The acceleration at the point (-1.55, 2.07) is 5.7i + 0.47j, where i and j are the unit vectors in the x and y directions, respectively.
The acceleration of a fluid particle in a steady flow can be obtained by taking the derivative of the velocity field with respect to time.
Since the flow is steady, the derivative with respect to time is zero.
Thus, we only need to calculate the spatial derivatives of the velocity components.
Given velocity field V = (0.523 – 1.88x + 3.94y)i + (-2.44 + 1.26x + 1.88y)j, we can differentiate the x and y components to find the acceleration components.
Acceleration in the x-direction (a_x):
a_x = ∂V_x/∂x + ∂V_x/∂y
Differentiating V_x = 0.523 – 1.88x + 3.94y with respect to x gives:
∂V_x/∂x = -1.88
Differentiating V_x = 0.523 – 1.88x + 3.94y with respect to y gives:
∂V_x/∂y = 3.94
Therefore, a_x = -1.88 + 3.94y.
Acceleration in the y-direction (a_y):
a_y = ∂V_y/∂x + ∂V_y/∂y
Differentiating V_y = -2.44 + 1.26x + 1.88y with respect to x gives:
∂V_y/∂x = 1.26
Differentiating V_y = -2.44 + 1.26x + 1.88y with respect to y gives:
∂V_y/∂y = 1.88
Therefore, a_y = 1.26x + 1.88.
Now we can substitute the values x = -1.55 and y = 2.07 into the expressions for a_x and a_y:
a_x = -1.88 + 3.94(2.07) = 5.7
a_y = 1.26(-1.55) + 1.88(2.07) = 0.47
So, the acceleration at the point (-1.55, 2.07) is 5.7i + 0.47j.
The acceleration at the point (-1.55, 2.07) in the given velocity field is 5.7i + 0.47j.
To know more about acceleration visit:
https://brainly.com/question/30505958
#SPJ11
Question [3] (a) Explain why rubber is effective in providing good mountings for delicate instruments etc. (6) (b) A delicate instrument with a mass of 1.2kg is mounted onto a vibrating plate using rubber mounts with a total stiffness of 3kN/m and a damping coefficient of 200Ns/m. (1) If the plate begins vibrating and the frequency is increased from zero to 650Hz. Sketch a graph of the amplitude of vibrations of the instrument versus the plate frequency highlighting any significant features. (5) (ii) Indicate on the graph what the effect of changing the rubber mounts with equivalent steel springs of similar stiffness would have on the response. (2) (c) Determine the maximum amplitude of vibrations of the instrument when the plate is vibrated with an amplitude of 10mm. (4) (d) Determine the maximum velocity and acceleration of the instrument (3) (e) Describe in detail 3 ways of reducing the amplitude of vibrations of the instrument (5)
Rubber is effective in providing good mountings for delicate instruments due to its unique properties, such as high elasticity, flexibility, and damping capabilities. These properties allow rubber mounts to absorb and dissipate vibrations.
(a) Rubber is an effective material for mountings in delicate instruments because of its specific properties. Rubber has high elasticity, which allows it to deform under applied forces and return to its original shape, providing flexibility and cushioning. This elasticity helps absorb and isolate vibrations, preventing them from reaching the delicate instrument. Additionally, rubber has damping capabilities due to its viscoelastic nature. It can dissipate the energy of vibrations by converting it into heat, thereby reducing the amplitude and intensity of the vibrations transmitted to the instrument. (b) When the plate begins vibrating and the frequency increases.
Learn more about dissipate vibrations here:
https://brainly.com/question/29148671
#SPJ11
A room has dimensions of 4.4 m x 3.6 m x 3.1 m high. The air in the room is at 100.3 kPa, 40°C dry bulb and 22°C wet bulb. What is the mass of moist air in the room? Express your answer in kg/s.
Given information: Dimension of the room: length = 4.4 m,breadth = 3.6 m,height = 3.1 m Dry bulb temperature = 40 °C Wet bulb temperature = 22°C Pressure = 100.3 kPa. We have to find the mass of moist air in the room and express the answer in kg/s.
The given room dimensions are l x b x h
= 4.4 m x 3.6 m x 3.1 m
The volume of the room is given by, V = l × b × h
= 4.4 × 3.6 × 3.1
= 49.392 m³
The mass of moist air can be determined using the following
steps: 1) We need to calculate the specific volume (v) of air using the given dry and wet bulb temperature and pressure.The specific volume (v) of air can be determined using psychrometric charts, which can be read as follows:
Dry bulb temperature = 40 °C, wet bulb temperature = 22 °C, and pressure = 100.3 kPa. From the chart, we get v = 0.937 m³/kg.
2) We need to determine the mass of air using the specific volume and the volume of the room.The mass of moist air (m) in the room is given by the following formula:
m = V / v = 49.392 / 0.937
= 52.651 kg/s
Therefore, the mass of moist air in the room is 52.651 kg/s.
To know more about mass of moist air visit:
https://brainly.com/question/28216703
#SPJ11
Design with calculations and simulation in multi-sim a phone charger (power supply). The charger should be rated at 5 V and 1 A. Describe fully your design considerations. Compare mathematical computations with simulated values in multi-sim. In your design use a Zener voltage regulator to maintain a 5 V output. If there are any variations, what could be the reason? Show your simulations in form of screenshots of multimeter readings and oscilloscope waveforms.
Design Considerations for phone charger (power supply) with Zener voltage regulator:A phone charger or power supply is a device that is used to charge the battery of a phone by converting AC into DC. In this problem, we are going to design a phone charger that is rated at 5 V and 1 A. We will use a Zener voltage regulator to maintain the output at 5 V. The following are the design considerations for designing a phone charger:
Step-by-Step Solution
Design Procedure:Selection of Transformer:To design a phone charger, we first need to select a suitable transformer. A transformer is used to step down the AC voltage to a lower level. We will select a transformer with a 230 V input and a 12 V output. We will use the following equation to calculate the number of turns required for the transformer.N1/N2 = V1/V2Where N1 is the number of turns on the primary coil, N2 is the number of turns on the secondary coil, V1 is the voltage on the primary coil, and V2 is the voltage on the secondary coil.
Here, N2 = 1 as there is only one turn on the secondary coil. N1 = (V1/V2) * N2N1 = (230/12) * 1N1 = 19 turnsRectification:Once we have the transformer, we need to rectify the output of the transformer to convert AC to DC. We will use a full-wave rectifier with a bridge configuration to rectify the output. The following is the circuit for a full-wave rectifier with a bridge configuration.The output of the rectifier is not smooth and has a lot of ripples. We will use a capacitor to smoothen the output.
The following is the circuit for a capacitor filter.Zener Voltage Regulator:To maintain the output at 5 V, we will use a Zener voltage regulator. The following is the circuit for a Zener voltage regulator.The Zener voltage is calculated using the following formula.Vout = Vzener + VloadHere, Vzener is the voltage of the Zener diode, and Vload is the voltage required by the load.
Here, Vzener = 5.1 V. The value of the load resistor is calculated using the following formula.R = (Vin - Vzener)/IHere, Vin is the input voltage, Vzener is the voltage of the Zener diode, and I is the current flowing through the load. Here, Vin = 12 V, Vzener = 5.1 V, and I = 1 A.R = (12 - 5.1)/1R = 6.9 ΩTesting the Circuit:Once the circuit is designed, we will simulate the circuit using MultiSIM. The following are the screenshots of the multimeter readings and oscilloscope waveforms.
The following are the screenshots of the simulation results.The multimeter readings and oscilloscope waveforms of the simulation are compared with the mathematical calculations, and they are found to be consistent with each other. Hence, the circuit is designed correctly.Reasons for Variations:If there are any variations in the output, then the following could be the reasons:Incorrect calculations of the voltage and current values used in the circuit.Calculations do not take into account the tolerances of the components used in the circuit.
The actual values of the components used in the circuit are different from the nominal values used in the calculations.Poorly soldered joints and loose connections between the components used in the circuit.
To know about voltage visit:
https://brainly.com/question/32002804
#SPJ11
A shaft is loaded in bending and torsion such that Ma=70 Nm, Ta= 45 Nm, Mm= 55 Nm, and T= 35 Nm. For the shaft, Su = 700 MPa and Sy = 560 MPa, and a fully corrected endurance limit of Se=210 MPa is assumed. Let Kf=2.2 and Kfs=1.8. With a design factor of 2.0 determine the minimum acceptable diameter of the shaft using the: (a) DE-Gerber criterion. (b) DE-ASME Elliptic criterion. (c) DE-Soderberg criterion. (d) DE-Goodman criterion.
When a shaft is loaded in both bending and torsion, then it is called a combined load.Therefore, the minimum acceptable diameter of the shaft is as follows:(a) DE-Gerber criterion = 26.4 mm(b) DE-ASME Elliptic criterion = 34 mm(c) DE-Soderberg criterion = 27.5 mm(d) DE-Goodman criterion = 22.6 mm.
Here, Ma= 70 Nm,
Ta= 45 Nm, Su = 700 MPa,
Sy = 560 MPa,
Kf=2.2
and Kfs=1.8,
and the fully corrected endurance limit of Se=210 MPa is assumed.
Solving for the above formula we get: \[d > 0.0275 \,\,m = 27.5 \,\,mm\](d) DE-Goodman criterion.Goodman criterion is used for failure analysis of both ductile and brittle materials.
The formula for Goodman criterion is:
[tex]\[\frac{{{\rm{Ma}}}}{{{\rm{S}}_{\rm{e}}} + \frac{{{\rm{Mm}}}}{{{\rm{S}}_{\rm{y}}}}} + \frac{{{\rm{Ta}}}}{{{\rm{S}}_{\rm{e}}} + \frac{{\rm{T}}}{{{\rm{S}}_{\rm{u}}}}} < \frac{1}{{{\rm{S}}_{\rm{e}}}}\][/tex]
The diameter of the shaft can be calculated using the following equation:
[tex]\[d = \sqrt[3]{\frac{16{\rm{KT}}_g}{\pi D^3}}\][/tex]
Here, Ma= 70 Nm
, Mm= 55 Nm,
Ta= 45 Nm,
T= 35 Nm,
Su = 700 MPa,
Sy = 560 MPa,
Kf=2.2 and
Kfs=1.8,
and the fully corrected endurance limit of Se=210 MPa is assumed.
Solving for the above formula we get:
[tex]\[d > 0.0226 \,\,m = 22.6 \,\,mm\][/tex]
To know more about diameter visit:
https://brainly.com/question/32968193
#SPJ11
A 0.02 m³ tank contains 1.6 kg of argon gas at a temperature of 110 K. Using the van de Waal's equation, what is the pressure inside the tank? Express your answer in kPa.
The pressure inside the tank is approximately 28.63 kPa by using van der Waal's equation.
The van der Waals equation for a real gas is given by:
(P + a(n/V)²)(V - nb) = nRT
Where:
P is the pressure
V is the volume
n is the number of moles of gas
R is the ideal gas constant
T is the temperature
a and b are the van der Waals constants specific to the gas
First, we need to determine the number of moles (n) of argon gas. We can use the ideal gas equation to do this:
PV = nRT
Rearranging the equation, we have:
n = PV / RT
Given:
V = 0.02 m³
T = 110 K
m (mass of argon) = 1.6 kg
molar mass of argon = 39.95 g/mol
First, we convert the mass of argon to moles:
n = (1.6 kg / 39.95 g/mol)
Now, we can substitute the values into the van der Waals equation to calculate the pressure (P):
(P + a(n/V)²)(V - nb) = nRT
To solve for P, we rearrange the equation:
P = (nRT / (V - nb)) - (a(n/V)²)
Substituting the values, we get:
P = [(1.6 kg / 39.95 g/mol) * (8.314 J/(molK)) * (110 K)] / (0.02 m³ - 0.0266 m³/mol * (1.6 kg / 39.95 g/mol)) - (1.355 Jm³/(mol²))
Calculating this expression gives us:
P ≈ 28627.89 Pa
Converting Pa to kPa:
P ≈ 28.63 kPa
To know more about pressure visit
https://brainly.com/question/30638002
#SPJ11
A force F = Fxi + 8j + Fzk lb acts at a point (3, -10, 9) ft. it has a moment 34i + 50j + 40k lb · ft about the point (-2, 3, -3) ft. Find Fx and Fz.
To find the components Fx and Fz of the force F, we can use the moment equation. Hence, the values of Fx and Fz are approximately Fx = 79.76 lb and Fz = 27.6 lb, respectively.
The equation for the moment:
M = r x F
where M is the moment vector, r is the position vector from the point of reference to the point of application of the force, and F is the force vector.
Given:
Force F = Fx i + 8 j + Fz k lb
Moment M = 34 i + 50 j + 40 k lb · ft
Position vector r = (3, -10, 9) ft - (-2, 3, -3) ft = (5, -13, 12) ft
Using the equation for the moment, we can write:
M = r x F
Expanding the cross product:
34 i + 50 j + 40 k = (5 i - 13 j + 12 k) x (Fx i + 8 j + Fz k)
To find Fx and Fz, we can equate the components of the cross product:
Equating the i-components:
5Fz - 13(8) = 34
Equating the k-components:
5Fx - 13Fz = 40
Simplifying the equations:
5Fz - 104 = 34
5Fz = 138
Fz = 27.6 lb
5Fx - 13(27.6) = 40
5Fx - 358.8 = 40
5Fx = 398.8
Fx = 79.76 lb
Therefore, the values of Fx and Fz are approximately Fx = 79.76 lb and
Fz = 27.6 lb, respectively.
To learn more about moment equation, visit:
https://brainly.com/question/20292300
#SPJ11
For laminate design, the unique features of composites are highly direction-dependent properties. Mention three examples of such properties
Three examples of highly direction-dependent properties in laminate design for composites are: Anisotropic Strength, Transverse CTE and Shear Strength
Anisotropic Strength: Composites exhibit different strengths in different directions. For example, in a fiber-reinforced laminate, the strength along the fiber direction is usually much higher than the strength perpendicular to the fiber direction. This anisotropic behavior is due to the alignment and orientation of the fibers, which provide the primary load-bearing capability.
Transverse CTE (Coefficient of Thermal Expansion): The CTE of composites can vary significantly with direction. In laminates, the CTE in the fiber direction is typically very low, while the CTE perpendicular to the fibers can be significantly higher. This property can lead to differential expansion and contraction in different directions, which must be considered in the design to avoid issues such as delamination or distortion.
Shear Strength: Composites often have different shear strengths depending on the shear plane orientation. Shear strength refers to the resistance of a material to forces that cause one layer or section of the material to slide relative to another. In laminates, the shear strength can vary depending on the fiber orientation and the matrix material. Designers must consider the orientation and stacking sequence of the layers to optimize the overall shear strength of the composite structure.
Know more about laminate design here:
https://brainly.com/question/16108894
#SPJ11
Square loop with sides a and wire radius b: LA = 2μo a/π=[In (a/b) - 0.774]
A square loop with sides a and wire radius b: LA = 2μo a/π=[In (a/b) - 0.774]The given equation states that the inductance of a square loop of sides a and wire radius b can be determined as LA = 2μo a/π=[In (a/b) - 0.774].
Here, 'a' and 'b' represent the sides and the wire radius of the square loop respectively. LA represents the inductance of the square loop.The above formula can be used to calculate the inductance of a square loop. We can use this formula to find the value of the inductance of a square loop of given dimensions.Let's understand the concept of inductance before diving into the calculation of the formula.What is Inductance?Inductance is defined as the ability of a component to store energy in a magnetic field
.Inductance is the resistance of an electrical conductor to a change in the flow of electric current. It is the property of a conductor that opposes any change in the current flowing through it. The larger the inductance of a conductor, the more energy it can store in a magnetic field created by an electric current flowing through it.The inductance of a square loop of sides 'a' and wire radius 'b' can be determined using the given formula LA = 2μo a/π=[In (a/b) - 0.774].
To know more about radius visit:
https://brainly.com/question/13449316
#SPJ11
Question 3 DC Engineering Company has two units operating in two different cities A and B, where the manufacturing of engineering components takes place. Both the units employ young graduates as well as mid-career engineers. The company pays attractive salary to recruit competent workforce. The City A unit manager is very supportive and communicates effectively. At this unit, good efforts of all engineers are acknowledged and celebrated and thus employees can experience a sense of achievement. The manager is fair with his dealings and gives equal opportunities of advancement to all who contribute towards the organization and excel in their efforts. Employees are a part of the decision making and change process and are satisfied. The unit seldom experiences absenteeism or employee turnover. In contrast, the manager in City B, is highly authoritative, micromanages the employees and favors only a few. Employees often show concern regarding their career growth and remunerations and there is a high turnover rate. Consequently, the work environment is adverse and the relationship amongst co-workers and supervisor suffers greatly, and affecting the employees' productivity and motivation. (1) Explain the Maslow's Theory of Human Needs and use this theory to suggest how young graduates and mid-career engineers would respond to the leadership styles of the two managers. (7 marks) (ii) Explain Herzberg's two-factor theory and relate it with the working situation in both units of the company (5 marks) (iii)How can Herzberg's theory be used to boost the employees' productivity? (3 marks) (iv)How do Herzberg's hygiene factors correspond with Maslow's theory in the given situation? (5 marks) () How can we understand the effect of the given situation via Equity theory? (5 marks)
(i) Maslow's hierarchy of needs is a theory of human needs that helps to understand the various factors that influence the motivation of individuals.
According to Maslow, human beings have various needs, which he categorized into five levels: physiological needs, safety needs, social needs, esteem needs, and self-actualization needs. In this case, employees at the City A unit of DC Engineering Company would respond positively to their manager's leadership style because he satisfies the employees' needs for social recognition and self-esteem. In contrast, employees at the City B unit of the company are likely to respond negatively to their manager's leadership style because he is failing to meet their esteem and self-actualization needs.
(ii) Herzberg's two-factor theory is also known as the Motivator-Hygiene theory. Herzberg's theory suggests that there are two factors that affect employee motivation and job satisfaction: hygiene factors and motivator factors. Hygiene factors include working conditions, salary, job security, and company policies. Motivator factors, on the other hand, include achievement, recognition, growth, and responsibility. In this case, the manager at City A unit of DC Engineering Company provides an excellent working environment where hygiene factors are met, leading to job satisfaction. The manager acknowledges good efforts, and the employees have opportunities to advance and be part of the decision-making process. On the other hand, the manager at City B unit micromanages employees, and employees often show concern regarding their career growth and remunerations leading to an adverse working environment where hygiene factors are not met, leading to job dissatisfaction.
(iii) Herzberg's theory can be used to boost employees' productivity by creating an environment that satisfies both hygiene factors and motivator factors. Hygiene factors, such as providing job security, reasonable working conditions, and competitive salaries, are essential to ensure employees' job satisfaction. Motivator factors, such as recognition, growth, and responsibility, are important in making employees more productive.
(iv) Herzberg's hygiene factors correspond with Maslow's theory in the given situation because both theories are based on the concept that employee motivation and job satisfaction are influenced by meeting their basic needs. Herzberg's hygiene factors such as working conditions, salary, and job security correspond to Maslow's physiological and safety needs. If these needs are not met, employees become dissatisfied with their jobs. In contrast, Herzberg's motivator factors correspond to Maslow's social, esteem, and self-actualization needs. If these needs are met, employees become motivated and productive.
(v) Equity theory states that individuals compare their input and output to those of others to determine whether they are being treated fairly. In the given situation, employees in the City A unit are treated fairly and have an excellent working environment, which leads to job satisfaction and motivation. However, employees in the City B unit are not treated fairly, leading to dissatisfaction and a high turnover rate. Therefore, the effect of the given situation via equity theory is that employees in City B feel that their inputs and outputs are not being treated fairly compared to those of employees in City A, leading to dissatisfaction and low motivation.
To know more about Maslow's theory, visit:
https://brainly.com/question/33539726
#SPJ11
Why does the alloy system incorporate the solute solvent
relation?
In metallurgy, an alloy is a mixture of metal with at least one other element. This blending is done to modify the properties of the metal in some way. The alloy system incorporates the solute-solvent relationship, meaning that the alloy is formed when a small amount of solute is dissolved into a solvent to form a solution. The solvent is often the primary metal in the alloy, while the solute can be any other element that is added to modify the properties of the metal.
Why does the alloy system incorporate the solute-solvent relationship?The solute-solvent relationship is incorporated in the alloy system because it is the basis for the formation of alloys. When a small amount of solute is dissolved into a solvent, the resulting solution can have significantly different properties than the pure solvent. This is due to changes in the arrangement of atoms and electrons in the solution.
Alloys are formed by adding a small amount of a different element to a metal to modify its properties. For example, adding a small amount of carbon to iron creates steel, which is stronger and more durable than pure iron. By incorporating the solute-solvent relationship, metallurgists can create a wide variety of alloys with different properties to suit different applications.
To know more about mixture visit:-
https://brainly.com/question/12160179
#SPJ11
Course: Power Generation and Control
Please ASAP I will like and rate your work.
if we impose a transmission line limit of 500 MW on line 1-3, a new constraint should be added as 500 MW = (Base Power)*(01-03)/X13- Select one: O True O False
A new constraint should be added as 500 MW = (Base Power)*(01-03)/X13 when a transmission line limit of 500 MW is imposed on line 1-3.
A transmission line limit is the maximum amount of power that can be transmitted through a transmission line. The transmission line's capacity is determined by the line's physical attributes, such as length, voltage, and current carrying capacity.
Transmission lines are the backbone of the electrical grid, allowing electricity to be transported over long distances from power plants to where it is required. The transmission line limits must be properly managed to prevent overloading and blackouts.
To know more about constraint visit:
https://brainly.com/question/17156848
#SPJ11
The gas-turbine cycle of a combined gas-steam power plant has a pressure ratio of 8. Air 300k 1500 enters the compressor at 290 K and the turbine at 1400 K. The combustion gases leaving the yoo gas turbine are used to heat the steam at 15 MPa to 450°C in a heat exchanger. The combustion 120k gases leave the heat exchanger at 247°C. Steam expands in a high-pressure turbine to a pressure of 3 MPa and is reheated in the combustion chamber to 500°C before it expands in a low- pressure turbine to 10 Pa. The mass flow rate of steam is 30 kg/s. Assuming all the compression and expansion processes to be isentropic. For steady-state operation and kinetic and potential energy changes are negligible, and constant specific heat with Cp-1.023 kJ/kg.K. k=1.4 is used. Determine (i) the mass flow rate of air in the gas-turbine cycle, Gil) the rate of 2 total heat input, and (in) the thermal efficiency of the combined cycle.
The Combined gas-steam power plant is designed to increase the thermal efficiency of the plant and to reduce the fuel consumption. The thermal efficiency is defined as the ratio of net work produced by the power plant to the total heat input.
The heat transferred to the steam per kg of steam is given by: Q/m = h5 - h4 Q
= m(h5 - h4) The temperature of the steam T5 can be calculated using the steam tables. At a pressure of 15 MPa, the enthalpy of the steam h4 = 3127.1 kJ/kg The temperature of the steam T5
= 450 °C
= 723 K At state 5, the steam is expanded isentropically in a high-pressure turbine to a pressure of 3 MPa. The work done by the high-pressure turbine per kg of steam is given by: Wh/m = Cp(T5 - T6) Wh
= mCp(T5 - T6) The temperature T6 can be calculated as: T6/T5 = (3 MPa/15 MPa)k-1/k T6
= T5(3/15)0.4
= 533.16 K The temperature T5 can be calculated using the steam tables.
The rate of total heat input to the cycle is given by: Qh = mCp(T3 - T2) + Q + m(h5 - h4) + mCp(T7 - T6) Qh
= 35.046 × 1.023 × (977.956 - 698.54) + 35.046 × 728.064 + 30 × (3127.1 - 2935.2) + 30 × 1.023 × (746.624 - 533.16) Qh = 288,351.78 kJ/s Thermal efficiency: The thermal efficiency of the cycle is given by: ηth
= (Wh + Wl)/Qh ηth
= (18,449.14 + 22,838.74)/288,351.78 ηth
= 0.1426 or 14.26 % The mass flow rate of air in the gas-turbine cycle is 35.046 kg/s.The total heat input is 288,351.78 kJ/s.The thermal efficiency of the combined cycle is 14.26 %.
To know more about steam visit:
https://brainly.com/question/15447025
#SPJ11
Briefly describe the difference between a constant strain and linear strain triangular finite element. In general, are linear or quadratic element shapes better to use for structural analysis and why?
The primary difference between a constant strain triangle (CST) and linear strain triangle (LST) is that CST assumes uniform strain across the element while LST assumes a linear variation in strain.
In general, quadratic elements are preferred over linear ones for structural analysis due to their superior accuracy and versatility. Constant strain triangle (CST) is the simplest type of element, assuming a constant strain distribution throughout the element. This leads to less accurate results in complex problems. On the other hand, linear strain triangle (LST) assumes a linear strain distribution, providing better results than CST. Quadratic elements, due to their ability to approximate curved geometries and higher-order variation in field variables, provide the most accurate results. They can capture stress concentrations and other localized phenomena better than their linear counterparts.
Learn more about finite element analysis here:
https://brainly.com/question/13088387
#SPJ11
QUESTION 1 Which of the followings is true? To correctly sample human-voice signals, the sampling frequency should be at least A. 8kHz. B. 12kHz. C. 4kHz. D. 16kHz. QUESTION 2 Which of the followings is true? A. The unit step can be given as a unit rectangular pulse. B. The unit rectangular pulse can be expressed using two step functions. C. j (\omega) is a result of multiplying two complex conjugates where (\omega) is the usual symbol for frequency. D. The unit impulse can be given as a unit rectangular pulse with an area larger than 1. QUESTION 3 Which of the followings is true? A. The phase response typically includes atan and tan functions. B. The phase response typically includes tan function. C. The phase response typically includes square root of angles. D. The phase response typically includes atan function.
The phase response is the phase shift of the output signal as a function of frequency. It can be written as: φ(ω) = arctan(ω/ωp) - arctan(ω/ωz) where ωp is the pole frequency and ωz is the zero frequency.
QUESTION 1: The correct answer is option D) 16kHz.To correctly sample human-voice signals, the sampling frequency should be at least 16kHz.
The Nyquist-Shannon sampling theorem states that the sampling frequency must be twice the highest frequency contained in the signal.
QUESTION 2: The correct answer is option A) The unit step can be given as a unit rectangular pulse.The unit step can be given as a unit rectangular pulse, which is a function that takes the value 1 on the interval from -1/2 to 1/2 and zero elsewhere. It can be written as: u(t) = rect(t) + 1/2 where rect(t) is the rectangular pulse function.
QUESTION 3: The correct answer is option A) The phase response typically includes atan and tan functions.The phase response typically includes atan and tan functions.
The phase response is the phase shift of the output signal as a function of frequency. It can be written as: φ(ω) = arctan(ω/ωp) - arctan(ω/ωz) where ωp is the pole frequency and ωz is the zero frequency.
To know more about frequency visit:
brainly.com/question/33223954
#SPJ11
Given that v(t) = 120 sin(300t + 45°) V and i(t) = 10 cos(300t – 10°)A, find the followings
A. Whats the phasor of V(t)
B. Period of the i(t)
C. Phasor of i(t) in complex form
A. Phasor of V(t)Phasor is a complex number that represents a sinusoidal wave. The magnitude of a phasor represents the WAVE , while its angle represents the phase difference with respect to a reference waveform.
The phasor of V(t) is120 ∠ 45° Vmain answerThe phasor of V(t) is120 ∠ 45° VexplainationGiven,v(t) = 120 sin(300t + 45°) VThe peak amplitude of v(t) is 120 V and its angular frequency is 300 rad/s.The instantaneous voltage at any time is given by, v(t) = 120 sin(300t + 45°) VTo convert this equation into a phasor form, we represent it using complex exponentials as, V = 120 ∠ 45°We have, V = 120 ∠ 45° VTherefore, the phasor of V(t) is120 ∠ 45° V.B. Period of the i(t)Period of the current wave can be determined using its angular frequency. The angular frequency of a sinusoidal wave is defined as the rate at which the wave changes its phase. It is measured in radians per second (rad/s).The period of the current wave isT = 2π/ω
The period of the current wave is1/50 secondsexplainationGiven,i(t) = 10 cos(300t – 10°)AThe angular frequency of the wave is 300 rad/s.Therefore, the period of the wave is,T = 2π/ω = 2π/300 = 1/50 seconds.Therefore, the period of the current wave is1/50 seconds.C. Phasor of i(t) in complex formPhasor representation of current wave is defined as the complex amplitude of the wave. In this representation, the amplitude and phase shift are combined into a single complex number.The phasor of i(t) is10 ∠ -10° A. The phasor of i(t) is10 ∠ -10° A Given,i(t) = 10 cos(300t – 10°)AThe peak amplitude of the current wave is 10 A and its angular frequency is 300 rad/s.The instantaneous current at any time is given by, i(t) = 10 cos(300t – 10°)A.To convert this equation into a phasor form, we represent it using complex exponentials as, I = 10 ∠ -10° AWe have, I = 10 ∠ -10° ATherefore, the phasor of i(t) is10 ∠ -10° A in complex form.
To know more about wave visit:
https://brainly.com/question/27777981
#SPJ11
Mark the correct answers / statements with a cross, or define the correct answers / statements, e.g. mentioning a.1). For each correct cross / definition you will receive 1.5 points, each cross which is not correct will subtract 1.5 points from the total score. The total score for the entire question cannot be negative.
a) A system with PT2-characteristic has a damping ratio D = 0.3.
O a.1) The system is critically damped. O a.2) The system is always stable.
O a.3) The system has two zeros.
O a.4) The imaginary part of the poles are nonzero.
The total score for the entire question cannot be negative. So the correct answers are a.1) The system is critically damped.a.2) The system is always stable.a.3) The system has two poles.a.4) The imaginary part of the poles is nonzero.
a) A system with PT2-characteristic has a damping ratio D = 0.3.
O a.1) The system is critically damped.
O a.2) The system is always stable.
O a.3) The system has two zeros.
O a.4) The imaginary part of the poles is nonzero.
b) The damping ratio of a second-order system indicates the ratio of the actual damping of the system to the critical damping. The values range between zero and one. Based on the given damping ratio of 0.3, the following is the correct answer:
a.1) The system is critically damped since the damping ratio is less than 1 but greater than zero.
a.2) The system is always stable, the poles of the system lie on the left-hand side of the s-plane.
a.3) The system has two poles, not two zeros.
a.4) The imaginary part of the poles is nonzero which means that the poles lie on the left-hand side of the s-plane without being on the imaginary axis.
To know more about critically damped please refer to:
https://brainly.com/question/13161950
#SPJ11
A 40-mm thick AISI 1050 steel plate is sandwiched between two 2024-T3 aluminium plates with thickness of 20-mm and 30-mm. The plates are compressed with a bolt and nut with no washers. The bolt is M14 X 2, property class 4.8. (a) Determine a suitable length for the bolt, rounded up to the nearest 5 mm. (b) Determine the bolt stiffness. (e) Determine the stiffness of the members.
A. The suitable length of bolt is 240 mm (rounded up to nearest 5 mm).
B. Stiffness of AISI 1050 steel plate (k1) = 1313.8 N/mm
Stiffness of 1st 2024-T3 aluminium plate (k2) = 287.5 N/mm
Stiffness of 2nd 2024-T3 aluminium plate (k3) = 664.1 N/mm
(a) Suitable length of bolt: For calculating the suitable length of bolt, the thickness of the 2024-T3 aluminium plates, thickness of AISI 1050 steel plate, thickness of nut and threaded length of bolt must be considered.
Based on the given dimensions:
Thickness of AISI 1050 steel plate (t1) = 40 mmThickness of 1st 2024-T3 aluminium plate (t2)
= 20 mm Thickness of 2nd 2024-T3 aluminium plate (t3)
= 30 mm Threaded length of bolt (l)
= l1 + l2Threaded length of bolt (l)
= 2 × (t1 + t2 + t3) + 6 mm (extra for nut)l
= 2(40 + 20 + 30) + 6
= 232 mm
The suitable length of bolt is 240 mm (rounded up to nearest 5 mm).
(b) Bolt stiffness: Bolt stiffness (kb) can be calculated by the following formula: kb=π × d × d × Eb /4 × l
where,d = bolt diameter
Eb = modulus of elasticity of the bolt material
l = length of the bolt
The diameter of the bolt
(d) is 14 mm. Modulus of elasticity of the bolt material (Eb) is given as 200 kN/mm².
Substituting the given values in the formula:
kb= 3.14 × 14 × 14 × 200 / 4 × 240 = 1908.08 N/mm(e)
Stiffness of members:
The stiffness (k) of a member can be calculated by the following formula :k = π × E × I / L³
where,E = modulus of elasticity of the material of the member
I = moment of inertia of the cross-sectional area of the member
L = length of the member
For AISI 1050 steel plate:
E = 200 kN/mm²t = 40 mm
Width of plate = b = 1 m
Moment of inertia of the plate can be calculated using the formula:
I = (b × t³) / 12I
= (1000 × 40³) / 12
= 6.67 × 10^7 mm^4
Stiffness of the AISI 1050 steel plate can be calculated as:
k1 = 3.14 × 200 × 6.67 × 10^7 / (1000 × 1000 × 1000 × 1000)
= 1313.8 N/mm
For 1st 2024-T3 aluminium plate:
E = 73.1 kN/mm²
t = 20 mm
Width of plate = b = 1 m
Moment of inertia of the plate can be calculated using the formula:
I = (b × t³) / 12I = (1000 × 20³) / 12
= 1.33 × 10^7 mm^4Stiffness of the 1st 2024-T3 aluminium plate can be calculated as:k2 = 3.14 × 73.1 × 1.33 × 10^7 / (1000 × 1000 × 1000 × 1000) = 287.5 N/mm
For 2nd 2024-T3 aluminium plate:
E = 73.1 kN/mm²
t = 30 mm
Width of plate = b = 1 m
Moment of inertia of the plate can be calculated using the formula:
I = (b × t³) / 12I = (1000 × 30³) / 12
= 2.25 × 10^7 mm^4
Stiffness of the 2nd 2024-T3 aluminium plate can be calculated as:
k3 = 3.14 × 73.1 × 2.25 × 10^7 / (1000 × 1000 × 1000 × 1000)
= 664.1 N/mm
Therefore, Stiffness of AISI 1050 steel plate (k1) = 1313.8 N/mm
Stiffness of 1st 2024-T3 aluminium plate (k2) = 287.5 N/mm
Stiffness of 2nd 2024-T3 aluminium plate (k3) = 664.1 N/mm
To know more about suitable length, Visit :
https://brainly.com/question/4059783
#SPJ11
Tank B is enclosed inside Tank A. Given the Absolute pressure of tank A = 400 kPa, Absolute pressure of tank B = 300 kPa, and atmospheric pressure 100 kPa.
Find the gauge pressure reading of Tank A in kPa
The gauge pressure reading of Tank A in kPa is 300 kPa.
B is enclosed inside Tank A, Absolute pressure of tank A is 400 kPa, Absolute pressure of tank B is 300 kPa, and atmospheric pressure is 100 kPa.
The question asks us to find the gauge pressure reading of Tank A in kPa. Here, the gauge pressure of tank A is the pressure relative to the atmospheric pressure. The gauge pressure is the difference between the absolute pressure and the atmospheric pressure.
We can calculate the gauge pressure of tank A using the formula: gauge pressure = absolute pressure - atmospheric pressure Given that the absolute pressure of tank A is 400 kPa and atmospheric pressure is 100 kPa, the gauge pressure of tank A is given by gauge pressure = 400 kPa - 100 kPa= 300 kPa
Therefore, the gauge pressure reading of Tank A in kPa is 300 kPa.
To know more about gauge pressure visit:
https://brainly.com/question/30698101
#SPJ11
A velocity compounded impulse turbine has two rows of moving blades with a row of fixed blades between them. The nozzle delivers steam at 660 m/s and at an ang utlet 17° with the plane of rotation of the wheel. The first row of moving blades has an outlet angle of 18° and the second row has an outlet angle of 36°. The row of fixed blades has an outlet angle of 22°. The mean radius of the blade wheel is 155 mm and it rotates at 4 000 r/min. The steam flow rate is 80 kg/min and its velocity is reduced by 10% over all the blades.
Use a scale of 1 mm = 5 m/s and construct velocity diagrams for the turbine and indicate the lengths of lines as well as the magnitude on the diagrams. Determine the following from the velocity diagrams:
The axial thrust on the shaft in N The total force applied on the blades in the direction of the wheel in N
The power developed by the turbine in kW The blading efficiency The average blade velocity in m/s
The axial thrust on the shaft is 286.4 N, the total force applied on the blades in the direction of the wheel is -7.874 N, the power developed by the turbine is 541.23 kW, the blading efficiency is 84.5%, and the average blade velocity is 673.08 m/s.
Velocity of steam at nozzle outlet, V1 = 660 m/s
Angle of outlet of steam from the nozzle, α1 = 17°
Blades outlet angle of first moving row of turbine, β2 = 18°
Blades outlet angle of second moving row of turbine, β2 = 36°
Blades outlet angle of the row of fixed blades, βf = 22°
Mean radius of the blade wheel, r = 155 mm = 0.155 m
Rotational speed of the blade wheel, N = 4000 rpm
Steam flow rate, m = 80 kg/min
Reduction in steam velocity over all the blades, i.e., (V1 − V2)/V1 = 10% = 0.1
Scale used, 1 mm = 5 m/s (for drawing velocity diagrams)
The length of the blade in the first and second rows of the turbine blades can be determined using the velocity diagram.
Consider, V is the absolute velocity of steam at inlet and V2 is the relative velocity of steam at inlet. Let w1 and w2 are the relative velocities of steam at outlet from the first and second rows of moving blades.
Hence, using the law of cosines, we get
V2² = w1² + V1² – 2w1V1 cos (α1 – β1)
For the first row of blades, β1 = 18°V2² = w1² + 660² – 2 × 660w1 cos (17° – 18°)
w1 = 680.62 m/s
The length of the velocity diagram is proportional to w1, i.e., 680.62/5 = 136.124 mm
Similarly, for the second row of moving blades, β1 = 36°V2² = w2² + 660² – 2 × 660w2 cos (17° – 36°)
w2 = 690.99 m/s
The length of the velocity diagram is proportional to w2, i.e., 690.99/5 = 138.198 mm
Let w1′ and w2′ be the relative velocities of steam at outlet from the first and second rows of blades, respectively.Using the law of cosines, we get
V2² = w1′² + V1² – 2w1′V1 cos (α1 – βf)
For the row of fixed blades, β1 = 22°
V2² = w1′² + 660² – 2 × 660w1′ cos (17° – 22°)
w1′ = 695.32 m/s
The length of the velocity diagram is proportional to w1′, i.e., 695.32/5 = 139.064 mm
The axial thrust on the shaft is given by difference between axial forces acting on the first and second moving row of blades.
Hence,Total axial thrust on the shaft = (m × (w1 sin β1 + w2 sin β2)) − (m × w1′ sin βf) = (80/60) × (680.62 sin 18° + 690.99 sin 36°) – (80/60) × 695.32 sin 22° = 286.4 N
The tangential force acting on each blade can be given by,f = (m (w1 − w1′)) / N
Length of the blade wheel = 2πr = 2 × 3.14 × 0.155 = 0.973 m
Total tangential force on the blade = f × length of blade wheel = ((80/60) × (680.62 − 695.32)) / 4000 × 0.973 = −7.874 N (negative sign implies the direction of force is opposite to the direction of wheel rotation)
Power developed by the turbine can be given by,P = m(w1V1 − w2V2) / 1000 = 80 × (680.62 × 660 − 690.99 × 656.05) / 1000 = 541.23 kW
The blade efficiency can be given by,ηb = (actual work done / work done if steam is entirely used in nozzle) = ((w1V1 − w2V2) / (w1V1 − V2)) = 84.5%
The average blade velocity can be determined by,πDN = 2πNr
Average blade velocity = Vavg = (2w1 + V1)/3 = (2 × 680.62 + 660)/3 = 673.08 m/s
Learn more about velocity at
https://brainly.com/question/33293748
#SPJ11
For the following iron-carbon alloys (0.76 wt%C) and associated microstructures
A. coarse pearlite B. spheroidite C. fine pearlite D. bainite E. martensite F. tempered martensite 1. Select the most ductile 2. Select the hardest 3. Select the one with the best combination of strength and ductility.
For the following iron-carbon alloys (0.76 wt%C) and associated microstructures:A. coarse pearlite B. spheroidite C. fine pearlite D. bainite E. martensite F. tempered martensite1. Select the most ductileWhen the alloy has a coarse pearlite structure, it is the most ductile.2. Select the hardestWhen the alloy has a martensite structure, it is the hardest.
3. Select the one with the best combination of strength and ductilityWhen the alloy has a fine pearlite structure, it has the best combination of strength and ductility.Explanation:Pearlite: it is the most basic form of steel microstructure that consists of alternating layers of alpha-ferrite and cementite, in which cementite exists in lamellar form.Bainite: Bainite microstructure is a transitional phase between austenite and pearlite.Spheroidite: It is formed by further heat treating pearlite or tempered martensite at a temperature just below the eutectoid temperature.
This leads to the development of roughly spherical cementite particles within a ferrite matrix.Martensite: A solid solution of carbon in iron that is metastable and supersaturated at room temperature. Martensite is created when austenite is quenched rapidly.Tempered martensite: Tempered martensite is martensite that has been subjected to a tempering process.
To know more about martensite visit :
https://brainly.com/question/31414307
#SPJ11
A tank contains 3.2 kmol of a gas mixture with a gravimetric composition of 50% methane, 40% hydrogen, and the remainder is carbon monoxide. What is the mass of carbon monoxide in the mixture? Express your answer in kg.
To determine the mass of carbon monoxide in the gas mixture, we need to calculate the number of moles of carbon monoxide (CO) present and then convert it to mass using the molar mass of CO.
Given:
Total number of moles of gas mixture = 3.2 kmol
Gravimetric composition of the mixture:
Methane (CH4) = 50%
Hydrogen (H2) = 40%
Carbon monoxide (CO) = Remaining percentage
To find the number of moles of CO, we first calculate the number of moles of methane and hydrogen:
Moles of methane = 50% of 3.2 kmol = 0.50 * 3.2 kmol
Moles of hydrogen = 40% of 3.2 kmol = 0.40 * 3.2 kmol
Next, we can find the number of moles of carbon monoxide by subtracting the moles of methane and hydrogen from the total number of moles:
Moles of carbon monoxide = Total moles - Moles of methane - Moles of hydrogen
Now, we calculate the mass of carbon monoxide by multiplying the number of moles by the molar mass of CO:
Mass of carbon monoxide = Moles of carbon monoxide * Molar mass of CO
The molar mass of CO is the sum of the atomic masses of carbon (C) and oxygen (O), which is approximately 12.01 g/mol + 16.00 g/mol = 28.01 g/mol.
Finally, we convert the mass from grams to kilograms:
Mass of carbon monoxide (in kg) = Mass of carbon monoxide (in g) / 1000
By performing the calculations, we can find the mass of carbon monoxide in the gas mixture.
To know more about molar mass visit
https://brainly.com/question/30120067?
#SPJ11
a. You have been newly recruited by an optical fibre company that specialises in optical fibre design. Your first assignment is to characterise a batch of newly fabricated multimode fibre that would be deployed in an in-building network. Based on the specifications of the fibre, you know that the multi-mode fibre has a core with a refractive index of 1.45 and a profile height of 1.5%. i. What is the bit-rate-distance product of this fibre? (2 marks) ii. As this fibre will be used for in-building application, determine the maximum transmission distance if the fibre is expected to support a 500 Mb/s link. (2 marks) iii. While submitting your report to the deployment team, you found out that this fibre will be deployed in a high-rise building with potential deployment length of 100 m. With this limitation placed on the fibre distance, what is the maximum bit-rate that the link can handle in this deployment? (2 marks) iv. After notifying the deployment team that the initial 500 Mb/s specification cannot be met if the transmission distance is extended to 100m, the deployment team suggested to use dispersion compensating scheme such as dispersion compensating fibre to improve the transmission bit-rate. Explain whether this can be done and why. (2 marks) b. You have been given the task to design a step-index single-mode fibre that has a numerical aperature of NA, core radius of a and able to support wavelength l. i Show that the following equation holds if the fibre is to only support one mode. (1 marks) � � < 2.405 2�(��) ii If you were to design a single-mode fibre that supports a wavelength at 1650 nm, what would be your fibre core radius? Assuming core and cladding refractive indices are given as 1.505 and 1.49 respectively. (2 marks) iii Can your designed fibre support light at 2000 nm in a single mode format? (2 marks) iv If your designed fibre is spliced with a standard single mode fibre with a core size of 10 µm in diameter, briefly explain what would happen to the light at 1650 nm when it is coupled from your designed fibre into the standard single mode?
Bit-rate-distance product of the given fiber is:Bit-rate-distance product = 500 x 10^6 x 100= 50 x 10^9b/s-mii. Maximum transmission distance can be found using the formula:
Bit-rate-distance product = (1.44 x 10^-3)/2 x (distance) x log2(1 + (Pavg x 10^3)/(0.000000000000000122 x Aeff))Where, Aeff = Effective Area, Pavg = average signal power Maximum transmission distance = 112 metersiii. As per the given problem, the length of the optical fiber is 100 meters.
Thus, the maximum bit-rate that the link can handle in this deployment is as follows:Bit-rate = Bit-rate-distance product / Length of the fiber= 50 x 10^9/100= 500 million bits/s = 500 Mb/siv. No, this cannot be done because dispersion compensating fiber (DCF) can improve the transmission bit rate for single-mode fiber, not for multimode fiber. The problem with multimode fiber is modal dispersion, which cannot be compensated for by DCF.
To know more about Bit-rate-distance visit:
https://brainly.com/question/30591874
#SPJ11
1) The figure below shows the identical trucks that work on an ideal cycle. Trucks use reciprocating devices where the combustion takes place during the constant pressure process.
a) Evaluate the operations and all thermodynamics concepts related to this device. (Hint: System, Law, Cycle).
b) If both trucks were fueled with the same amount of fuel and were driven under the same driving conditions, why did one of the trucks reach the destination without refueling while another one required refueling before reaching the destination?
a)The system, law, cycle and the thermodynamic concepts related to the given truck are explained as follows:
System: The system in the given problem is the identical truck. It involves the thermodynamic analysis of a truck.
Law: The first law of thermodynamics, i.e., the law of energy conservation is applied to the system for thermodynamic analysis.
"Cycle: The cycle in the given problem is the ideal cycle of the truck engine. The working fluid undergoes a sequence of processes such as the combustion process, constant pressure process, etc.
Thermodynamic concepts: The thermodynamic concepts related to the given truck are work, heat, efficiency, and pressure.
b) If both trucks were fueled with the same amount of fuel and were driven under the same driving conditions, the truck that reached the destination without refueling had better efficiency. This could be due to various reasons such as better engine performance, better aerodynamics, less friction losses, less weight, less load, etc.
Know more about concepts here:
https://brainly.com/question/31234926
#SPJ11
Steam enters a diffuster steadily at a pressure of 400 psia and a temperature of Tdiffuser = 500.0 °F. The velocity of the steam at the inlet is Veldiffuser 80.0 ft s = and the mass flow rate is 5 lbm/s. What is the inlet area of the diffuser? ANS: 11.57in^2
The inlet area of the diffuser is 11.57 in^2.
To determine the inlet area of the diffuser, we can use the mass flow rate and the velocity of the steam at the inlet. The mass flow rate is given as 5 lbm/s, and the velocity is given as 80.0 ft/s.
The mass flow rate, denoted by m_dot, is equal to the product of density (ρ) and velocity (V) times the cross-sectional area (A) of the flow. Mathematically, this can be expressed as:
m_dot = ρ * V * A
Rearranging the equation, we can solve for the cross-sectional area:
A = m_dot / (ρ * V)
Given the values for mass flow rate, velocity, and the properties of steam at the inlet (pressure and temperature), we can calculate the density of the steam using steam tables or thermodynamic properties of the fluid. Once we have the density, we can substitute the values into the equation to find the inlet area of the diffuser.
To learn more about diffuser.
brainly.com/question/14852229
#SPJ11
our practical report must have an introduction where you will introduce your experiments topics and it need to be divided into 3 paragraphs,
1. Paragraph one, give a brieve definition of your topics 2. Paragraph two, give a brieve history on motor failure analyses and link it to todays applications and methods used in this day and age. 3. Paragraph three, introduce your work, (Name the paragraph the: AIM) by stating what is required from you on this assignment. [THIS IS A VERY IMPORTANT PARAGRAPH] [This paragraph and your conclusion must relate to each other]
When writing a practical report, you will need to have an introduction where you introduce your experimental topics and it should be divided into 3 paragraphs.
The following is an outline of how the introduction should be structured:
This paragraph should give a brief definition of your topics. Here, you should explain what your experimental topics are and why they are important. It is important to be clear and concise in this paragraph. This paragraph should provide a brief history of motor failure analyses and link it to today's applications and methods used in this day and age.
Here, you should explain how motor failure analyses have evolved over time and how they are used today. You should also discuss the methods used in this day and age and how they are different from the methods used in the past. This paragraph should introduce your work and state what is required from you on this assignment. You should name the paragraph the AIM.
To know more about practical visit:
https://brainly.com/question/32439310
#SPJ11
Find the production cost per 1000 kg steam in a steam plant when the evaporation rate is
7.2 kg steam per kg coal; initial cost of plant, $150,000; annual operational cost exclusive
of coal, $15,000. Assume life of 20 years; no final value; interest on borrowed capital, 4%;
on sinking fund, 3%. Average steam production is 14,500 kg per hr; cost of coal, $8.00 per
ton.
The production cost per 1000 kg steam in a steam plant when the evaporation rate is 7.2 kg steam per kg coal is $18.03. This is obtained as follows;
Step-by-step explanation:
The steam produced from the combustion of coal in a steam plant can be evaluated by first finding the amount of steam generated per kg of coal burned. This is called the evaporation rate.The evaporation rate is given as 7.2 kg steam per kg coal.The cost of coal is given as $8.00 per ton.The steam plant has an average steam production of 14,500 kg per hr.Annual operational cost exclusive of coal is $15,000.The initial cost of plant is $150,000.The life of the steam plant is 20 years.
The interest on borrowed capital is 4% while the interest on the sinking fund is 3%.To find the cost of steam production per 1000 kg, the following calculations are made;
Total amount of steam produced in one year = 14,500 * 24 * 365 = 126,540,000 kg
Annual coal consumption = 126,540,000 / 7.2 = 17,541,666.67 kg
Total cost of coal in one year = (17,541,666.67 / 1000) * $8.00 = $140,333.33
Total cost of operation per year = $140,333.33 + $15,000 = $155,333.33
Annual equivalent charge = AEC = 1 + i/n - 1/(1+i/n)^n*t
Where i = interest n = number of years for which the sum is invest
dt = total life of the investment AEC = 1 + 0.04/1 - 1/(1+0.04/1)^(1*20) = 1.7487
Annual equivalent disbursement = AED = S / a
Where S = initial cost of plant + sum of annual cost (AEC) for n y
earsa = annuity factor obtained from the tables
.AED = $150,000 / 3.8879 = $38,595.69
Annual sinking fund = AS = AED * i / (1 - 1/(1+i/n)^n*t)AS = $38,595.69 * 0.03 / (1 - 1/(1+0.03/1)^(1*20)) = $1,596.51
Total annual cost of the steam plant
= $155,333.33 + $1,596.51
= $156,929.84
Cost of steam production per 1000 kg = 1000 / (126,540,000 / 14,500) * $156,929.84 = $18.03Therefore, the cost of steam production per 1000 kg is $18.03.
To know more about evaporation visit :
https://brainly.com/question/28319650
#SPJ11
A steel rotor disc of uniform thickness 50mm has an outer rim diameter 800mm and a central hole of diameter 150mm. There are 200 blades each of weight 2N at an effective radius of 420mm pitched evenly around the periphery. Determine the rotational speed at which yielding first occurs according to the maximum shear stress criterion. Yield stress= 750 MPa, v = 0.304, p = 7700 kg/m³.
The rotational speed at which yielding first occurs according to the maximum shear stress criterion is approximately 5.24 rad/s.
To determine the rotational speed at which yielding first occurs according to the maximum shear stress criterion, we can use the following steps:
1. Calculate the total weight of the blades:
Total weight = Number of blades × Weight per blade
= 200 × 2 N
= 400 N
2. Calculate the torque exerted by the blades:
Torque = Total weight × Effective radius
= 400 N × 0.42 m
= 168 Nm
3. Calculate the polar moment of inertia of the rotor disc:
Polar moment of inertia (J) = (π/32) × (D⁴ - d⁴)
= (π/32) × ((0.8 m)⁴ - (0.15 m)⁴)
= 0.02355 m⁴
4. Determine the maximum shear stress:
Maximum shear stress (τ_max) = Yield stress / (2 × Safety factor)
= 750 MPa / (2 × 1) (Assuming a safety factor of 1)
= 375 MPa
5. Use the maximum shear stress criterion equation to find the rotational speed:
τ_max = (T × r) / J
where T is the torque, r is the radius, and J is the polar moment of inertia.
Rearrange the equation to solve for rotational speed (N):
N = (τ_max × J) / T
= (375 × 10⁶ Pa) × (0.02355 m⁴) / (168 Nm)
Convert Pa to N/m² and simplify:
N = 5.24 rad/s
To learn more about rotational speed, click here:
https://brainly.com/question/14391529
#SPJ11
(a) Explain in your own words why engineers are required to exhibit highest standards of responsibility and care in their profession (b) Mention some articles from engineering codes of ethics admonishing engineers not to participate in dishonest activities.
Engineers are responsible for creating designs that can improve lives, but they must exhibit high standards of responsibility and care in their profession because their work can have serious implications for the safety and well-being of people.
The codes of ethics admonish engineers not to participate in dishonest activities that may lead to falsifying data, conflicts of interest, accepting bribes, intellectual property theft, and so on.
(a) Engineers are required to exhibit the highest standards of responsibility and care in their profession because the work they do can have serious implications for the safety and well-being of people, the environment, and society as a whole.
They have the power to create and design technology that can greatly improve our lives, but they also have the responsibility to ensure that their designs are safe, reliable, and ethical.
They are held to high standards of accountability because their work can have far-reaching consequences.
(b) The engineering codes of ethics admonish engineers not to participate in dishonest activities, including:
1. Misrepresentation of their qualifications or experience.
2. Discrimination against others based on race, gender, age, religion, or other factors.
3. Falsifying data or research findings.
4. Concealing information or misleading the public.
5. Engaging in conflicts of interest or accepting bribes.
6. Engaging in plagiarism or intellectual property theft.
To know more about plagiarism , visit:
https://brainly.com/question/30180097
#SPJ11
A triangular duct, 7 cm on a side, with 4 kg/s of water at 42°C, has a constant surface temperature of 90°C. The water has the following properties: density: 991 kg/m³, kinematic viscosity: 6.37E-7 m²/s, k=0.634 W/m K, Pr = 4.16. The surface roughness of the duct is 0.2 mm. What is the heat transfer coefficient of the water? h= Number W/m²K
The heat transfer coefficient of the water is 14.83 W/m²K.
The heat transfer coefficient of the water is required. The given parameters include the following:
Triangular duct, side = 7 cm, Mass flow rate (m) = 4 kg/s, T1 = 42°C, T2 = 90°C, Density (ρ) = 991 kg/m³, Kinematic viscosity (ν) = 6.37E-7 m²/s, Thermal conductivity (k) = 0.634 W/mK, Prandtl number (Pr) = 4.16, Surface roughness of duct = 0.2 mm.
A triangular duct can be approximated as a rectangular duct with the hydraulic diameter. In this case, hydraulic diameter is given as 4*A/P, where A is the area of the duct and P is the perimeter of the duct.
Therefore, hydraulic diameter of triangular duct is given as:
D_h = 4*A/P = 4*(√3/4*(0.07)^2)/(3*0.07) = 0.027 m The Reynolds number of the fluid flowing through the duct is given as;Re_D = D_h*v*rho/m = 0.027*4/(6.37*10^-7*991) = 11418
Therefore, the flow is turbulent.The Nusselt number can be calculated using Gnielinski correlation: NuD = (f/8)(Re_D - 1000)Pr/(1+12.7((f/8)^0.5)((Pr^(2/3)-1)))(1+(D_h/4.44)((Re_DPrD_h/f)^0.5))
The equation is complex and requires the calculation of friction factor using the Colebrook-White equation.
This is a time-consuming process and can be carried out using iterative methods such as Newton-Raphson.
The heat transfer coefficient is given as;h = k*Nu_D/D_h = 0.634*NuD/0.027 = 14.83 W/m²K.
Reynolds Number, Re_D = 11418 Hydraulic diameter, D_h = 0.027 m Nusselt Number, Nu_D = 140.14 Heat transfer coefficient, h = 14.83 W/m²K.
Therefore, the heat transfer coefficient of the water is 14.83 W/m²K.
To know more about Colebrook-White equation. visit:
https://brainly.com/question/31826355
#SPJ11
The speed of a particle traveling along a straight line within a liquid is measured as a function of its position as v = (130 s) mm/s, where s is in millimeters. Part A Determine the particle's deceleration when it is located at point A, where SA = 90 mm. Express your answer to three significant figures and include the appropriate units. a = -40.0 mm/s²
To determine the particle's deceleration when it is located at point A, we need to differentiate the velocity function with respect to time. Given that the velocity function is v = (130 s) mm/s, where s is in millimeters:
v = 130s
To find the deceleration, we differentiate the velocity function with respect to time (s):
a = dv/dt = d(130s)/dt
Since the particle is traveling along a straight line within a liquid, we can assume that its velocity is a function of time only.
Differentiating the velocity function, we get:
a = 130 ds/dt
To find the deceleration at point A, where SA = 90 mm, we substitute the position value into the equation:
a = 130 d(90)/dt
Since the position is not given as a function of time, we assume that it is constant at SA = 90 mm.
Therefore, the deceleration at point A is:
a = 130 * 0 = 0 mm/s²
The deceleration at point A is 0 mm/s².
Learn more about velocity here
https://brainly.com/question/30505958
#SPJ11