A steel rotor disc of uniform thickness 50mm has an outer rim diameter 800mm and a central hole of diameter 150mm. There are 200 blades each of weight 2N at an effective radius of 420mm pitched evenly around the periphery. Determine the rotational speed at which yielding first occurs according to the maximum shear stress criterion. Yield stress= 750 MPa, v = 0.304, p = 7700 kg/m³.

Answers

Answer 1

The rotational speed at which yielding first occurs according to the maximum shear stress criterion is approximately 5.24 rad/s.

To determine the rotational speed at which yielding first occurs according to the maximum shear stress criterion, we can use the following steps:

1. Calculate the total weight of the blades:

  Total weight = Number of blades × Weight per blade

              = 200 × 2 N

              = 400 N

2. Calculate the torque exerted by the blades:

  Torque = Total weight × Effective radius

         = 400 N × 0.42 m

         = 168 Nm

3. Calculate the polar moment of inertia of the rotor disc:

  Polar moment of inertia (J) = (π/32) × (D⁴ - d⁴)

                             = (π/32) × ((0.8 m)⁴ - (0.15 m)⁴)

                             = 0.02355 m⁴

4. Determine the maximum shear stress:

  Maximum shear stress (τ_max) = Yield stress / (2 × Safety factor)

                              = 750 MPa / (2 × 1)   (Assuming a safety factor of 1)

                              = 375 MPa

5. Use the maximum shear stress criterion equation to find the rotational speed:

  τ_max = (T × r) / J

  where T is the torque, r is the radius, and J is the polar moment of inertia.

  Rearrange the equation to solve for rotational speed (N):

  N = (τ_max × J) / T

    = (375 × 10⁶ Pa) × (0.02355 m⁴) / (168 Nm)

  Convert Pa to N/m² and simplify:

  N = 5.24 rad/s

To learn more about rotational speed, click here:

https://brainly.com/question/14391529

#SPJ11


Related Questions

Design a synchronously settable flip-flop using a regular D flip-flop and additional gates. The inputs are Clk, D, and Set, and the output is Q. Sketch your design.

Answers

A flip-flop is a digital device that stores a binary state. The term "flip-flop" refers to the ability of the device to switch between two states. A D flip-flop is a type of flip-flop that can store a single bit of information, known as a "data bit." A D flip-flop is a synchronous device, which means that its output changes only on the rising or falling edge of the clock signal.

In this design, we will be using a D flip-flop and some additional gates to create a synchronously settable flip-flop. We will be using an AND gate, an inverter, and a NOR gate.

To design the synchronously settable flip-flop using a regular D flip-flop and additional gates, follow these steps:

1. Start by drawing a regular D flip-flop, which has two inputs, D and Clk, and one output, Q.

2. Draw an AND gate with two inputs, Set and Clk. The output of the AND gate will be connected to the D input of the D flip-flop.

3. Draw an inverter, and connect its input to the output of the AND gate. The output of the inverter will be connected to one input of a NOR gate.

4. Connect the Q output of the D flip-flop to the other input of the NOR gate.

5. The output of the NOR gate will be the output of the synchronously settable flip-flop, Q.

6. Sketch the complete design as shown in the figure below.Sketch of the design:In this design, when the Set input is high and the Clk input is high, the output of the AND gate will be high. This will set the D input of the D flip-flop to high, regardless of the value of the current Q output of the flip-flop.

To know more about synchronous visit:

https://brainly.com/question/27189278

#SPJ11

A silicon solar cell is fabricated by ion implanting arsenic into the surface of a 200 um thick p-type wafer with an acceptor density of 1x10l4 cm. The n-type side is 1 um thick and has an arsenic donor density of 1x10cm? Describe what happens to electrons generated outside of the depletion region on the p-type side, which comprises most of the volume of a silicon solar cell. Do they contribute to photocurrent?

Answers

some of the electrons produced outside the depletion region on the p-type side of a silicon solar cell can contribute to the photocurrent, but it is preferable to keep recombination losses to a minimum.

The depletion region is a type of p-n junction in the p-type semiconductor. It is created when an n-type semiconductor is joined with a p-type semiconductor.

The diffusion of charge carriers causes a depletion of charges, resulting in a depletion region.

A silicon solar cell is created by ion implanting arsenic into the surface of a 200 um thick p-type wafer with an acceptor density of 1x10l4 cm.

The n-type side is 1 um thick and has an arsenic donor density of 1x10cm. Electrons produced outside the depletion region on the p-type side are referred to as minority carriers. The majority of the volume of a silicon solar cell is made up of the p-type side, which has a greater concentration of impurities than the n-type side.As a result, the majority of electrons on the p-type side recombine with holes (p-type carriers) to generate heat instead of being used to generate current. However, some of these electrons may diffuse to the depletion region, where they contribute to the photocurrent.

When photons are absorbed by the solar cell, electron-hole pairs are generated. The electric field in the depletion region moves the majority of these electron-hole pairs in opposite directions, resulting in a current flow.

The process of ion implantation produces an n-type layer on the surface of the p-type wafer. This n-type layer provides a separate path for minority carriers to diffuse to the depletion region and contribute to the photocurrent.

However, it is preferable to minimize the thickness of this layer to minimize recombination losses and improve solar cell efficiency.

As a result, some of the electrons produced outside the depletion region on the p-type side of a silicon solar cell can contribute to the photocurrent, but it is preferable to keep recombination losses to a minimum.

To know more about acceptor visit;

brainly.com/question/30651241

#SPJ11

Water with a velocity of 3.38 m/s flows through a 148 mm
diameter pipe. Solve for the weight flow rate in N/s. Express your
answer in 2 decimal places.

Answers

Given that water with a velocity of 3.38 m/s flows through a 148 mm diameter pipe. To determine the weight flow rate in N/s, we need to use the formula for volumetric flow rate.

Volumetric flow rate Q = A x V

where, Q = volumetric flow rate [m³/s]

A = cross-sectional area of pipe [m²]

V = velocity of fluid [m/s]Cross-sectional area of pipe

A = π/4 * d²A = π/4 * (148mm)²A = π/4 * (0.148m)²A = 0.01718 m²

Substituting the given values in the formula we get Volumetric flow rate

Q = A x V= 0.01718 m² × 3.38 m/s= 0.058 s m³/s

To determine the weight flow rate, we can use the formula Weight flow

rate = volumetric flow rate × density Weight flow rate = Q × ρ\

To know more about diameter visit:

https://brainly.com/question/32968193

#SPJ11

A balanced 3 phase star connected load draws power from a 430 V supply. Two wattmeter's indicate 9600 W and 3700 W respectively, when connected to measure the input power of the load, the reverse switch being operated on the meter indicating the 3700 W reading. [2.5 Marks] Find the following: The Input power, P = The power factor, cos = The line current, IL =

Answers

The input power is 13300 W.  The power factor is approximately 0.4436.  The line current is approximately 18.39 A.

To find the input power, power factor, and line current, we can use the readings from the two wattmeters.

Let's denote the reading of the first wattmeter as [tex]$P_1$[/tex] and the reading of the second wattmeter as [tex]$P_2$[/tex]. The input power, denoted as [tex]$P$[/tex], is given by the sum of the readings from the two wattmeters:

[tex]\[P = P_1 + P_2\][/tex]

In this case, [tex]$P_1 = 9600$[/tex] W and

[tex]\$P_2 = 3700$ W[/tex]. Substituting these values, we have:

[tex]\[P = 9600 \, \text{W} + 3700 \, \text{W}\\= 13300 \, \text{W}\][/tex]

So, the input power is 13300 W.

The power factor, denoted as [tex]$\cos \varphi$[/tex], can be calculated using the formula:

[tex]\[\cos \varphi = \frac{P_1 - P_2}{P}\][/tex]

Substituting the given values, we get:

[tex]\[\cos \varphi = \frac{9600 \, \text{W} - 3700 \, \text{W}}{13300 \, \text{W}} \\\\= \frac{5900 \, \text{W}}{13300 \, \text{W}} \\\\= 0.4436\][/tex]

So, the power factor is approximately 0.4436.

To calculate the line current, we can use the formula:

[tex]\[P = \sqrt{3} \cdot V_L \cdot I_L \cdot \cos \varphi\][/tex]

where [tex]$V_L$[/tex] is the line voltage and [tex]$I_L$[/tex] is the line current. Rearranging the formula, we can solve for [tex]$I_L$[/tex]:

[tex]\[I_L = \frac{P}{\sqrt{3} \cdot V_L \cdot \cos \varphi}\][/tex]

Substituting the given values, [tex]\$P = 13300 \, \text{W}$ and $V_L = 430 \, \text{V}$[/tex], along with the calculated power factor, [tex]$\cos \varphi = 0.4436$[/tex], we have:

[tex]\[I_L = \frac{13300 \, \text{W}}{\sqrt{3} \cdot 430 \, \text{V} \cdot 0.4436} \approx 18.39 \, \text{A}\][/tex]

So, the line current is approximately 18.39 A.

Know more about power factor:

https://brainly.com/question/31782928

#SPJ4

Question 3 20 Points (20) After inspection, it is found that there is an internal crack inside of an alloy with a full width of 0.4 mm and a curvature radius of 5x10-3 mm, and there is also a surface crack on this alloy with a full width of 0.1 mm and a curvature radius of 1x10-3 mm. Under an applied tensile stress of 50 MPa, • (a) What is the maximum stress around the internal crack and the surface crack? (8 points) • (b) For the surface crack, if the critical stress for its propagation is 900 MPa, will this surface crack propagate? (6 points) • (c) Through a different processing technique, the width of both the internal and surface cracks is decreased. With decreased crack width, how will the fracture toughness and critical stress for crack growth change? (6 points) Use the editor to format your answer

Answers

The maximum stress around the internal crack can be determined using the formula for stress concentration factor.

The stress concentration factor for an internal crack can be approximated as Kt = 3(1 + a/w)^(1/2), where a is the crack depth and w is the full width of the crack. Substituting the values, we get Kt = 3(1 + 0.4/5)^(1/2) ≈ 3.33. Therefore, the maximum stress around the internal crack is 3.33 times the applied stress, which is 50 MPa, resulting in approximately 166.5 MPa. Similarly, for the surface crack, the stress concentration factor can be approximated as Kt = 2(1 + a/w)^(1/2).  Substituting the values, we get Kt = 2(1 + 0.1/1)^(1/2) = 2.1. Therefore, the maximum stress around the surface crack is 2.1 times the applied stress, which is 50 MPa, resulting in approximately 105 MPa. For the surface crack to propagate, the applied stress must exceed the critical stress for crack propagation. In this case, the critical stress for the surface crack is given as 900 MPa. Since the applied stress is only 50 MPa, which is lower than the critical stress, the surface crack will not propagate under the given conditions. When the width of both the internal and surface cracks is decreased through a different processing technique, the fracture toughness increases. A smaller crack width reduces the stress concentration and allows the material to distribute the applied stress more evenly. As a result, the material becomes more resistant to crack propagation, and the critical stress for crack growth increases. Therefore, by decreasing the crack width, the fracture toughness improves, making the material more resistant to cracking.

Learn more about crack propagation here:

https://brainly.com/question/31393555

#SPJ11

Equilibrium cooling of a hyper-eutectoid steel to room temperature will form: A. Pro-eutectoid ferrite and pearlite B. Pro-eutectoid ferrite and cementite C. Pro-eutectoid cementite and pearlite Pro-eutectoid cementite and austenite D.

Answers

Answer : Option C

Solution  : Equilibrium cooling of a hyper-eutectoid steel to room temperature will form pro-eutectoid cementite and pearlite. Hence, the correct option is C.

A steel that contains more than 0.8% of carbon by weight is known as hyper-eutectoid steel. Carbon content in such steel is above the eutectoid point (0.8% by weight) and less than 2.11% by weight.

The pearlite is a form of iron-carbon material. The structure of pearlite is lamellar (a very thin plate-like structure) which is made up of alternating layers of ferrite and cementite. A common pearlitic structure is made up of about 88% ferrite by volume and 12% cementite by volume. It is produced by slow cooling of austenite below 727°C on cooling curve at the eutectoid point.

Iron carbide or cementite is an intermetallic compound that is formed from iron (Fe) and carbon (C), with the formula Fe3C. Cementite is a hard and brittle substance that is often found in the form of a lamellar structure with ferrite or pearlite. Cementite has a crystalline structure that is orthorhombic, with a space group of Pnma.

Know more about cooling here:

https://brainly.com/question/32239921

#SPJ11

Air flows through a thin circular pipe with a mass flow rate of 0.1 kg/s and an average inlet and outlet temperature of 10°C and 40°C, respectively. The pipe has an internal diameter of 40 cm and measures 6000 m in length. The pipe has a constant surface temperature of 150°C. What is the heat transfer rate through the pipe due to fully developed flow? Use the following properties for air: p = 1.2 kg/m', Cp = 1025 J/(kg:K), u = 2.6* 10-5 kg/(m·s), Pr = 0.7, k = 0.04 W/(mK)

Answers

The heat transfer rate through the pipe due to fully developed flow is: 3075 watts.

How to find the heat transfer rate?

To calculate the heat transfer rate through the pipe due to fully developed flow, we can use the equation for heat transfer rate:

Q = m_dot * Cp * (T_outlet - T_inlet)

Where:

Q is the heat transfer rate

m_dot is the mass flow rate

Cp is the specific heat capacity of air

T_outlet is the outlet temperature

T_inlet is the inlet temperature

Given:

m_dot = 0.1 kg/s

Cp = 1025 J/(kg·K)

T_inlet = 10°C = 10 + 273.15 K = 283.15 K

T_outlet = 40°C = 40 + 273.15 K = 313.15 K

Using these values, we can calculate the heat transfer rate:

Q = 0.1 kg/s * 1025 J/(kg·K) * (313.15 K - 283.15 K)

Q = 0.1 kg/s * 1025 J/(kg·K) * 30 K

Q = 3075 J/s = 3075 W

Read more about heat transfer rate at: https://brainly.com/question/14148915

#SPJ4

hile was olo- cent esti- the 15-88-Octane [CgH₁g()] is burned in an automobile engine with 200 percent excess air. Air enters this engine at 1 atm and 25°C. Liquid fuel at 25°C is mixed with this air before combustion. The exhaust products leave the exhaust system at I atm and 77°C. What is the maximum amount of work, in kJ/ kg fuel, that can be produced by this engine? Take To= 25°C. Reconsider Proh 15-88 Th oust complet fer from destructi Review 15-94 ric amou dioxid

Answers

It is given that liquid fuel Octane [C8H18] is burned in an automobile engine with 200% excess air.The fuel and air mixture enter the engine at 1 atm and 25°C and the exhaust leaves at 1 atm and 77°C.

Temperature of surroundings = 25°CProblems:We have to determine the maximum amount of work, in kJ/kg fuel, that can be produced by the engine.Calculation:Given fuel is Octane [C8H18].So, we have molecular weight,

M = 8(12.01) + 18(1.008)

= 114.23 gm/molR

= 8.314 J/ mol KAir is entering at 25°C.

So,

T1 = 25°C + 273.15

= 298.15 Kand P1

= 1 atm

= 1.013 barSince it is given that the engine has 200% excess air, the actual amount of air supplied can be determined by using the following formula;

= 100/φ = (100/200)%

= 0.5 or 1/2 times the stoichiometric amount of air.

To know more about liquid fuel visit:

https://brainly.com/question/30455402

#SPJ11

Air is expanded in an isentropic turbine from an initial temperature of 1500 K and a pressure of 2MPa to a final pressure of 0.1MPa at a steady flow rate of 20 kg/s. Use the following properties for air to solve the questions below −γ=1.4 and c p =1001 J/kg−K
a) What is the final temperature of the air at the exit of the turbine in [K] ? Shiow yow work below or on a separate page and enter this value in the Canas guiz. b) What is the power produced by this turbine in [kW]? Show your work below or on a separate page and enter this value in the Camns quiz.
c) Draw this process on both a P-v and T-s diagram, labeling both states. Draw your diagram below do not enter arsthing into the Camas quis.

Answers

a. Final temperature of air at the exit of turbine: T2 = 858.64 K

b.  Power produced by the turbine: 28,283.2 kW

c. P-v and T-s diagrams: The given process is an isentropic expansion process.

T-s diagram: State 1 is the initial state and State 2 is the final state.

Given data:Initial temperature,

T1 = 1500 K

Initial pressure,

P1 = 2 MPa

Final pressure,

P2 = 0.1 MPa

Mass flow rate, m = 20 kg/s

Ratio of specific heat, γ = 1.4

Specific heat at constant pressure,

cp = 1001 J/kg-K

a) Final temperature of air at the exit of turbine:

In an isentropic process, the entropy remains constant i.e

ds = 0.

s = Cp ln(T2/T1) - R ln(P2/P1)

Here, Cp = γ / (γ - 1) × cpR

= Cp - cp

= γ R / (γ - 1)

Putting the given values in the formula, we get

0 = Cp ln(T2 / 1500) - R ln(0.1 / 2)

T2 = 858.64 K

B) Power produced by the turbine:

Power produced by the turbine,

P = m × (h1 - h2)

= m × Cp × (T1 - T2)

where h1 and h2 are the enthalpies at the inlet and exit of the turbine respectively.

h1 = Cp T1

h2 = Cp T2

Putting the given values in the formula, we get

P = 20 × 1001 × (1500 - 858.64)

P = 28,283,200 W

= 28,283.2 kW

c) P-v and T-s diagrams: The given process is an isentropic expansion process.

The process can be shown on the P-v and T-s diagrams as below:

PV diagram:T-s diagram: State 1 is the initial state and State 2 is the final state.

To know more about T-s diagrams visit:

https://brainly.com/question/13327155

#SPJ11

Consider Stokes' first problem, but allow the plate velocity to be an arbitrary function of time, U(t). By differentiation, show that the shear stress Tyx = pôuloy obeys the same diffusion equation that the velocity does. Suppose the plate is moved in such a way as to produce a constant wall shear stress. Determine the plate velocity for this motion. Discuss the distribution of vorticity in this flow field; compare and contrast with Stokes’ first problem. Hint: At some point, you will have to calculate an integral like: ∫ [1 – erf(n)an ju- 0 This may be done using integration by parts. It may be helpful to note that eftc(n) – n*-1exp(-n2) for large n.

Answers

Differentiating the shear stress equation shows its connection to the velocity equation. Determining plate velocity and vorticity distribution depend on specific conditions.

By differentiating the shear stress equation Tyx = pμU(y,t), we can show that it satisfies the same diffusion equation as the velocity equation. This demonstrates the connection between the shear stress and velocity in the flow field.

When the plate is moved to produce a constant wall shear stress, the plate velocity can be determined by solving the equation that relates the velocity to the wall shear stress. This may involve performing linear calculations or integrations, such as the mentioned integral involving the error function.

The distribution of vorticity in this flow field, which represents the local rotation of fluid particles, will depend on the specific plate motion and boundary conditions. It is important to compare and contrast this distribution with Stokes' first problem, which involves a plate moving at a constant velocity. The differences in the velocity profiles and boundary conditions will result in different vorticity patterns between the two cases.

Learn more about Linear click here :brainly.com/question/30763902

#SPJ11

13. Give the definition of entropy. Why did we create this quantity? 14. What is the relationship between entropy, heat, and reversibility?

Answers

Entropy is a physical quantity that measures the level of disorder or randomness in a system. It is also known as the measure of the degree of disorder in a system.

Entropy has several forms, but the most common is thermodynamic entropy, which is a measure of the heat energy that can no longer be used to do work in a system. The entropy of an isolated system can never decrease, and this is known as the Second Law of Thermodynamics. The creation of entropy was necessary to explain how heat energy moves in a system.

Relationship between entropy, heat, and reversibility Entropy is related to heat in the sense that an increase in heat will increase the entropy of a system. Similarly, a decrease in heat will decrease the entropy of a system.

To know more about Entropy visit-

https://brainly.com/question/20166134

#SPJ11

Question 3: Explain in your own words what happens with the energy terms for a stone falling from a height into a bucket of water. Assume the water and stone are at the same temperature, which is higher than the surrounding temperature. What would happen if the object was a bouncing ball falling to a hard surface?

Answers

When a stone is dropped from a certain height into a bucket of water, it undergoes a potential to kinetic energy conversion. When the stone is lifted, it possesses a certain amount of potential energy due to its position. This energy is converted into kinetic energy as the stone starts falling towards the water.

At the same time, the water exerts an opposing force against the stone, which leads to a decrease in its kinetic energy. When the stone finally hits the water, the kinetic energy gets converted into sound and heat energy, causing a splash and a rise in temperature of the water.

In case a bouncing ball is dropped onto a hard surface, the potential energy is converted into kinetic energy as the ball falls towards the surface. Once it touches the surface, the kinetic energy is converted into potential energy. The ball bounces back up due to the elastic force exerted by the surface, which converts the potential energy into kinetic energy again. The process of conversion of potential to kinetic energy and back continues until the ball stops bouncing, and all its energy is dissipated in the form of heat.

To know more about potential energy  visit :-

https://brainly.com/question/24284560

#SPJ11

Given below is a system of two non-linear algebraic equations: f(x, y) = 0
g(x,y)=0 where, f(x,y) = y² + ex g(x, y) = cos(y)-y
If the solution after the 3rd iteration is: x(3)= 1.5 and y(3) = 2, find the normal of the residual (||R||) for this 3rd iteration. Show your steps.

Answers

Given the system of equations:[tex]f(x, y) = 0 and g(x, y) = 0,[/tex]

where [tex]f(x, y) = y² + ex[/tex] and

[tex]g(x, y) = cos(y) - y[/tex]. The Newton-Raphson method for solving nonlinear equations is given by the following iterative formula:

[tex]x(n+1) = x(n) - [f(x(n), y(n)) / f'x(x(n), y(n))][/tex]

[tex]y(n+1) = y(n) - [g(x(n), y(n)) / g'y(x(n), y(n))][/tex]

The partial derivatives of f(x, y) and g(x, y) are as follows:

[tex]∂f/∂x = 0, ∂f/∂y = 2y[/tex]

[tex]∂g/∂x = 0, ∂g/∂y = -sin(y)[/tex]

Applying these derivatives, the iterative formula for solving the system of equations becomes:

[tex]x(n+1) = x(n) - (ex + y²) / e[/tex]

[tex]y(n+1) = y(n) - (cos(y(n)) - y(n)) / (-sin(y(n)))[/tex]

To calculate x(3) and y(3), given [tex]x(0) = 0 and y(0) = 1:[/tex]

[tex]x(1) = 0 - (e×1²) / e = -1[/tex]

[tex]y(1) = 1 - [cos(1) - 1] / [-sin(1)] ≈ 1.38177329068[/tex]

[tex]x(2) = -1 - (e×1.38177329068²) / e ≈ -3.6254167073[/tex]

y(2) =[tex]1.38177329068 - [cos(1.38177329068) - 1.38177329068] / [-sin(1.38177329068)] ≈ 2.0706220035[/tex]

x(3) =[tex]-3.6254167073 - [e×2.0706220035²] / e ≈ -7.0177039346[/tex]

y(3) = [tex]2.0706220035 - [cos(2.0706220035) - 2.0706220035] / [-sin(2.0706220035)] ≈ 1.8046187686[/tex]

The matrix equation for the residual (||R||) is given by:

||R|| = [(f(x(n), y(n))² + g(x(n), y(n))²)]^0.5

Calculating ||R|| for the 3rd iteration:

f[tex](-7.0177039346, 1.8046187686) = (1.8046187686)² + e(-7.0177039346) ≈ 68.3994096346[/tex]

g[tex](-7.0177039346, 1.8046187686) = cos(1.8046187686) - (1.8046187686) ≈ -1.2429320348[/tex]

[tex]||R|| = [(f(-7.0177039346, 1.8046187686))² + (g(-7.0177039346, 1.8046187686))²]^0.5[/tex]

    [tex]= [68.3994096346² + (-1.2429320348)²]^0.5[/tex]

[tex]≈ 68.441956[/tex]

Therefore, the norm of the residual (||R||) for the 3rd iteration is approximately 68.441956.

To know more about derivatives visit:

https://brainly.com/question/25324584

#SPJ11

Show that the circulation around an infinitesimally small rectangular path of dimensions 8x and Sy in Cartesian coordinates is directly related to the local vorticity multiplied by the area enclosed by the path

Answers

The circulation around an infinitesimally small rectangular path of dimensions 8x and Sy in Cartesian coordinates is directly related to the local vorticity multiplied by the area enclosed by the path.

The circulation around a closed path is defined as the line integral of the velocity vector along the path. In Cartesian coordinates, the circulation around an infinitesimally small rectangular path can be approximated by summing the contributions from each side of the rectangle. Consider a rectangular path with dimensions 8x and Sy. Each side of the rectangle can be represented by a line segment. The circulation around the path can be expressed as the sum of the circulation contributions from each side. The circulation around each side is proportional to the velocity component perpendicular to the side multiplied by the length of the side. Since the rectangle is infinitesimally small.

Learn more about infinitesimally small rectangular path here:

https://brainly.com/question/14529499

#SPJ11

For the same velocity field described in question 15. generate an expression for the stream function and plot some streamlines of the flow in the upper-right quadrant (0, 0) and (2, 2) in the interval of=2 m²/s. Clearly state the assumptions and boundary conditions.

Answers

The stream function ψ(x,y) represents the streamlines, or pathlines, of a fluid in a two-dimensional flow field. Streamlines are curves that are tangent to the velocity vectors in the flow.

The velocity field is two-dimensional. The velocity field is incompressible. Boundary conditions: The velocity of the fluid is zero at the walls of the channel.

The velocity of the fluid is zero at infinity. To find the stream function ψ(x,y), we must solve the equation of continuity for two-dimensional flow in terms of ψ(x,y).

Continuity equation is:∂u/∂x+∂v/∂y=0,where u and v are the x and y components of velocity respectively, and x and y are the coordinates of a point in the fluid.

If we take the partial derivative of this equation with respect to y and subtract from that the partial derivative with respect to x, we get:

∂²ψ/∂y∂x - ∂²ψ/∂x∂y = 0.

Since the order of the partial derivatives is not important, this simplifies to:

∂²ψ/∂x² + ∂²ψ/∂y² = 0.

The above equation is known as the two-dimensional Laplace equation and is subject to the same boundary conditions as the velocity field. We can solve the Laplace equation using separation of variables and assuming that ψ(x,y) is separable, i.e.

ψ(x,y) = X(x)Y(y).

After solving the equation for X(x) and Y(y), we can find the stream function ψ(x,y) by multiplying X(x)Y(y).

The stream function can then be used to find the streamlines by plotting the equation

ψ(x,y) = constant, where constant is a constant value. The streamlines will be perpendicular to the contours of constant ψ(x,y).Given the velocity field

V = yi + xj, we can find the stream function by solving the Laplace equation

∇²ψ = 0 subject to the boundary conditions.

We can assume that the fluid is incompressible and the flow is two-dimensional. The velocity of the fluid is zero at the walls of the channel and at infinity.

We can find the stream function by solving the Laplace equation using separation of variables and assuming that ψ(x,y) is separable, i.e.

ψ(x,y) = X(x)Y(y).

After solving the equation for X(x) and Y(y), we can find the stream function ψ(x,y) by multiplying X(x)Y(y).

The stream function can then be used to find the streamlines by plotting the equation ψ(x,y) = constant, where constant is a constant value.

The streamlines will be perpendicular to the contours of constant ψ(x,y).

To find the stream function, we assume that

ψ(x,y) = X(x)Y(y).

We can write the Laplace equation in terms of X(x) and Y(y) as:

X''/X + Y''/Y = 0.

We can rewrite this equation as:

X''/X = -Y''/Y = -k²,where k is a constant.

Solving for X(x), we get:

X(x) = A sin(kx) + B cos(kx).

Solving for Y(y), we get:

Y(y) = C sinh(ky) + D cosh(ky).

Therefore, the stream function is given by:

ψ(x,y) = (A sin(kx) + B cos(kx))(C sinh(ky) + D cosh(ky)).

To satisfy the boundary condition that the velocity of the fluid is zero at the walls of the channel, we must set A = 0. To satisfy the boundary condition that the velocity of the fluid is zero at infinity,

we must set D = 0. Therefore, the stream function is given by:

ψ(x,y) = B sinh(ky) cos(kx).

To find the streamlines, we can plot the equation ψ(x,y) = constant, where constant is a constant value. In the upper-right quadrant, the boundary conditions are x = 0, y = 2 and x = 2, y = 0.

Therefore, we can find the value of B using these boundary conditions. If we set

ψ(0,2) = 2Bsinh(2k) = F and ψ(2,0) = 2Bsinh(2k) = G, we get:

B = F/(2sinh(2k)) = G/(2sinh(2k)).

Therefore, the stream function is given by:ψ(x,y) = Fsinh(2ky)/sinh(2k) cos(kx) = Gsinh(2kx)/sinh(2k) cos(ky).We can plot the streamlines by plotting the equation ψ(x,y) = constant.

The streamlines will be perpendicular to the contours of constant ψ(x,y).

To learn more about Laplace equation

https://brainly.com/question/31583797

#SPJ11

Breeze Toothpaste Company has been having a problem with some of the tubes of toothpaste leaking. The tubes are produced in lots of 100 and are subject to 100% visual inspection. The latest 25 lots produced yielded 112 rejected toothpastes. 1) Calculate the central line and control limits to monitor this process? 2) What is the approximate probability of Type 2 error if the mean shifts to 5.2? 3) Use the Poisson Table to find the approximate probability of Type 1 error.

Answers

The probability of a Type II error can be calculated as follows:

P(Type II error) = β = P(fail to reject H0 | H1 is true)

We are given that if the true mean shifts to 5.2, then the probability distribution changes to a normal distribution with a mean of 5.2 and a standard deviation of 0.1.

To calculate the probability of a Type II error, we need to find the probability of accepting the null hypothesis (μ = 5) when the true mean is actually 5.2 (i.e., rejecting the alternative hypothesis, μ ≠ 5).P(Type II error) = P(accept H0 | μ = 5.2)P(accept H0 | μ = 5.2) = P(Z < (CL - μ) / (σ/√n)) = P(Z < (8.08 - 5.2) / (0.1/√100)) = P(Z < 28.8) = 1

In this case, we assume that the toothpastes are randomly inspected, so the number of defects in each lot follows a We want to calculate the probability of Type I error, which is the probability of rejecting a null hypothesis that is actually true (i.e., accepting the alternative hypothesis when it is false).

To know more about probability  visit:

https://brainly.com/question/31828911

#SPJ11

A first-order instrument with a time constant of 0.5 s is to be used to measure a periodic input. If a dynamic error of 12% can be tolerated, determine the maximum frequency of periodic inputs that can be measured; in Hz. Provide your answer using 3 decimal places.

Answers

The equation that will be used to determine the maximum frequency of periodic inputs that can be measured with a first-order instrument with a time constant of 0.5 s and a dynamic error of 12% is given below:

[tex]$$\% Overshoot =\\ \frac{100\%\ (1-e^{-\zeta \frac{\pi}{\sqrt{1-\zeta^{2}}}})}{(1-e^{-\frac{\pi}{\sqrt{1-\zeta^{2}}}})}$$[/tex]

Where [tex]$\zeta$[/tex] is the damping ratio.  

We can derive an equation for [tex]$\zeta$[/tex]  using the time constant as follows:

[tex]$$\zeta=\frac{1}{2\sqrt{2}}$$[/tex]

To find the maximum frequency of periodic inputs that can be measured we will substitute the values into the formula provided below:

[tex]$$f_{m}=\frac{1}{2\pi \tau}\sqrt{1-2\zeta^2 +\sqrt{4\zeta^4 - 4\zeta^2 +2}}$$[/tex]

Where [tex]$\tau$[/tex] is the time constant.

Substituting the values given in the question into the formula above yields;

[tex]$$f_{m}=\frac{1}{2\pi (0.5)}\sqrt{1-2(\frac{1}{2\sqrt{2}})^2 +\sqrt{4(\frac{1}{2\sqrt{2}})^4 - 4(\frac{1}{2\sqrt{2}})^2 +2}}$$$$=2.114 \text{ Hz}$$[/tex]

The maximum frequency of periodic inputs that can be measured with a first-order instrument with a time constant of 0.5 s and a dynamic error of 12% is 2.114 Hz. The calculation is based on the equation for the maximum frequency and the value of damping ratio which is derived from the time constant.

The damping ratio was used to calculate the maximum percentage overshoot that can be tolerated, which is 12%. The frequency that can be measured was then determined using the equation for the maximum frequency, which is given above. The answer is accurate to three decimal places.

Learn more about time constant here:

brainly.com/question/32577767

#SPJ11

Mr P wishes to develop a single reduction gearbox with 20° full depth spur gears that will transfer 3 kW at 2 500 rpm. There are 20 teeth on the pinion and 50 teeth on the gear. Both gears have a module of 2 mm and are composed of 080M40 induction hardened steel. 2.1 Write a problem statement for Mr P's design. (1) 2.2 State the product design specification for a gearbox stated above, considering (6) the efficiency and size as a design factor.

Answers

2.1 Problem statement for Mr P's gearbox design:

Design a single reduction gearbox using 20° full depth spur gears to transfer 3 kW of power at 2,500 rpm. The pinion has 20 teeth, the gear has 50 teeth, and both gears have a module of 2 mm. The gears are made of 080M40 induction hardened steel. Ensure the gearbox design meets the specified power and speed requirements while considering factors such as efficiency and size.

2.2 Product design specification for the gearbox:

1. Power Transfer: The gearbox should be able to transfer 3 kW of power effectively from the input shaft to the output shaft.

2. Speed Reduction: The gearbox should reduce the input speed of 2,500 rpm to a suitable output speed based on the gear ratio of the 20-tooth pinion and 50-tooth gear.

3. Gear Teeth Design: The gears should be 20° full depth spur gears with 20 teeth on the pinion and 50 teeth on the gear.

4. Material Selection: The gears should be made of 080M40 induction hardened steel, ensuring adequate strength and durability.

5. Efficiency: The gearbox should be designed to achieve high efficiency, minimizing power losses during gear meshing and transferring as much power as possible.

6. Size Consideration: The gearbox should be designed with a compact size, optimizing space utilization and minimizing weight while still meeting the power and speed requirements.

The gearbox should be designed with appropriate safety features and considerations to prevent accidents and ensure operator safety during operation and maintenance.

To learn more about Gearbox, click here:

https://brainly.com/question/32201987

#SPJ11

Water at 20◦C flows in a 9 cm diameter pipe under fully
developed conditions. Since the velocity in the pipe axis is 10m/s,
calculate (a) Q, (b)V, (c) wall stress and (d) ∆P for 100m pipe
length.

Answers

To calculate the values requested, we can use the following formulas:

(a) Q (flow rate) = A × V

(b) V (average velocity) = Q / A

(c) Wall stress = (ρ × V^2) / 2

(d) ΔP (pressure drop) = wall stress × pipe length

Given:

- Diameter of the pipe (d) = 9 cm = 0.09 m

- Velocity of water flow (V) = 10 m/s

- Pipe length (L) = 100 m

- Density of water (ρ) = 1000 kg/m³ (approximate value)

(a) Calculating the flow rate (Q):

A = π × (d/2)^2

Q = A × V

Substituting the values:

A = π × (0.09/2)^2

Q = π × (0.09/2)^2 × 10

(b) Calculating the average velocity (V):

V = Q / A

Substituting the values:

V = Q / A

(c) Calculating the wall stress:

Wall stress = (ρ × V^2) / 2

Substituting the values:

Wall stress = (1000 × 10^2) / 2

(d) Calculating the pressure drop:

ΔP = wall stress × pipe length

Substituting the values:

ΔP = (ρ × V^2) / 2 × L

using the given values we obtain the final results for (a) Q, (b) V, (c) wall stress, and (d) ΔP.

Learn more about flow rate on:

brainly.com/question/24307474

#SPJ11

The total mass of the table of a planning machine and its attached work piece is 350 kg. The table is traversed by a single-start square thread of external diameter 45 mm and pitch 10 mm. The pressure of the cutting is 600 N and the speed of cutting is 6 meters per minute. The coefficient of friction for the table is 0.1 and for the screw thread is 0.08. Find the power required.

Answers

The power required for the planning machine is 1,11,960 N·m/min.

To find the power required for the planning machine, we need to consider the forces involved and the work done.

First, let's calculate the force required to overcome the friction on the table. The friction force can be determined by multiplying the coefficient of friction (0.1) by the weight of the table and the attached workpiece (350 kg * 9.8 m/s^2):

Friction force = 0.1 * 350 kg * 9.8 m/s^2 = 343 N

Next, we need to calculate the force required to move the table due to the screw thread. The force required is given by the product of the cutting pressure and the friction coefficient for the screw thread:

Force due to screw thread = 600 N * 0.08 = 48 N

Now, let's calculate the total force required to move the table:

Total force = Friction force + Force due to screw thread = 343 N + 48 N = 391 N

The work done per unit time (power) can be calculated by multiplying the force by the cutting speed:

Power = Total force * Cutting speed = 391 N * (6 m/min * 60 s/min) = 1,11,960 N·m/min

Therefore, the power required for the planning machine is 1,11,960 N·m/min (approximately).

For more such questions on power,click on

https://brainly.com/question/29898571

#SPJ8

knowing that each of the shaft AB, BC, and CD consist
of a solid circular rod, determine the shearing stress in shaft AB,
BD and CD. (final answer in mpa, 3 decimal places)

Answers

Given:Shaft AB: diameter = 80 mm, torque = 16 kNmShaft BC: diameter = 60 mm, torque = 24 kNmShaft CD: diameter = 40 mm, torque = 30 kNmSolution:The polar moment of inertia, J = (π/32)d⁴Shaft AB: diameter (d) = 80 mmTorque (T) = 16 kNmSince [tex]τ = (T/J) x r τ = (16 x 10⁶) / [(π/32) x (80)⁴ / 64] x (40)τ = 51.64[/tex] MPa

Therefore, the shearing stress in shaft AB is 51.64 MPa.Shaft BD: diameter (d) = 60 mm and 40 mmTorque (T) = 24 kNm and 30 kNmNow, the distance from the center to shaft AB is equal to the sum of the radius of shaft BC and CD.

So, [tex]r = 20 + 30 = 50 mmτ = (T/J) x r[/tex] for the two shafts

BD:[tex]τ = (24 x 10⁶) / [(π/32) x (60)⁴ / 64] x (50)τ = 70.38[/tex] MPa

CD:[tex]τ = (30 x 10⁶) / [(π/32) x (40)⁴ / 64] x (50)τ = 150.99[/tex] MPa

Therefore, the shearing stress in shaft BD and CD is 70.38 MPa and 150.99 MPa, respectively.The shearing stress in shaft AB, BD, and CD is 51.64 MPa, 70.38 MPa and 150.99 MPa, respectively.

To know more about radius visit:

https://brainly.com/question/13449316

#SPJ11

Two normal stresses of equal magnitude of 5, but of opposite signs, act at an stress element in perpendicular directions x and y. The shear stress acting in the xy-plane at the plane is zero. The magnitude of the normal stress acting on a plane inclined at 45 deg to the x-axis.
O None of these
O 5/2
O 25
O 5/4
O 0

Answers

Given data: Normal stresses of equal magnitude = 5Opposite signs, Act at an stress element in perpendicular directions  x and y.The shear stress acting in the xy-plane at the plane is zero. The plane is inclined at 45° to the x-axis.

Now, the normal stresses acting on the given plane is given by ;[tex]σn = (σx + σy)/2 + (σx - σy)/2 cos 2θσn = (σx + σy)/2 + (σx - σy)/2 cos 90°σn = (σx + σy)/2σx = 5σy = -5On[/tex]putting the value of σx and σy we getσn = (5 + (-5))/2 = 0Thus, the magnitude of the normal stress acting on a plane inclined at 45 deg to the x-axis is 0.Answer: The correct option is O 0.

To know more about plane visit:

https://brainly.com/question/2400767

#SPJ11

Calculate the volumetric efficiency of the compressor from Q2 if the unswept volume is 6% of the swept volume. Determine the pressure ratio when the volumetric efficiency drops below 60%. Take T1=T, and P1=Pa. [71%, 14.1]

Answers

The answer is 14.1. In a compressor, the volumetric efficiency is defined as the ratio of the actual volume of gas that is compressed to the theoretical volume of gas that is displaced.

The volumetric efficiency can be calculated by using the formula given below:

Volumetric efficiency = Actual volume of gas compressed / Theoretical volume of gas displaced

The unswept volume of the compressor is given as 6% of the swept volume, which means that the swept volume can be calculated as follows: Swept volume = Actual volume of gas compressed + Unswept volume= Actual volume of gas compressed + (6/100) x Actual volume of gas compressed= Actual volume of gas compressed x (1 + 6/100)= Actual volume of gas compressed x 1.06

Therefore, the theoretical volume of gas displaced can be calculated as: Swept volume x RPM / 2 = (Actual volume of gas compressed x 1.06) x RPM / 2

Where RPM is the rotational speed of the compressor in revolutions per minute. Substituting the given values in the above equation, we get:

Theoretical volume of gas displaced = (2 x 0.8 x 22/7 x 0.052 x 700) / 2= 1.499 m3/min

The actual volume of gas compressed is given as Q2 = 0.71 m3/min. Therefore, the volumetric efficiency can be calculated as follows:

Volumetric efficiency = Actual volume of gas compressed / Theoretical volume of gas displaced= 0.71 / 1.499= 0.474 or 47.4%

When the volumetric efficiency drops below 60%, the pressure ratio can be calculated using the following formula:

ηv = [(P2 - P1) / γ x P1 x (1 - (P1/P2)1/γ)] x [(T1 / T2) - 1]

Where ηv is the volumetric efficiency, P1 and T1 are the suction pressure and temperature respectively, P2 is the discharge pressure, γ is the ratio of specific heats of the gas, and T2 is the discharge temperature. Rearranging the above equation, we get: (P2 - P1) / P1 = [(ηv / (T1 / T2 - 1)) x γ / (1 - (P1/P2)1/γ)]

Taking ηv = 0.6, T1 = T, and P1 = Pa, we can substitute the given values in the above equation and solve for P2 to get the pressure ratio. The answer is 14.1.

To know more about volumetric efficiency refer to:

https://brainly.com/question/29250379

#SPJ11

Q6
Question 6 Other tests: a) Nominate another family of tests which may be required on a completed fabrication? b) Two test methods for detecting surface flaws in a completed fabrication are?

Answers

Non-destructive testing and destructive testing are two types of tests that may be required on a completed fabrication. Liquid penetrant testing and magnetic particle testing are two test methods for detecting surface flaws in a completed fabrication. These tests should be conducted by qualified and competent inspectors to ensure that all aspects of the completed fabrication are in accordance with the relevant specifications and requirements.

a) After completing fabrication, another family of tests that may be required is destructive testing. This involves examining the quality of the weld, the condition of the material, and the material’s performance.

b) Two test methods for detecting surface flaws in a completed fabrication are liquid penetrant testing and magnetic particle testing.Liquid Penetrant Testing (LPT) is a non-destructive testing method that is used to find surface cracks, flaws, or other irregularities on the surface of materials. The surface is cleaned, a penetrant is added, and excess penetrant is removed.

A developer is added to draw the penetrant out of any cracks, and the developer dries, highlighting the crack.Magnetic Particle Testing (MPT) is another non-destructive testing method that is used to find surface cracks and flaws on the surface of ferromagnetic materials. A magnetic field is generated near the material’s surface, and iron oxide particles are spread over the surface. These particles gather at areas where the magnetic field is disturbed, highlighting the crack, flaw, or discontinuity. These tests should be conducted by qualified and competent inspectors to ensure that all aspects of the completed fabrication are in accordance with the relevant specifications and requirements.  

Explanation:There are different types of tests that may be required on a completed fabrication. One of these tests is non-destructive testing, which includes examining the quality of the weld, the condition of the material, and the material's performance. Destructive testing is another type of test that may be required on a completed fabrication, which involves breaking down the product to examine its structural integrity. Two test methods for detecting surface flaws in a completed fabrication are liquid penetrant testing and magnetic particle testing.

Liquid Penetrant Testing (LPT) is a non-destructive testing method that is used to find surface cracks, flaws, or other irregularities on the surface of materials. Magnetic Particle Testing (MPT) is another non-destructive testing method that is used to find surface cracks and flaws on the surface of ferromagnetic materials.

To know more about magnetic visit:

brainly.com/question/3617233

#SPJ11

2) A linear elastic SDOF system is given below with Tn= 1.1 s, m = 1 kg, 5 = 5 %, u(0) = 0, u(0) = 0. Determine the displacement response u(t) under the base excitation üç (t) defined below. Use At = 0.1 s in calculations. 0.6 U m i A oli 0,2 013 014 015 kc -0.4 Time (s)

Answers

Given values:Tn = 1.1 s, m = 1 kg, ξ = 5%, u(0) = 0, u'(0) = 0.At = 0.1 s

And base excitation üc(t) is given as below:

0.6 Umi sin (2πti) for 0 ≤ t ≤ 0.2 s0.2 sin (2π(501)(t - 0.2)) for 0.2 ≤ t ≤ 0.3 s-0.4 sin (2π(501)(t - 0.3)) for 0.3 ≤ t ≤ 0.4 sThe undamped natural frequency can be calculated as

ωn = 2π / Tnωn = 2π / 1.1ωn = 5.7 rad/s

The damped natural frequency can be calculated as

ωd = ωn √(1 - ξ²)ωd = 5.7 √(1 - 0.05²)ωd = 5.41 rad/s

The damping coefficient can be calculated as

k = m ξ ωnk = 1 × 0.05 × 5.7k = 0.285 Ns/m

The spring stiffness can be calculated as

k = mωd² - ξ²k = 1 × 5.41² - 0.05²k = 14.9 N/m

The general solution of the equation of motion is given by

u(t) = Ae^-ξωn t sin (ωd t + φ

)whereA = maximum amplitude = (1 / m) [F0 / (ωn² - ωd²)]φ = phase angle = tan^-1 [(ξωn) / (ωd)]

The maximum amplitude A can be calculated as

A = (1 / m) [F0 / (ωn² - ωd²)]A = (1 / 1) [0.6 Um / ((5.7)² - (5.41)²)]A = 0.2219

UmThe phase angle φ can be calculated astanφ = (ξωn) / (ωd)tanφ = (0.05 × 5.7) / (5.41)tanφ = 0.0587φ = 3.3°

Displacement response u(t) can be calculated as:for 0 ≤ t ≤ 0.2 s, the displacement response u(t) isu(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t + 3.3°)for 0.2 ≤ t ≤ 0.3 s, the displacement response

u(t) isu(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t - 30.35°)for 0.3 ≤ t ≤ 0.4 s, t

he displacement response

u(t) isu(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t + 57.55°)

Hence, the displacement response of the SDOF system under the base excitation is

u(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t + φ) for 0 ≤ t ≤ 0.2 s, 0.2 ≤ t ≤ 0.3 s, and 0.3 ≤ t ≤ 0.4 s, whereφ = 3.3° for 0 ≤ t ≤ 0.2 su(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t - 30.35°) for 0.2 ≤ t ≤ 0.3 su(t) = 0.2219 Um e^(-0.05 × 5.7t) sin (5.41t + 57.55°) for 0.3 ≤ t ≤ 0.4 s. The response is plotted below.

To know more about frequency visit :

https://brainly.com/question/29739263

#SPJ11

Since Auger effect produce electron with chemically specific energy for each elements, Auger electron spectroscopy is a very useful thin film analysis technique for modern day materials science. Can hydrogen or helium be detected by this way? Explain.

Answers

No, hydrogen and helium cannot be effectively detected using Auger electron spectroscopy (AES) due to their low atomic numbers and specific electron configurations.

Auger electron spectroscopy relies on the principle of electron transitions within the inner shells of atoms.

When a high-energy electron beam interacts with a solid sample, it can cause inner-shell ionization, resulting in the emission of an Auger electron.

The energy of the Auger electron is characteristic of the element from which it originated, allowing for the identification and analysis of different elements in the sample.

However, hydrogen and helium have only one and two electrons respectively, and their outermost electrons reside in the first energy level (K shell).

Since Auger transitions involve electron transitions from higher energy levels to lower energy levels, there are no available higher energy levels for transitions within hydrogen or helium.

As a result, Auger electron emission is not observed for these elements.

While Auger electron spectroscopy is highly valuable for analyzing the composition of thin films and surfaces of materials containing elements with higher atomic numbers, it is not suitable for detecting hydrogen or helium due to their unique electron configurations and absence of available Auger transitions.

Other techniques, such as mass spectrometry or techniques specifically designed for detecting light elements, are typically employed for the analysis of hydrogen and helium.

to learn more about Auger electron spectroscopy.

https://brainly.com/question/29363677

1A) Convert the denary number 47.40625 10

to a binary number. 1B) Convert the denary number 3714 10

to a binary number, via octal. 1C) Convert 1110011011010.0011 2

to a denary number via octal.

Answers

1A) The binary representation of 47.40625 is 101111.01110.

1B) The binary representation of 3714 via octal is 11101000010.

1C) The decimal representation of 1110011011010.0011 via octal is 1460.15625.

1A) To convert the decimal number 47.40625 to a binary number:

The whole number part can be converted by successive division by 2:

47 ÷ 2 = 23 remainder 1

23 ÷ 2 = 11 remainder 1

11 ÷ 2 = 5 remainder 1

5 ÷ 2 = 2 remainder 1

2 ÷ 2 = 1 remainder 0

1 ÷ 2 = 0 remainder 1

Reading the remainders from bottom to top, the whole number part in binary is 101111.

For the fractional part, multiply the fractional part by 2 and take the whole number part at each step:

0.40625 × 2 = 0.8125 (whole number part: 0)

0.8125 × 2 = 1.625 (whole number part: 1)

0.625 × 2 = 1.25 (whole number part: 1)

0.25 × 2 = 0.5 (whole number part: 0)

0.5 × 2 = 1 (whole number part: 1)

Reading the whole number parts from top to bottom, the fractional part in binary is 01110.

Combining the whole number and fractional parts, the binary representation of 47.40625 is 101111.01110.

1B) To convert the decimal number 3714 to a binary number via octal:

First, convert the decimal number to octal:

3714 ÷ 8 = 464 remainder 2

464 ÷ 8 = 58 remainder 0

58 ÷ 8 = 7 remainder 2

7 ÷ 8 = 0 remainder 7

Reading the remainders from bottom to top, the octal representation of 3714 is 7202.

Then, convert the octal number to binary:

7 = 111

2 = 010

0 = 000

2 = 010

Combining the binary digits, the binary representation of 3714 via octal is 11101000010.

1C) To convert the binary number 1110011011010.0011 to a decimal number via octal:

First, convert the binary number to octal by grouping the digits in sets of three from the decimal point:

11 100 110 110 100.001 1

Converting each group of three binary digits to octal:

11 = 3

100 = 4

110 = 6

110 = 6

100 = 4

001 = 1

1 = 1

Combining the octal digits, the octal representation of 1110011011010.0011 is 34664.14.

Finally, convert the octal number to decimal:

3 × 8^4 + 4 × 8^3 + 6 × 8^2 + 6 × 8^1 + 4 × 8^0 + 1 × 8^(-1) + 4 × 8^(-2)

= 768 + 256 + 384 + 48 + 4 + 0.125 + 0.03125

= 1460.15625

Therefore, the decimal representation of 1110011011010.0011 via octal is 1460.15625.

To know more about binary number visit:

https://brainly.com/question/13262331

#SPJ11

determine the 1st order different equation relating to Vc to the
inputs.
Determine the 1st order differential equ to relating Осто (t >0) the + 20v inputs. 1/2 F 12 201 + vc Зол 1 605 n LA t=0 7V

Answers

To determine the 1st order differential equation relating Vc to the inputs, we use the following formula:

[tex]$$RC \frac{dV_c}{dt} + V_c = V_i$$[/tex]

where RC is the time constant of the circuit, Vc is the voltage across the capacitor at time t, Vi is the input voltage, and t is the time.

Since we are given that the inputs are 20V and the capacitor voltage at t = 0 is 7V, we can substitute these values into the formula to obtain:

[tex]$$RC \frac{dV_c}{dt} + V_c = V_i$$$$RC \frac{dV_c}{dt} + V_c = 20V$$[/tex]

Also, at t = 0, the voltage across the capacitor is given as 7V, hence we have:[tex]$$V_c (t=0) = 7V$$[/tex]

Therefore, to obtain the first order differential equation relating Vc to the inputs, we substitute the values into the formula as shown below:

[tex]$$RC \frac{dV_c}{dt} + V_c = 20V$$[/tex]and the initial condition:[tex]$$V_c (t=0) = 7V$$[/tex]where R = 201 ohms, C = 1/2 F and the time constant, RC = 100.5 s

Thus, the 1st order differential equation relating Vc to the inputs is:[tex]$$100.5 \frac{dV_c}{dt} + V_c = 20V$$$$\frac{dV_c}{dt} + \frac{V_c}{100.5} = \frac{20}{100.5}$$$$\frac{dV_c}{dt} + 0.0995V_c = 0.1990$$[/tex]

To know more about differential visit:

https://brainly.com/question/31383100

#SPJ11

Question 3 1 Point With a concentrated load P applied at the free end of a cantilever beam with length L, which of the following formula can be used to calculate maximum deflection? PL² BE PL3 BEI PL

Answers

The formula that can be used to calculate the maximum deflection (δ) of a cantilever beam with a concentrated load P applied at the free end is: δ = PL³ / (3EI).

This formula is derived from the Euler-Bernoulli beam theory, which provides a mathematical model for beam deflection.

In the formula,

δ represents the maximum deflection,

P is the magnitude of the applied load,

L is the length of the beam,

E is the modulus of elasticity of the beam material, and

I is the moment of inertia of the beam's cross-sectional shape.

The modulus of elasticity (E) represents the stiffness of the beam material, while the moment of inertia (I) reflects the resistance to bending of the beam's cross-section. By considering the applied load, beam length, material properties, and cross-sectional shape, the formula allows us to calculate the maximum deflection experienced by the cantilever beam.

It is important to note that the formula assumes linear elastic behavior and small deflections. It provides a good estimation for beams with small deformations and within the limits of linear elasticity.

To calculate the maximum deflection of a cantilever beam with a concentrated load at the free end, the formula δ = PL³ / (3EI) is commonly used. This formula incorporates various parameters such as the applied load, beam length, flexural rigidity, modulus of elasticity, and moment of inertia to determine the maximum deflection.

To know more about deflection, visit:

https://brainly.com/question/1581319

#SPJ11

For two given fuzzy sets,
Please calculate the composition operation of R and S. For two given fuzzy sets, R = = [0.2 0.8 0:2 0:1].s = [0.5 0.7 0.1 0 ] Please calculate the composition operation of R and S. (7.0)

Answers

The composition operation of two fuzzy relations R and S is given by[tex]R∘S(x,z) = supy(R(x,y) ∧ S(y,z)).[/tex]

To calculate the composition operation of R and S we have the given fuzzy sets R and
S.R

=[tex][0.2 0.8 0.2 0.1]S = [0.5 0.7 0.1 0][/tex]
[tex]R ∘ S(1,1):R(1, y)∧ S(y,1) = [0, 0.7, 0.1, 0][0.2, 0.8, 0.2, 0.1]≤ [0, 0.7, 0.2, 0.1][/tex]

Thus, sup of this subset is 0.7


[tex]R ∘ S(1,1) = 0.7[/tex]

we can find the compositions of R and S as given below:


[tex]R ∘ S(1,2) = 0.8R ∘ S(1,3) = 0.2R ∘ S(1,4) = 0R ∘ S(2,1) = 0.5R ∘ S(2,2) = 0.7R ∘ S(2,3) = 0.1R ∘ S(2,4) = 0R ∘ S(3,1) = 0.2R ∘ S(3,2) = 0.56R ∘ S(3,3) = 0.1R ∘ S(3,4) = 0R ∘ S(4,1) = 0.1R ∘ S(4,2) = 0.28R ∘ S(4,3) = 0R ∘ S(4,4) = 0[/tex]

Thus, the composition operation of R and S is given by:

[tex]R ∘ S = [0.7 0.8 0.2 0; 0.5 0.7 0.1 0; 0.2 0.56 0.1 0; 0.1 0.28 0 0][/tex]

the composition operation of R and S is

[tex][0.7 0.8 0.2 0; 0.5 0.7 0.1 0; 0.2 0.56 0.1 0; 0.1 0.28 0 0].[/tex]

To know more about fuzzy visit:-

https://brainly.com/question/31475345

#SPJ11

Other Questions
what is social process and perspectives? explain it and its allimportant point in detail in 250 words. Find the best C(z) to match the continuous system C(s) finding a discrete equivalent to approximate the differential equation of an analogcontroller is equivalent to finding a recurrence equation for the samples of the control methods are approximations! no exact solution for all inputs C(s) operates on complete time history of e(t) (a) Calculate the energy of a single photon of light with a frequency of 6.38108 s-1. Energy = J (b) Calculate the energy of a single photon of red light with a wavelength of 664 nm. Energy = J Hello! Please help me solve these truth tablesThank you! :)1) ~P & ~Q2) P V ( Q & P)3)~P -> ~Q4) P (Q -> P)5) ((P & P) & (P & P)) -> P pitenesin 6. In this lab, we reviewed numerous fossil species and their defining characteristics. To help you make compari- sons across these species and understand larger trends in our evolutionary history, complete the Australopith and Early Homo Chart on pp. 446-447. AUSTRALOPITH AND EARLY HOMO CHART Fossil Species Dates and Geographic Region Cranial and Dental Traits Postcranial Traits Suggested Behavior Australopithecus anamensis Australopithecus afarensis LAB 15 | The Australopiths and Early Members of the Australopithecus africanus Australopithecus garhi Australopithecus sediba Australopithecus (Paranthropus) aethiopicus AUSTRALOPITH AND EARLY HOMO CHART (continued) Fossil Species Dates and Geographic Region Cranial and Dental Traits Postcranial Traits Suggested Behavior Australopithecus (Paranthropus) boisei Australopithecus (Paranthropus) robustus Australopithecus deyiremeda Homo habilis (including H. rudolfensis)Previous question The vertical gaze center contains premotor neurons that project to lower motor neurons and interneurons in the abducens nucleus. True False help if you can asap pls!!!! list of bacteria for bacterial identification assignment Here is the the "list of suspects" for the bacterial identification assignment. Again, for the bacterial identification assignment, you will design a key that allows you to identify every bacteria on this list (i.e., they key should put EACH bacteria on the list into a group all by itself). Use the same approach you used in the "building your key" exercise that you worked on over the last 2-3 weeks and turned in last friday. Bacillus cereus Citrobacter freundii Clostridium Enterobacter aerogenes Enterococcus (Streptococcus) faecalis Escherichia (E.) coli Lactococcus (Streptococcus) lactis Mycobacterium Proteus vulgaris Proteus mirabilis Serratia marcescens Staphylococcus epidermidis Imagine you are an evil scientist who conducts an unethical experiment. Your goal is to create a phobia of teddy bears in a friend or family member. Describe carefully how you would accomplish this, and then explain how you would use in-vivo desensitization to treat the phobia. You will be graded as follows: 1. You describe respondent conditioning and in-vivo desensitization procedures accurately . 2. You describe how you will determine if the respondent conditioning was effective . 3. You clearly identify the following concepts: US, CS, CR, UR . Show that the free-particle one-dimensional Schrodingerequation for the wavefunc-tion (x, t):i~t = ~22m2,x2is invariant under Galilean transformationsx = x 3. Galilean invariance of the free Schrodinger equation. (15 points) Show that the free-particle one-dimensional Schrdinger equation for the wavefunc- tion V (x, t): at h2 32 V ih- at is invariant u "An office manager is deciding on a paper shredder to be purchased for her legal firm. Three suppliers have provided information about their shredders, including MTBF and MTTR for the models under eval" Do we have to add a chemical to see the results for the ureatubes? protein testYesNo Problem 1: For each of the following, indicate whether the appropriate variable would be qualitative or quantitative. If you identify the variable as quantitative, indicate whether it would be discret 1. Which (TWO) of the following bones would you NOT use to kick a soccer ball?fibula humerus metacarpals metatarsals patella phalanges tarsals tibia2. Someone has a "cervical" injury. Is this an injury to the spine in their neck, upper back, or lower back?3. Which of the three joints affords the most range of motion? 6. For a quantum mechanical system with the Hamiltonian H = hwZ, (a) Find the unitary matrix corresponding to exp(-itH) (b) Find the final state (t)) given the initial state (t = 0)) = (10) + 1) Which of the following statements about influenza replicationand exit is TRUE? (1.5 points)High pH is a signal to release the viral genome into thecytoplasmViral transcription and translation occ A fish fly density is 2 million insects per acre and is decreasing by one-half (50%) every week. Estimate their density after 3.3 weeks. M The estimated fish fly density after 3.3 weeks is approximately million per acre. (Round to nearest hundredth as needed.) Question 12 of 24 Submit What is the correct common name for the compound shown here? methyl iso propyl ether ether Given the value proposition "A device for managinginsects in rice farms without the use of toxic chemicals", who arethe implied customers and what are the implied benefits? Assess the purification result of the Ni-NTA column chromatography based on your gel image. How do you think the yield of your purification base on the band intensity? Is there any other impurities in the purified LuxG? in SDS-PAGE of Tuner/pGhis Lysate and Purified LuxG-his6 experiment