Therefore, YES, the equation is a general equation that is valid in any system of units
Electron cloud configuration for
Answer:
electrons are located around the nucleus of an atom.
Explanation:
Electron configurations describe where electrons are located around the nucleus of an atom. For example, the electron configuration of lithium, 1s²2s¹, tells us that lithium has two electrons in the 1s subshell and one electron in the 2s subshell.
A particle has a velocity that is 90.% of the speed of light. If the wavelength of the particle is 1.5 x 10^-15 m, calculate the mass of the particle
Answer:
[tex]m=1.63\times 10^{-27}\ kg[/tex]
Explanation:
The velocity of a particle is 90% of the speed of light.
The wavelength of the particle is [tex]1.5\times 10^{-15}\ m[/tex]
We need to find the mass of the particle.
The formula for the wavelength of a particle is given by :
[tex]\lambda=\dfrac{h}{mv}[/tex]
h is Planck's constant
v is 90% of speed of light
m is mass of the particle
[tex]m=\dfrac{h}{\lambda v}\\\\m=\dfrac{6.63\times 10^{-34}}{1.5\times 10^{-15}\times 0.9\times 3\times 10^8}\\\\m=1.63\times 10^{-27}\ kg[/tex]
So, the mass of the particle is [tex]1.63\times 10^{-27}\ kg[/tex].
6. What is the lowest temperature on the Kelvin scale? What happens to matter when it
reaches this temperature?
7. What is different about the degrees on the Fahrenheit and Kelvin scales and the Celsius
and Kelvin scales?
Please help. I'm stuck!
What is the mass of a catamaran moving at 7.65 m/s that has a momentum of 530145 kg x m/s?
The pickup truck has a changing velocity because the pickup truck
A.can accelerate faster than the other two vehicles
B.is traveling in the opposite direction from the other two vehicles
C.is traveling on a curve in the road
D.needs a large amount of force to move
please get right i need awnser today
Answer:
C. Is traveling on a curve in the road
Hope this helps :3
The pick up truck has a changing velocity because, it is travelling on a curve in the road. A change in direction results in its change in velocity because, velocity is a vector quantity.
What is velocity ?Velocity is a physical quantity that measures the distance covered by an object per unit time. It is a vector quantity, thus having magnitude as well direction.
The rate of change in velocity is called acceleration of the object. Like velocity, acceleration also is a vector quantity. Thus, a change in magnitude or direction or change in both for velocity make the object to accelerate.
Here, all the three vehicles are travelling with the same velocity. But, the truck is moving to a curve on the road. The curvature in the path will make a change in its velocity.
Find more on velocity:
https://brainly.com/question/16379705
#SPJ6
The image related with this question is attached below:
The diagram shows two balls before they collide.
2 balls with grey arrows pointing to them from the outside. The left ball has below it m subscript 1 = 0.6 kilograms v subscript 1 = 0.5 meters per second. The right ball has below it m subscript 2 = 0.5 kilograms v subscript 2 = negative 0.2 meters per second.
What is the momentum of the system after the collision?
1. 0.0 kg • m/s
2. 0.2 kg • m/s
3. 0.3 kg • m/s
4. 0.4 kg • m/s
Answer:
The Answer is B)0.2 kg • m/s
Explanation:
I made a 100 on my test. Sorry if I'm late but hope I helped.
Answer:
B. 0.2 kg x m/s
Explanation:
Suppose you were digging a well into saturated sediments. Why is the sediment’s permeability an important factor in deciding where to put your well?
Answer:
The importance of the sediments permeability is that if it is permeable, water will flow easily through the sediment and thereby produce a very good supply of water for the well.
Explanation:
When digging a well into saturated sediments, the possibility of the sediment with either little saturation or full saturation being able to provide steady water supply will be limited by how permeable it is. Now, the importance of the sediments permeability is that if it is permeable, water will flow easily through the sediment and thereby produce a very good supply of water for the well.
How is energy transferred when
hitting a nail?
Answer:
kinetic energy
kinetic energy
He throws a second ball (B2) upward with the same initial velocity at the instant that the first ball is at the ceiling. c. How long after the second ball is thrown do the two balls pass each other? d. When the balls pass each other how far are they above the juggler’s hands? e. When they pass each other what are their velocities?
Answer:
hello your question has some missing parts
A juggler performs in a room whose ceiling is 3 m above the level of his hands. He throws a ball vertically upward so that it just reaches the ceiling.
answer : c) 0.39 sec
d) 2.25 m
e) 1.92 m/sec
Explanation:
The initial velocity of the first ball = 7.67 m/sec ( calculated )
Time required for first ball to reach ceiling = 0.78 secs ( calculated )
Determine how long after the second ball is thrown do the two balls pass each other
Distance travelled by first ball downwards when it meets second ball can be expressed as : d = 1/2 gt^2 = 9.8t^2 / 2
hence d = 4.9t^2 ----- ( 1 )
Initial speed of second ball = first ball initial speed = 7.67 m/sec
3 - d = 7.67t - 4.9t ---- ( 2 )
equating equation 1 and 2
3 = 7.67t therefore t = 0.39 sec
Determine how far the balls are above the Juggler's hands ( when the balls pass each other )
form equation 1 ;
d = 4.9 t^2 = 4.9 *(0.39)^2 = 0.75 m
therefore the height the balls are above the Juggler's hands is
3 - d = 3 - 0.75 = 2.25 m
determine their velocities when the pass each other
velocity = displacement / time
velocity = d / t = 0.75 / 0.39 sec = 1.92 m/sec
A box with a mass of 2 kg is pushed by a 10 N force. The acceleration
is
_m/s^2?
Answer:
a = 5 m/s^2
Explanation:
First, we look at Newton's 2nd Law:
F = ma
We now plug in the values,
10 N = 2 kg * a
10 N/2 kg = a
5 m/s^2 = a
Choose the element that has a smaller atomic radius :scandium or selenium