Q 19.23: A proton is initially moving at 3.0 x 105 m/s. It moves 3.5 m in the direction of a uniform electric field of magnitude 120 N/C. What is the kinetic energy of the proton at the end of the motion
Answer:
The kinetic energy of the proton at the end of the motion is 1.425 x 10⁻¹⁶ J.
Explanation:
Given;
initial velocity of proton, [tex]v_p_i[/tex] = 3 x 10⁵ m/s
distance moved by the proton, d = 3.5 m
electric field strength, E = 120 N/C
The kinetic energy of the proton at the end of the motion is calculated as follows.
Consider work-energy theorem;
W = ΔK.E
[tex]W =K.E_f - K.E_i[/tex]
where;
K.Ef is the final kinetic energy
W is work done in moving the proton = F x d = (EQ) x d = EQd
[tex]K.E_f =EQd + \frac{1}{2}m_pv_p_i^2[/tex]
[tex]m_p \ is \ mass \ of \ proton = 1.673 \ \times \ 10^{-27} kg \\\\Q \ is \ charge \ of \ proton = 1.6 \times 10^{-19} C[/tex]
[tex]K.E_f = 120\times 1.6 \times 10^{-19} \times 3.5 \ + \ \frac{1}{2}(1.673\times 10^{-27})(3\times 10^5)^2 \\\\[/tex]
[tex]K.E_f = 6.72\times 10^{-17} \ + \ 7.53 \times 10^{-17} \\\\K.E_f = 14.25 \times 10^{-17} J\\\\K.E_f = 1.425\times 10^{-16} \ J[/tex]
Therefore, the kinetic energy of the proton at the end of the motion is 1.425 x 10⁻¹⁶ J.
A river flows with a uniform velocity vr. A person in a motorboat travels 1.22 km upstream, at which time she passes a log floating by. Always with the same engine throttle setting, the boater continues to travel upstream for another 1.45 km, which takes her 69.1 min. She then turns the boat around and returns downstream to her starting point, which she reaches at the same time as the same log does. How much time does the boater spend traveling back downstream
Answer:
t ’= [tex]\frac{1450}{0.6499 + 2 v_r}[/tex], v_r = 1 m/s t ’= 547.19 s
Explanation:
This is a relative velocity exercise in a dimesion, since the river and the boat are going in the same direction.
By the time the boat goes up the river
v_b - v_r = d / t
By the time the boat goes down the river
v_b + v_r = d '/ t'
let's subtract the equations
2 v_r = d ’/ t’ - d / t
d ’/ t’ = 2v_r + d / t
[tex]t' = \frac{d'}{ \frac{d}{t}+ 2 v_r }[/tex]
In the exercise they tell us
d = 1.22 +1.45 = 2.67 km= 2.67 10³ m
d ’= 1.45 km= 1.45 1.³ m
at time t = 69.1 min (60 s / 1min) = 4146 s
the speed of river is v_r
t ’= [tex]\frac{1.45 \ 10^3}{ \frac{ 2670}{4146} \ + 2 \ v_r}[/tex]
t ’= [tex]\frac{1450}{0.6499 + 2 v_r}[/tex]
In order to complete the calculation, we must assume a river speed
v_r = 1 m / s
let's calculate
t ’= [tex]\frac{ 1450}{ 0.6499 + 2 \ 1}[/tex]
t ’= 547.19 s
The surface area of a postage
stamp is 0.00600 m^2, and the air
exerts 1.00 atm of pressure on it.
How much force does it exert on
the stamp?
(Hint: The standard unit for
pressure is Pa.)
(Unit = N)
Answer:
Force = 607.95 Newton
Explanation:
Given the following data;
Area = 0.00600 m^2
Pressure = 1 atm to Pascal = 101325 Pa
To find the force;
Pressure = Force/area
Force = pressure * area
Substituting into the equation, we have;
Force = 101325 * 0.00600
Force = 607.95 Newton.
Therefore, the amount of force exerted by the air on the stamp is 607.95 Newton.
The "problem of perception" is best characterized as?
Answer:
making sense of a 3-d world from 2-d data
Explanation:
A baseball player hits a 0.15 kg 0.15kg0, point, 15, start text, k, g, end text baseball that is initially at rest, changing its momentum by 11 kg ⋅ m s 11 s kg⋅m 11, start fraction, start text, k, g, end text, dot, start text, m, end text, divided by, start text, s, end text, end fraction.
Answer:
73.3m/s
Explanation:
We can find the velocity of the player.
Momentum = mass * velocity
Given
Mass = 0.15kg
Momentum = 11kgm/s
Get the velocity
Velocity = Momentum/Mass
Velocity = 11/0.15
Velocity = 73.3m/s
Hence the velocity of the player is 73.3m/s
A car traveling 85 km/h is 250 m behind a truck
traveling 73 km/h.
Time needed = t = 20.83 s
Further explanationGiven
car speed = 85 km/h
truck speed = 73 km/h
Required
the time it takes for the car to reach the truck
Solution
When the car reaches the truck, the distance between them will be the same
x car - 250 m = x truck
General formula for distance (d) :
d = v.t
So the equation becomes :
85t-250 = 73t
12t=250
t = 20.83 s
Elizabeth has always believed that people's thoughts can help heal them. She wants to help people use positive thinking to positively affect their
illnesses. What type of psychology would be MOST appropriate for Elizabeth to study?
Answer: Family
Explanation:
define stress engineering science
Answer:
Stress, in physical sciences and engineering, force per unit area within materials that arises from externally applied forces, uneven heating, or permanent deformation and that permits an accurate description and prediction of elastic, plastic, and fluid behaviour.
I hope it's helpful!
A friend comments to you that there was a beautiful, thin sliver of a Moon visible in the early morning just before sunrise. Which phase of the Moon would this be, and in what direction would you look to see the Moon (in the southern sky, on the eastern horizon, on the western horizon, high in the sky, etc.)?
Answer: Waning Crescent
Explanation:
Carousel conveyors are used for storage and order picking for small parts. The conveyorsrotate clockwise or counterclockwise, as necessary, to position storage bins at the storageand retrieval point. The conveyors are closely spaced, such that the operators travel timebetween conveyors is negligible. The conveyor rotation time for each item equals 1 minute;the time required for the operator to retrieve an item after the conveyor stops rotatingequals 0.25 minute. How many carousel conveyors can one operator tend without creatingidle time on the part of the conveyors
Answer:
the number of carousel conveyors that an operator can operate without any idle time is 5
Explanation:
Given the data in the question;
first we express the equation for number of carousel conveyors that can be operated by an operator;
n' = [tex]\frac{(a + t)}{( a + b)}[/tex]
where a is the concurrent activity time ( 0.25 minute )
b is the independent operator activity time
t is the independent machine activity time( 1 )
Now independent activity time is zero as the operator is not performing any inspection or packaging tasks.
So time taken for the operator to retrieve the finished item at the end of the process is the concurrent activity and independent machine activity time, the conveyor rotation time of each item
so
we substitute
0.25min for a, 1 for t and 0min for b
n' = [tex]\frac{(0.25min + 1min)}{( 0.25min+ 0 min)}[/tex]
n' = 1.25 min / 0.25
n' - 5
Therefore, the number of carousel conveyors that an operator can operate without any idle time is 5
At what speed, in m/s, would a moving clock lose 1.3ns in 1.0 day according to experimenters on the ground?
Answer:
v=0.14c
Explanation:
A car is sitting still. It accelerates to a constant speed then it decelerates again to zero speed. While the car is accelerating how do the directions of the angular acceleration and angular velocity of one of the wheels compare
Answer:
in the acceleration process the quantity α and w must increase
the deceleration process the alpha quantity must constant a direction opposite to the angular velocity
Explanation:
Acceleration and angular velocity are related to linear
v = w xr
a = αx r
The bold letters indicate vectors and the cross is a vector product, therefore if
we can see that the relationship between linear and angular variables is direct
therefore in the acceleration process the quantity α and w must increase as well as their linear counterparts
in the deceleration process the alpha quantity must constant as the linear acceleration and must have a direction opposite to the angular velocity
Choose the best explanation from among the following:_________.
1. Charge is conserved, and therefore the mass of the object will remain the same.
2. A positive charge increases an object's mass; a negative charge decreases its mass.
3. To give the object a negative charge we must give it more electrons, and this will increase its mass.
Answer: 3. To give the object a negative charge we must give it more electrons, and this will increase its mass.
Explanation:
Suppose we have an object and we negatively charge it.
Then we are "adding" N electrons to the object.
Remember that the mass of an electron is:
m = 9.11*10^(-31) kg
Then if we add N electrons to an object of mass M, the new mass of the object will be:
Mass = M + N*9.11*10^(-31) kg
So we will have an (almost negligible) increase of the mass of the object.
(Something similar can happen if the object is positively charged, where we remove electrons, then the mass of the object decreases)
Then the correct option is:
3. To give the object a negative charge we must give it more electrons, and this will increase its mass.
What is the mass of an object if it is moving at a speed of 10 m/s and has 400 J of kinetic energy?
Answers:
8 kg
Explanation:
Kinetic Energy = (mass × velocity × velocity) ÷ 2
We know that Kinetic Energy = 400 J and velocity = 10 m/s.
KE = (m × v × v) ÷ 2
400 J = (m × 10 m/s × 10 m/s) ÷ 2
400 J = m × 50 m^2/s^2
To find the mass you will divide 400 J and 50 m^2/s^2.
m = 8 kg
You can also check it if it gives you 400 J.
KE = (m × v × v) ÷ 2
KE = (8 kg × 10 m/s × 10 m/s) ÷ 2
KE = 400 J
So this means that the mass is 8 kg. I know that it is a bit confusing, but when you do J (joules) ÷ m^2/s^2 = kg (kilograms). Hope this helps, thank you !!
What genetic test would you get if there was a specific genetic disease in your family
Predictions about the future based on the position of planets is an example of
- physics
- biology
- earth science
- pseudoscience
Answer:
astronomi
Explanation:
sciemce ya ya
Which object exerts the action force?
Which object exerts the reaction force?
In what direction does the action force push?
In what direction does the reaction force push?
For answering this question,let us assume that a person is pushing against the walls,so now:
Which object exerts the action force?
PersonWhich object exerts the reaction force?
WallIn what direction does the action force push?
BackwardIn what direction does the reaction force push?
ForwardThe answer varies from different scenarios.
Answer:
diver, diving board, down, and up.
Explanation:
Which plate is the South American plate?
Answer:
The south American plate
Connective Tissue in a tendon is
Suppose two skiers (A and B) are racing. Assume a frictionless surface! They start from the top of a mountain at the same time, and glide down to the flat area below. Just before the finish line there is a ditch. The skiers can either go down into the ditch or take a flat bridge over the ditch. Both the bridge and the ditch are covered with frictionless snow. Skier A decides to go down into the ditch. Skier B decides to go over the bridge. . Which skier gets to the finish line first, or do they arrive at the same time?
a. Skier A (ditch) arrives first
b. Skier B (bridge) arrives first
c. The skiers arrive at the same time
d. Neither skier arrives at the finish line
Answer:
b. Skier B (bridge) arrives first
Explanation:
This is because, skier B continues along the bring with the same velocity he started with before moving over the bridge and since the bridge is frictionless, he losses no kinetic energy and his speed is constant.
Whereas, skier A losses kinetic energy as he goes into the ditch. This is due to his change in potential energy. He thus emerges from the ditch with lesser kinetic energy than skier B and thus a slower speed.
Therefore, skier B arrives first since he moves at a constant speed.
A plastic rod 1.6 m long is rubbed all over with wool, and acquires a charge of -9e-08 coulombs. We choose the center of the rod to be the origin of our coordinate system, with the x-axis extending to the right, the y-axis extending up, and the z-axis out of the page. In order to calculate the electric field at location A = < 0.7, 0, 0 > m, we divide the rod into 8 pieces, and approximate each piece as a point charge located at the center of the piece.
Solution :
Length of the plastic rod , L = 1.6 m
Total charge on the plastic rod , Q = [tex]$-9 \times 10^{-8}$[/tex] C
The rod is divided into 8 pieces.
a). The length of the 8 pieces is , [tex]$l=\frac{L}{8}$[/tex]
[tex]$=\frac{1.6}{8}$[/tex]
= 0.2 m
b). Location of the center of the piece number 5 is given as : 0 m, -0.09375 m, 0 m.
c). The charge q on the piece number 5 is given as
[tex]$q=\frac{Q}{L}\times l$[/tex]
[tex]$q=\frac{-9 \times 10^{-8}}{1.6}\times0.2$[/tex]
= [tex]$-1.125 \times 10^{-8}$[/tex] C
d). WE approximate that piece 5 as a point charge and we need to find out the field at point A(0.7 m, 0, 0) only due to the charge.
We know, the Coulombs force constant, k = [tex]$8.99 \times 10^9 \ N.m^2/C^2$[/tex]
So the X component of the electric field at the point A is given as
[tex]$E_x = 8.99 \times 10^9 \times 1 \times 10^{-8} \ \cos \frac{187.628}{0.70625}$[/tex]
= -126.15 N/C
The Y component of the electric field at the point A is
[tex]$E_y = 8.99 \times 10^9 \times 1 \times 10^{-8} \ \sin \frac{187.628}{0.70625}$[/tex]
= -16.93 N/C
Now since the rod and the point A is in the x - y plane, the z component of the field at point A due to the piece 5 will be zero.
∴ [tex]$E_z=0$[/tex]
Thus, [tex]$E= <-126.15,-16.93,0>$[/tex]
A runner completes the 200-meter dash with a time of 19.80 seconds. What was the runner's average speed in miles per hour?
Answer:
v = 22.54 mph.
Explanation:
Given that,
Distance moved, d = 200 m
Time, t = 19.8 s
We need to find the runner's average speed.
We know that,
1 mile = 1609.34 m
200 m = 0.124 miles
19.8 seconds = 0.0055 h
So,
Speed = distance/time
[tex]v=\dfrac{0.124}{0.0055}\\\\v=22.54\ mph[/tex]
So, the runner's average speed is 22.54 mph.
According to Coulomb's Law, if the distance between two charged particles is doubled, the electric force will be _________. *
Answer: reduced by 1/4
Explanation:
The force will be reduced by 1/4. Try plugging in 2r, then squaring it. You will get 4r^2, which is essentially dividing the force by 4
One reason why it’s often easy to miss an action-reaction pair is because of the ________ of one of the objects.
Answer:
an action-reaction pair is because one of the objects is often much more massive and appears to remain motionless when a force acts on it. It has so much inertia, or tendency to remain at rest, that it hardly
A student weighing 5.4 × 102 newtons takes 15 seconds to run up a hill. The top of the hill is 10 meters vertically above her starting point. What power does the student develop during her run?
Answer:
P = 360 Watts
Explanation:
Given that,
The weight of a student, [tex]F=5.4\times 10^2\ N[/tex]
It takes 15 seconds to run up a hill.
The top of the hill is 10 meters vertically above her starting point.
We need to find the power develop during her run. We know that te power developed is given by :
[tex]P=\dfrac{W}{t}\\\\P=\dfrac{mgh}{t}\\\\P=\dfrac{5.4\times 10^2\times 10}{15}\\\\P=360\ W[/tex]
So, the power develop during her run is 360 W.
a ball is thrown upward with a beginning speed of 40m/s. The graph below shows how the speed of the ball changes until it reaches its maximum height.
use the graph to find
a) the time when the ball reaches its maximum height
b) the acceleration of the ball
c) the maximum height the ball went
Answer:
a) 4.0816s
b) -9.8 ms^-1
c) 81.63265m
Fred's lightbulb is 45% efficient, and Fran's is 75% efficient. If they both use the same amount of electric energy, which produces more light energy?
Answer:
Frank's 75% efficient light bulb will shine brighter.
Explanation:
The brightness of a bulb is gotten from the power equation;
P = I²R
The more the power rating in watts, the more the brightness.
Now, if they both use the same amount of energy but yet have different efficiency, it means we will just multiply the efficiency by the power.
Thus, 75% efficiency will yield more power than a 45% efficient one.
Therefore, Frank's light bulb will shine brighter.
A simple pendulum of length 5.5 m makes 10.0 complete swings in 25 s what is the acceleration due to gravity at the location of the pendulum ?
Answer:
The acceleration due to gravity at the location of the pendulum is 34.74 m/s².
Explanation:
Given that,
The length of a simple pendulum, l = 5.5 m
It makes 10.0 complete swings in 25 s.
Frequency of pendulum,
[tex]f=\dfrac{10}{25}\\\\f=0.4\ Hz[/tex]
The time period of a simple pendulum is given by :
[tex]T=2\pi \sqrt{\dfrac{l}{g}}[/tex]
Frequency,
[tex]f=\dfrac{1}{T}\\\\f=\dfrac{1}{2\pi \sqrt{\dfrac{l}{g}} }\\\\f=\dfrac{1}{2\pi}\sqrt{\dfrac{g}{l}}[/tex]
g is the acceleration due to gravity at the location where the pendulum is placed. So,
[tex]f^2=\dfrac{g}{4\pi^2l}\\\\g=f^2\times 4\pi^2l\\\\g=0.4^2\times 4\pi^2\times 5.5\\\\g=34.74\ m/s^2[/tex]
So, the acceleration due to gravity at the location of the pendulum is 34.74 m/s².
A bird lands on a bird feeder which is connected to a spring. The mass of the bird is exactly the same as the mass of the bird feeder. How does the added mass affect the period of oscillation of the bird feeder?
Answer:
The added mass will mean a longer period of oscillation.
Explanation:
The period of oscillation here is given by the formula;
T = 2π√(m/k)
Where m is mass and k is spring constant
From the equation of oscillation period above, it's obvious that when we increase the mass, the oscillation period will also increase.
Thus, the added mass will mean a longer period of oscillation.
What is the difference between elastic PE and gravitational PE?