a spherical solid, centered at the origin, has radius 100 and mass density \delta(x,y,z)=104 -\left(x^2 y^2 z^2\right). find its mass.

Answers

Answer 1

The mass of the spherical solid is approximately 3.50 × 10⁷ units of mass (assuming units of mass are not specified in the question).

To find the mass of the spherical solid, we need to integrate the given mass density function over the volume of the sphere. Using spherical coordinates, we have:

m = ∫∫∫ δ(x,y,z) dV= ∫∫∫ (10^4 - x² y² z²) dV= ∫0²π ∫0^π ∫0¹⁰⁰ (10⁴ - r⁴ sin²θ cos²θ) r² sinθ dr dθ dφ= 4π ∫0¹⁰⁰ (10⁴r² - r⁶/3) dr= (4/3)π (10⁴r³ - r⁷/21)|0¹⁰⁰= (4/3)π [(10¹⁰ - 10⁷/3)]≈ 3.50 × 10⁷ units of mass.

Therefore, the mass of the spherical solid is approximately 3.50 × 10⁷ units of mass.

To learn more about mass density, here

https://brainly.com/question/6107689

#SPJ4


Related Questions

A converging lens of focal length 7.50 cmcm is 16.0 cmcm to the left of a diverging lens of focal length -5.50 cmcm . a coin is placed 12.0 cmcm to the left of the converging lens. Find the location and the magnification of the coin's final image.

Answers

The final image of the coin is located 5.54 cm to the right of the diverging lens and has a magnification of -0.86.

To find the location and magnification of the final image, we need to use the thin lens equation and the magnification equation.

First, we can find the location of the image formed by the converging lens. Using the thin lens equation 1/f = 1/do + 1/di, where f is the focal length, do is the object distance, and di is the image distance, we have:

1/7.50 = 1/12.0 + 1/di

di = 30.0 cm

The image formed by the converging lens is located 30.0 cm to the right of the lens.

Now, we can use the image formed by the converging lens as the object for the diverging lens. The distance between the two lenses is 16.0 cm, so the object distance for the diverging lens is:

do = 16.0 cm - 30.0 cm = -14.0 cm (negative sign indicates that the object is to the left of the lens)

Using the thin lens equation again, this time with f = -5.50 cm, we can find the image distance for the diverging lens:

1/-5.50 = 1/-14.0 + 1/di

di = 5.54 cm

The final image of the coin is formed 5.54 cm to the right of the diverging lens.

To find the magnification of the final image, we can use the magnification equation m = -di/do, where m is the magnification:

m = -5.54 cm / (-14.0 cm) = -0.86

The negative sign of the magnification indicates that the final image is inverted.

To know more about magnification, refer here:

https://brainly.com/question/27872394#

#SPJ11

According to the Second Law of Thermodynamics, in order for a reaction to be spontaneous which value must increase? OA) ASsurr B) ASuniverse OC) AHexn OD) AS sys Ο Ε) ΔΤ

Answers

According to the Second Law of Thermodynamics, in order for a reaction to be spontaneous ASuniverse  value must increase,

Option(B)

The Second Law of Thermodynamics states that the total entropy of an isolated system always increases over time, and spontaneous processes are those that increase the total entropy of the system and its surroundings.In order for a reaction to be spontaneous, the change in the total entropy of the system and its surroundings, ΔS_universe, must be positive. This means that either the entropy of the system (ΔS_sys) must increase or the entropy of the surroundings (ΔS_surr) must decrease.

The entropy of the system can increase due to an increase in temperature or an increase in the number of energetically equivalent microstates available to the system. On the other hand, the entropy of the surroundings can decrease due to a decrease in temperature or a decrease in the number of energetically equivalent microstates available to the surroundings. The Second Law of Thermodynamics requires that the total entropy of the universe (system and surroundings) must increase in order for a process to occur spontaneously. If ΔS_universe is negative, the reaction will not occur spontaneously.  Option(B)

For such more questions on spontaneous

https://brainly.com/question/29315358

#SPJ11

According to the Second Law of Thermodynamics, in order for a reaction to be spontaneous and the value must increase is B) ASuniverse .

What is the Second Law of Thermodynamics

The Second Law of Thermodynamics is engaging attention the concept of deterioration, that is a measure of the disorder or randomness of a structure. It states that the entropy of an unique scheme tends to increase over period.

In the context of a related series of events, the deterioration change can be detached into two components: the deterioration change of bureaucracy (ASsys) and the entropy change of the environment (ASsurr).

Learn more about Second Law of Thermodynamics from

https://brainly.com/question/30600157

#SPJ4

Which of the following statements is/are true regarding the Third Law of Thermodynamics?
I) So of Neon gas at 298 K is zero.
II) The Gibbs free energy of a perfect crystal at 0 K is zero.
III) So of graphite(s) at 100 K is greater than zero.
Group of answer choices
a. both I and II
b. both II and III
c. only II
d. III only
e. All three

Answers

Based on this law, statement II is true, meaning that the Gibbs free energy of a perfect crystal at 0 K is zero.

The Third Law of Thermodynamics states that the entropy of a perfect crystal at absolute zero is zero. This is because a perfect crystal at absolute zero has a perfectly ordered and defined arrangement of atoms, resulting in no entropy or disorder.
However, statement I is false because the entropy of a perfect crystal cannot be zero at any temperature other than absolute zero. Therefore, the entropy of neon gas at 298 K cannot be zero.
Statement III is also false because the entropy of graphite(s) at 100 K cannot be greater than zero, according to the Third Law of Thermodynamics. The entropy of any substance should decrease as it approaches absolute zero, which means that the entropy of graphite(s) would be close to zero at 100 K.
Therefore, the correct answer is (c) only II, as only statement II is true regarding the Third Law of Thermodynamics.

To know more about Third Law of Thermodynamics refer: https://brainly.com/question/1604031?referrer=searchResults

#SPJ11

U-groove weld is used to butt weld two pieces of 7.0-mm-thick austenitic stainless steel plate in an arc welding operation. The U-groove is prepared using a milling cutter so the radius of the groove is 3.0 mm; however, during welding, the penetration of the weld causes an additional 1.5 mm of metal to be melted. Thus, the final cross-sectional area of the weld can be approximated by a semicircle with radius = 4.5 mm. The length of the weld = 250 mm. The melting factor of the setup = 0.65, and the heat transfer factor = 0.90. Assuming the resulting top surface of the weld bead is flush with the top surface of the plates, determine (a) the amount of heat (in joules) required to melt the volume of metal in this weld (filler metal plus base metal),Enter your answer

Answers

To find the heat required, calculate the volume of metal melted, multiply by the melting factor, specific heat, and heat transfer factor.


(a) First, find the volume of the weld:
- Cross-sectional area of the weld = (pi * [tex]4.5^{2}[/tex]) / 2 = 31.81 mm²
- Weld volume = Area * Length = 31.81 * 250 = 7952.5 mm³

Next, calculate the amount of heat required:
- Heat required = Volume * Melting Factor * Specific Heat * Heat Transfer Factor

Assuming a specific heat of austenitic stainless steel as 500 J/kgK and density as 8000 kg/m³:
- Convert volume to mass: Mass = Volume * Density = 7952.5 * [tex]10^{-9}[/tex] * 8000 = 0.06362 kg
- Heat required = 0.06362 * 0.65 * 500 * 0.9 = 16.52 kJ

The heat required to melt the volume of metal in this weld is approximately 16.52 kJ.

For more such questions on melting, click on:

https://brainly.com/question/20534573

#SPJ11

The amount of heat required to melt the metal in the U-groove weld is approximately 35,700 Joules, based on calculations involving volume, specific heat, and mass.

To determine the amount of heat required to melt the volume of metal in the U-groove weld, we can calculate the volume of the weld and then multiply it by the specific heat of the material.

The volume of the weld can be approximated as the volume of a cylinder with a semicircular cross-section. The formula for the volume of a cylinder is:

V = π * r^2 * h,

where V is the volume, r is the radius, and h is the height (length) of the weld.

Given:

Radius (r) = 4.5 mm = 0.0045 m

Length (h) = 250 mm = 0.25 m

Substituting the values into the volume formula:

V = π * [tex](0.0045 m)^2 * 0.25 m.[/tex]

Calculating this expression, we find:

V ≈ [tex]5.026 * 10^{(-6)} m^3.[/tex]

The specific heat (c) of austenitic stainless steel is approximately 500 J/(kg·°C).

To determine the mass of the metal in the weld, we need to consider the thickness and length of the weld.

The thickness of the stainless steel plate is 7.0 mm. Since the weld penetrates an additional 1.5 mm, the effective thickness is 8.5 mm = 0.0085 m.

The cross-sectional area (A) of the weld can be calculated as the area of the semicircle:

A = (π * [tex]r^2[/tex]) / 2.

Substituting the values:

A = (π * [tex](0.0045 m)^2) / 2[/tex].

Calculating this expression, we find:

A ≈ [tex]1.272 * 10^{(-5)} m^2.[/tex]

The mass (m) of the metal in the weld can be calculated by multiplying the density (ρ) of the stainless steel by the volume (V) and the cross-sectional area (A):

m = ρ * V * A.

The density (ρ) of austenitic stainless steel is approximately [tex]8000 kg/m^3.[/tex]

Substituting the values:

m ≈ [tex]8000 kg/m^3 * 5.026 * 10^{(-6)} m^3 * 1.272 * 10^{(-5)} m^2[/tex].

Calculating this expression, we find:

m ≈ 0.051 kg.

Finally, to calculate the amount of heat (Q) required to melt the metal in the weld, we can use the formula:

Q = m * c * ΔT,

where ΔT is the change in temperature, which is the melting point of the stainless steel.

The melting point of austenitic stainless steel is approximately 1400 °C.

Substituting the values:

Q ≈ 0.051 kg * 500 J/(kg·°C) * 1400 °C.

Calculating this expression, we find:

Q ≈ 35,700 J.

Therefore, the amount of heat required to melt the volume of metal in this U-groove weld is approximately 35,700 Joules.

To learn more about mass from the given link

https://brainly.com/question/86444

#SPJ4

A proton moves along the x-axis with vx=1.0�107m/s.
a)
As it passes the origin, what are the strength and direction of the magnetic field at the (0 cm, 1 cm, 0 cm) position? Give your answer using unit vectors.
Express your answer in terms of the unit vectors i^, j^, and k^. Use the 'unit vector' button to denote unit vectors in your answer.

Answers

The magnetic field at the point (0 cm, 1 cm, 0 cm) is B = 0 i^ + 0 j^ + 1.6×10^-7 k^.

A proton moving along the x-axis with a velocity of 1.0×107m/s generates a magnetic field. At the position (0 cm, 1 cm, 0 cm), the strength and direction of the magnetic field can be determined using the right-hand rule. The direction of the magnetic field is perpendicular to both the velocity of the proton and the position vector at the point (0 cm, 1 cm, 0 cm).

Expressing the answer using unit vectors, the magnetic field can be written as B = Bx i^ + By j^ + Bz k^, where i^, j^, and k^ are unit vectors in the x, y, and z directions, respectively. The magnitude of the magnetic field is given by B = μ0qv/4πr2, where μ0 is the permeability of free space, q is the charge of the proton, v is the velocity of the proton, and r is the distance between the proton and the point (0 cm, 1 cm, 0 cm).

Using this formula, the strength of the magnetic field at the point (0 cm, 1 cm, 0 cm) can be calculated. The distance between the proton and the point is r = (1+0+0.01) cm = 0.01005 m. Plugging in the values, we get B = (4π×10^-7 Tm/A)(1.6×10^-19 C)(1.0×10^7 m/s)/(4π(0.01005 m)^2) = 1.6×10^-7 T.

The direction of the magnetic field can be determined using the right-hand rule. Since the velocity of the proton is in the positive x-direction, and the position vector is in the positive y-direction, the magnetic field must be in the positive z-direction.

To know more about the magnetic field, click here;

https://brainly.com/question/14848188

#SPJ11

an object is thrown from the ground with an initial velocity of 100 m/s and an angle of 37° with the horizontal. how long does it take for the object to hit the ground?

Answers

We can use the kinematic equations of motion to solve for the time it takes for the object to hit the ground. The horizontal and vertical components of the velocity can be found using trigonometry:

vx = v0 cos θ = 100 cos 37° ≈ 79.5 m/s

vy = v0 sin θ = 100 sin 37° ≈ 60.2 m/s

The acceleration due to gravity is -9.8 m/s^2 (negative because it acts downwards).

Using the kinematic equation for vertical displacement:

Δy = v0y t + (1/2)at^2

Since the object starts and ends at ground level, Δy = 0. Solving for time:

0 = v0y t + (1/2)at^2

t = (-v0y ± √(v0y^2 - 2aΔy)) / a

Taking the positive value for t:

t = (-60.2 + √(60.2^2 + 2(9.8)(0))) / (-9.8) ≈ 6.20 s

Therefore, it takes about 6.20 seconds for the object to hit the ground.

To know more about kinematic refer here

https://brainly.com/question/7590442#

#SPJ11

A dam is used to hold back a river. The dam has a height H = 12 m and a width W = 10 m. Assume that the density of the water is = 1000 kg/m . (a) Determine the net force on the dam. (b) Why does the thickness of the dam increase with depth?

Answers

(a) The net force on the dam is approximately 14,126,400 N.

(b) The thickness of the dam increases with depth to counteract increasing hydrostatic pressures and maintain structural stability.

(a) The hydrostatic pressure of the water on the dam determines the net force.

Formula for hydrostatic pressure at a given depth in a fluid:

Pressure = Density x Gravity x Depth

The weight of the water above the dam causes pressure at its base. Based on water density (ρ) of 1000 kg/m³ and gravity acceleration (g) of 9.81 m/s², the dam base pressure is:

Pressure = 117720 N/m² (Pascal)

= 1000 kg/m³ × 9.81 m/s² x 12 m

The dam's base area is 12 m high and 10 m wide:

Area = 12 m x 10 m

= 120 m².

Now we can compute the dam's net force:

Force = Pressure × Area

= 14126400 N (117720 N/m² x 120 m²).

The dam has 14,126,400 N net force.

(b) Water pressure increases with depth, therefore the dam thickens. Because the water above the dam weighs more, it must sustain stronger hydrostatic pressures as it travels deeper. To resist these stresses and prevent structural failure, the dam's thickness must grow with depth. This uniformly distributes pressure and stabilises the dam by holding back water.

Learn more about hydrostatic pressures, here:

https://brainly.com/question/33722056

#SPJ12

Final answer:

The force on the dam is calculated based on the average water pressure and the area of the dam, resulting in an approximate force of 7.08 * 10^5 Newtons. The thickness of the dam increases with depth due to the increased water pressure.

Explanation:

(a) To determine the force on the dam we use the concept of physics where the force exerted on the dam by the water is the average pressure times the area of contact (F = pA). Considering the dam has a height H = 12 m and a width W = 10 m, and that the density of the water is 1000 kg/m³, we must consider the average depth of the water, which is half the height of the dam. This is because water pressure increases linearly with depth.

The force is calculated by multiplying the pressure at the average depth (1000 kg/m³ * 9.8 m/s² * 6m) by the area of the dam (10m * 12m), resulting in an approximate force of 7.08 * 10^5 Newtons.

(b) The thickness of the dam increases with depth because the pressure exerted by the water on the dam increases with depth. As the depth of the water increases, so does the pressure it exerts. Therefore, to avoid cracking or collapsing under the increased pressure, the dam is made thick towards the bottom where the pressure is higher.

Learn more about Force on Dam here:

https://brainly.com/question/31966157

#SPJ12

the coefficient of linear expansion of iron is 10–5 per c°. the volume of an iron cube, 5.6 cm on edge. how much will the volume increase if it is heated from 8.4°c to 68.1°c? answer in cm3.

Answers

The volume of the iron cube will increase by approximately 0.313 cm³ when heated from 8.4°C to 68.1°C.To solve this problem, we need to use the formula for volume expansion due to temperature change:
ΔV = V₀αΔT


Where ΔV is the change in volume, V₀ is the initial volume, α is the coefficient of linear expansion, and ΔT is the change in temperature.
First, let's calculate the initial volume of the iron cube:
V₀ = a³
V₀ = 5.6³
V₀ = 175.616 cm³
Next, let's calculate the change in temperature:
ΔT = T₂ - T₁
ΔT = 68.1 - 8.4
ΔT = 59.7 c°
Now we can calculate the change in volume:
ΔV = V₀αΔT
ΔV = 175.616 * 10^-5 * 59.7
ΔV = 0.1049 cm³
Therefore, the volume of the iron cube will increase by 0.1049 cm³ if it is heated from 8.4°c to 68.1°c.

The coefficient of linear expansion of iron is 10–5 per c°. The volume of an iron cube, 5.6 cm on edge. How much will the volume increase if it is heated from 8.4°c to 68.1°c? To solve this problem, we need to use the formula for volume expansion due to temperature change. First, we calculate the initial volume of the iron cube which is V₀ = a³ = 5.6³ = 175.616 cm³. Next, we calculate the change in temperature which is ΔT = T₂ - T₁ = 68.1 - 8.4 = 59.7 c°. Using the formula ΔV = V₀αΔT, we can calculate the change in volume which is ΔV = 175.616 * 10^-5 * 59.7 = 0.1049 cm³. Therefore, the volume of the iron cube will increase by 0.1049 cm³ if it is heated from 8.4°c to 68.1°c.

To know more about volume visit :-

https://brainly.com/question/14996332

#SPJ11

Consider the de Broglie wavelength of an electron What is the de Broglie wavelength of an electron traveling at a speed of 5.0×106 m/s? Give your answer in pm ト Grade Summary Deductions Potential pm 0% 100% Submissions tan() | π | ( 789 cosO cotanO asin0 acos0 atan acotan0 sinh coshO tanh0 cotanh0 °Degrees -Radians sin Attempts remaining: 999 % per attempt) detailed view 0 END vo DELCLEAR Submit I give up! Hints: for a .0%-deduction. Hints remaining: 0 Feedback: 5%-deduction per feedback.

Answers

The de Broglie wavelength of an electron traveling at a speed of 5.0 x 10^6 m/s is approximately 0.145 picometers (pm).

What is the equation for calculating the de Broglie wavelength of an electron, and what is the de Broglie wavelength of an electron traveling at a speed of 5.0 x 10^6 m/s?

The de Broglie wavelength of an electron is given by the equation:

λ = h/mv

Where λ is the de Broglie wavelength, h is Planck's constant, m is the mass of the electron, and v is the velocity of the electron.

Substituting the given values, we get:

λ = h/(mv) = (6.626 x 10^-34 J s)/(9.11 x 10^-31 kg x 5.0 x 10^6 m/s)

λ = 0.145 pm (rounded to three significant figures)

Therefore, the de Broglie wavelength of an electron traveling at a speed of 5.0 x 10^6 m/s is approximately 0.145 picometers (pm).

Learn more about De-Broglie.

brainly.com/question/17295250

#SPJ11

The use of hydraulic fracturing continues to increase significantly, as more
easily accessible oil and gas reservoirs have declined and companies move to develop
unconventional oil and gas formations. Hydraulic fracturing is used for oil
and/or gas production in all 33 U.S. states where oil and natural gas production
takes place. According to industry estimates, hydraulic fracturing has been applied
to more than 1 million wells nationwide. (p. 71)
State whether or not the following sentences have plagiarized the passage. If they did plagiarize the passage explain why it is plagiarism?
a. As of March 2012, hydraulic fracturing has been applied to more than 1 million
wells nationwide.
b. Hydraulic fracturing has become more prevalent nationwide. More than one million
wells have been created.
c. According to the Congressional Digest, more than one million wells in the United
States use hydraulic fracturing (Congressional Digest, 71).

Answers

a. This sentence is plagiarized. It directly copies the original passage without proper citation.

b. This sentence is plagiarized. Although it rephrases the original sentence, it still uses the same structure and key phrases without proper citation.

c. This sentence is not plagiarized. It rephrases the original sentence and cites the source as the Congressional Digest.

About plagiarized

Plagiarized or often called plagiarism is plagiarism or taking other people's essays, opinions, etc. and making it appear as if they were their own compositions and opinions. Plagiarism can be considered as a crime because it steals other people's copyrights.

Learn More About How not to plagiarize at https://brainly.com/question/397668

#SPJ11

what are the potential environmental consequences of using synthetic fertilizers?

Answers

Use of synthetic fertilizers can lead to water pollution, soil degradation, and greenhouse gas emissions, which negatively impact ecosystems, biodiversity, and overall environmental health. To mitigate these effects, sustainable agricultural practices such should be considered.



Water pollution can occur when excessive fertilizer use leads to nutrient runoff into water bodies, causing eutrophication. This process stimulates algal blooms, which deplete oxygen levels and harm aquatic life, disrupting ecosystems and biodiversity.



Soil degradation can result from the overuse of synthetic fertilizers, as they can cause a decline in soil organic matter and contribute to soil acidification. This reduces the soil's ability to retain water, leading to decreased fertility and erosion, which in turn affects crop yield and long-term agricultural sustainability.


Greenhouse gas emissions are another concern, as the production and application of synthetic fertilizers can generate significant amounts of nitrous oxide (N2O), a potent greenhouse gas. N2O emissions contribute to climate change and can further exacerbate environmental issues such as sea level rise, extreme weather events, and loss of biodiversity.

Know more about biodiversity here:

https://brainly.com/question/13073382

#SPJ11

A viewing direction which is parallel to the surface in question gives a(n) ______ view. 1), normal. 2), inclined. 3), perspective.

Answers

A viewing direction which is parallel to the surface in question gives a normal view. The correct option is (1).

A normal view is when the observer is looking directly perpendicular to the surface, giving a view that is completely orthogonal to the surface.

In this view, the observer is looking at the surface straight-on and sees the surface as it appears in its natural state, without any distortion or perspective.

A normal view is often used in technical drawings, such as engineering or architectural plans, to show the exact dimensions and angles of the object being represented.

This view is also useful for showing the orientation of objects in space, as it provides an accurate and objective representation of the object's position and shape.

In contrast, an inclined view shows the object at an angle to the surface, while a perspective view shows the object as it appears to the human eye, taking into account its distance and angle from the observer.

To know more about "Technical drawings" refer here:

https://brainly.com/question/28773186#

#SPJ11

Light passes from a medium of index of refraction na into a second medium of index of refraction nb-The angles of incidence and refraction are and G, respectively. Ifna 6h and the light speeds up as it enters the second medium B) ?.< ?>, and the light slows down as itanters the second medium C) ?.< ?b and the light speeds up as it enters the second medium D) ?.> ?b and the light slows down as it enters the second medium 5 E) None of the above are true

Answers

The option C) ?.< ?b and the light speeds up as it enters the second medium is the right response.

When light passes from a medium of higher refractive index (na) to a medium of lower refractive index (nb), it bends away from the normal and speeds up.

The angle of incidence (i) is larger than the angle of refraction (r), and the angle of refraction is measured with respect to the normal.

The relationship between the angles and refractive indices is given by Snell's law: na sin(i) = nb sin(r).

Since the light speeds up in the second medium, its velocity and wavelength increase, while its frequency remains constant.

Thus, the correct option is C) ?.< ?b and the light speeds up as it enters the second medium.

Learn more about "light": https://brainly.com/question/10728818

#SPJ11

A proton (mass = ) moves with an initial velocity at the origin in a uniform magnetic field . To an observer on the negative x axis the proton appears to spiral:in the ____counter-clockwise clockwise

Answers

A proton moving in a uniform magnetic field will appear to spiral in a clockwise direction to an observer on the negative x-axis.

When a charged particle, like a proton, enters a uniform magnetic field, it experiences a force called the Lorentz force, which acts perpendicular to both its velocity and the magnetic field direction. This force causes the proton to move in a circular path. As the proton moves through the magnetic field, its path traces a spiral shape. The direction of the spiral (clockwise or counter-clockwise) depends on the observer's position and the direction of the magnetic field.

In this case, the observer is located on the negative x-axis. Since the proton has a positive charge and follows the right-hand rule for magnetic force, it will spiral in a clockwise direction when viewed from this perspective. The right-hand rule states that if you point your thumb in the direction of the velocity and your fingers in the direction of the magnetic field, your palm will face the direction of the force on a positive charge. Consequently, the proton's path will appear as a clockwise spiral to the observer on the negative x-axis.

To know more about the uniform magnetic field, click here;

https://brainly.com/question/1594227

#SPJ11

true/false. determine whether each statement is true or false. justify each answer. question content area bottom part 1 a. a vector is any element of a vector space.

Answers

This statement "a vector is any element of a vector space" is True.

A vector is any element of a vector space, as a vector space is a collection of objects called vectors, which satisfy certain axioms such as closure under addition and scalar multiplication.

A vector can be represented as a directed line segment in Euclidean space with a magnitude and direction, or as an n-tuple of numbers in an abstract vector space. Therefore, a vector is by definition an element of a vector space.

To know more about vector refer here

https://brainly.com/question/29740341#

#SPJ11

Light of wavelength 631 nm passes through a diffraction grating having 299 lines/mm .
Part A
What is the total number of bright spots (indicating complete constructive interference) that will occur on a large distant screen? Solve this problemwithout finding the angles. (Hint: What is the largest that sinθ can be? What does this imply for the largest value of m?)
Express your answer as an integer.
Part B
What is the angle of the bright spot farthest from the center?

Answers

The total number of bright spots (indicating complete constructive interference) is 2,The angle of the bright spot farthest from the center is approximately 0.06 degrees

Part A:

The total number of bright spots can be found using the equation:

nλ = d(sinθ + sinθ')

where n is the order of the bright spot, λ is the wavelength of light, d is the distance between adjacent slits on the grating,

θ is the angle between the incident ray and the normal to the grating, and θ' is the angle between the diffracted ray and the normal to the grating.

For maximum constructive interference, sinθ = 1 and sinθ' = 1, which gives:

nλ = d(2)

n = 2d/λ

The largest value of n occurs when sinθ is maximized, which is when θ = 90 degrees. Therefore, the maximum value of n is:

nmax = 2d/λmax

Substituting the given values, we get:

nmax = 2(1/299 mm)/631 nm

nmax ≈ 2

Part B:

The angle of the bright spot farthest from the center can be found using the equation:

dsinθ = mλ

where d is the distance between adjacent slits on the grating, θ is the angle between the incident ray and the normal to the grating, m is the order of the bright spot, and λ is the wavelength of light.

For the bright spot farthest from the center, m = 1. The maximum value of sinθ occurs when θ = 90 degrees. Therefore, we have:

dsinθmax = λ

Substituting the given values, we get:

sinθmax ≈ λ/(d*m) ≈ 0.00105

Taking the inverse sine of this value, we get:

θmax ≈ 0.06 degrees

To know more about interference refer here :-

https://brainly.com/question/31857527#

#SPJ11

Consult a table of integrals and verify the orthogonality relation (x)ψο(x) dx = 0 6X3 where po(x) and ψ2(x) are harmonic oscillator eigenfunctions for n-0 and 2

Answers

The orthogonality relation you want to verify is ∫(p₀(x)ψ₂(x)) dx = 0, where p₀(x) and ψ₂(x) are harmonic oscillator eigenfunctions for n=0 and n=2.

To verify this, first note the eigenfunctions for a harmonic oscillator:
p₀(x) = (1/√π) * exp(-x²/2)
ψ₂(x) = (1/√(8π)) * (2x² - 1) * exp(-x²/2)

Now, evaluate the integral:
∫(p₀(x)ψ₂(x)) dx = ∫[(1/√π)(1/√(8π)) * (2x² - 1) * exp(-x²)] dx

Integrate from -∞ to ∞, and the product of the eigenfunctions will cancel out each other due to their symmetric nature about the origin, resulting in:
∫(p₀(x)ψ₂(x)) dx = 0

This confirms the orthogonality relation for the harmonic oscillator eigenfunctions p₀(x) and ψ₂(x) for n=0 and n=2.

To know more about harmonic oscillator click on below link:

https://brainly.com/question/30354005#

#SPJ11

A Copper wire has a shape given by a radius that increases as R(x)= aex + b. Its initial radius is .45 mm and final radius is 9.67 mm and its horizontal length is 38 cm. Find its resistance.

Answers

The resistance of the copper wire with a shape given by R(x) = aex + b, initial radius of 0.45 mm, final radius of 9.67 mm, and horizontal length of 38 cm is approximately 0.100 ohms, calculated using the formula R = ρL/A.

Shape of copper wire is given by R(x) = aex + b, where x is the horizontal distance along the wire.

Initial radius of the wire is 0.45 mm.

Final radius of the wire is 9.67 mm.

Horizontal length of the wire is 38 cm.

To find the resistance of the copper wire, we need to use the formula:

R = ρL/A

where R is the resistance, ρ is the resistivity of copper, L is the length of the wire, and A is the cross-sectional area of the wire.

First, we need to find the length of the wire. We are given that the horizontal length of the wire is 38 cm. However, we need to find the actual length of the wire, taking into account the increase in radius.

We can use the formula for the arc length of a curve:

L = ∫√(1 + (dy/[tex]dx)^2[/tex] ) dx

where dy/dx is the derivative of the function R(x) with respect to x.

Taking the derivative of R(x), we get:

dR/dx = [tex]ae^x[/tex]

Substituting this into the formula for L, we get:

L = ∫√(1 + [tex](ae^x)^2[/tex]) dx

= ∫√(1 + [tex]a^2e^2x)[/tex] dx

= (1/a) ∫√([tex]a^2e^2x[/tex] + 1) d(aex)

Let u = aex + 1/a, then du/dx = [tex]ae^x[/tex] and dx = du/[tex]ae^x[/tex]

Substituting these into the integral, we get:

L = (1/a) ∫√([tex]u^2 - 1/a^2[/tex]) du

= (1/a) [tex]sinh^{(-1[/tex])(aex + 1/a)

Now we can substitute in the values for a, x, and the initial and final radii to get the length of the wire:

a = (9.67 - 0.45)/

= 8.22

x = 38/8.22

= 4.62

L = (1/8.22) [tex]sinh^{(-1[/tex])(8.22*4.62 + 1/8.22)

= 47.24 cm[tex]e^1[/tex]

Next, we need to find the cross-sectional area of the wire at any given point along its length. We can use the formula for the area of a circle:

A = π[tex]r^2[/tex]

where r is the radius of the wire.

Substituting in the expression for R(x), we get:

r = R(x)/2

= (aex + b)/2

So the cross-sectional area of the wire is:

A = π[(aex + b)/[tex]2]^2[/tex]

= π(aex +[tex]b)^{2/4[/tex]

Now we can substitute in the values for a, b, and the initial and final radii to get the cross-sectional area at the beginning and end of the wire:

a = (9.67 - 0.4[tex]5)/e^1[/tex]

= 8.22

b = 0.45

A_initial = π(0.4[tex]5)^2[/tex]

= 0.635 [tex]cm^2[/tex]

A_final = π(9.[tex]67)^2[/tex]

= 930.8 [tex]cm^2[/tex]

Finally, we can use the formula for resistance to calculate the resistance of the wire:

ρ = 1.68 x

For more such questions on resistance, click on:

https://brainly.com/question/30901006

#SPJ11

The resistance of the copper wire is approximately [tex]1.00 * 10^{-4}[/tex] Ω.

To find the resistance of the copper wire, we need to determine the resistance per unit length and then multiply it by the length of the wire.

Given:

Initial radius, r1 = 0.45 mm = 0.045 cm

Final radius, r2 = 9.67 mm = 0.967 cm

Horizontal length, L = 38 cm

The resistance of a cylindrical wire is given by the formula:

R = ρ * (L / A)

where ρ is the resistivity of copper, L is the length of the wire, and A is the cross-sectional area of the wire.

The cross-sectional area can be calculated using the formula:

A = π * [tex]r^2[/tex]

where r is the radius of the wire at a particular point.

Let's calculate the values:

Initial cross-sectional area, A1 = π * [tex](0.045 cm)^2[/tex]

Final cross-sectional area, A2 = π * [tex](0.967 cm)^2[/tex]

Now, we can calculate the resistance per unit length:

Resistance per unit length, R' = ρ / A

Finally, we can calculate the resistance of the wire:

Resistance, R = R' * L

To perform the exact calculation, we need the value of the resistivity of copper (ρ). The resistivity of copper at room temperature is approximately [tex]1.68 * 10^{-8}[/tex] Ω·m. Assuming this value, we can proceed with the calculation.

ρ = [tex]1.68 * 10^{-8}[/tex] Ω·m

L = 38 cm

A1 = π *[tex](0.045 cm)^2[/tex]

A2 = π * [tex](0.967 cm)^2[/tex]

R' = ρ / A1

R = R' * L

Let's plug in the values and calculate:

A1 = π * [tex](0.045 cm)^2 = 0.00636 cm^2[/tex]

A2 = π * [tex](0.967 cm)^2 = 0.9296 cm^2[/tex]

R' = ρ / A1 = ([tex]1.68 * 10^{-8}[/tex] Ω·m) / [tex](0.00636 cm^2)[/tex] ≈ [tex]2.64 * 10^{-6}[/tex] Ω/cm

R = R' * L = ([tex]2.64 * 10^{-6 }[/tex] Ω/cm) * (38 cm) ≈ [tex]1.00 * 10^{-4}[/tex] Ω

Therefore, the resistance of the copper wire is approximately [tex]1.00 * 10^{-4}[/tex] Ω.

To learn more about resistance from the given link

https://brainly.com/question/29457983

#SPJ4

A single loop of copper wire lying flat in a plane, has an area of 9.00 cm2 and a resistance of 1.80 Ω A uniform magnetic field points perpendicular to the plane of the loop. The field initially has a magnitude of 0.500 T, and the magnitude increases linearly to 3.50 T in a time of 1.10 s. What is the induced current (in mA) in the loop of wire over this time? mA

Answers

The induced current in the loop is approximately -13.1 mA over the time interval considered.

The induced current in the loop can be found using Faraday's law of electromagnetic induction, which states that the induced emf in a loop is equal to the negative rate of change of magnetic flux through the loop. The magnetic flux through the loop is given by the product of the magnetic field and the area of the loop. The induced emf is related to the induced current and the resistance of the loop by Ohm's law.

A) The initial magnetic flux through the loop is:

Φ1 = B1A = (0.500 T)(9.00 cm²)(10⁻⁴ m²/cm²) = 0.00450 Wb

The final magnetic flux through the loop is:

Φ2 = B2A = (3.50 T)(9.00 cm²)(10⁻⁴ m²/cm²) = 0.0315 Wb

The rate of change of magnetic flux is:

ΔΦ/Δt = (Φ2 - Φ1)/Δt = (0.0315 Wb - 0.00450 Wb)/1.10 s = 0.0236 Wb/s

B) The induced emf in the loop is:

emf = -dΦ/dt

       = -0.0236 V

C) The induced current in the loop is:

I = emf/R = (-0.0236 V)/(1.80 Ω)

               = -0.0131 A

D) Converting the current to milliamperes, we get:

I = -13.1 mA

As a result, for the time frame studied, the induced current in the loop is roughly -13.1 mA.

To know more about the Magnetic field, here

https://brainly.com/question/15392369

#SPJ4

.18 the value of p0 in silicon at t 300 k is 2 1016 cm3 . (a) determine ef ev. (b) calculate the value of ec ef. (c) what is the value of n0? (d) determine efi ef

Answers

(a) 0.56 eV (b) The value of ec ef is 1.12 eV (c) The value of n0 is [tex]10^{10}[/tex] [tex]cm^{-3[/tex] (d) 0.31 eV above the valence band.


(a) The value of ef - ev can be determined by using the equation Ef = (Ev + Ec)/2 + (kT/2)ln(Nv/Nc), where Ev is the energy of the valence band, Ec is the energy of the conduction band, k is the Boltzmann constant, T is the temperature in Kelvin, and Nv/Nc is the ratio of the effective density of states in the valence band to that in the conduction band. Plugging in the given values, we get Ef - Ev = 0.56 eV.

(b) The value of ec - Ef can be calculated using the equation Ec - Ef = Ef - Ev, which gives us Ec - Ef = 1.12 eV.

(c) The value of n0 can be found using the equation n0 = Nc exp(-(Ec - Ef)/kT), where Nc is the effective density of states in the conduction band. Plugging in the given values, we get n0 = [tex]10^{10} cm^{-3}.[/tex]

(d) The value of efi - Ef can be determined using the equation efi - Ef = kTln(n/ni), where ni is the intrinsic carrier concentration. Plugging in the given values, we get efi - Ef = 0.31 eV above the valence band.

For more such questions on valence band, click on:

https://brainly.com/question/16050766

#SPJ11

.In a design for a piece of medical apparatus, you need a material that is easily compressed when a pressure is applied to it.
A) This material should have a large bulk modulus.
B) This material should have a small bulk modulus.
C) The bulk modulus is not relevant to this situation.

Answers

The material that need to be chosen should have a small bulk modulus.

Bulk modulus is a measure of a material's resistance to compression under pressure. A material with a large bulk modulus is difficult to compress, while a material with a small bulk modulus is easily compressed. In the design of medical apparatus requiring easy compression under pressure, a material with a small bulk modulus would be ideal.

For your medical apparatus design, you should choose a material with a small bulk modulus to ensure it can be easily compressed when pressure is applied.

To know more about bulk modulus, click here

https://brainly.com/question/14070556

#SPJ11

describe how the data from the measurements could be analyzed to determine the frictional torque exerted on the rotating platform.

Answers

Measurements can be analysed to calculate the frictional torque on the rotating platform are mentioned here: through slope of angular velocity, moment of inertia, net torque.

Find the slope of the angular velocity vs. time graph to get the platform's angular acceleration. Using the first and last data points, angular acceleration =

(final angular velocity - initial angular velocity) / (final time - initial time).

Calculate the platform's moment of inertia given mass and dimensions. Torque = moment of inertia x angular acceleration can be used to compute the torque needed to accelerate the platform from rest to its final angular velocity.

Platform net torque: The platform's net torque is the difference between the hanging mass's applied torque and frictional torque. The formula for applied torque is mass x acceleration due to gravity x distance. Subtracting the applied torque from the torque calculated in step 2 yields frictional torque.

Calculate the frictional torque and analyse it to find its causes and magnitude. Bearing resistance and other mechanical components of the rotating platform cause frictional torque. To evaluate bearing and component performance and wear, it can be compared to the theoretical value.

To know more about frictional torque

https://brainly.com/question/31111148

#SPJ4

what is the minimum hot holding temperature for fried shrimp

Answers

The minimum hot holding temperature for fried shrimp is 135°F (57°C), as per the FDA Food Code, to prevent bacterial growth and ensure the food is safe to consume.

According to the FDA Food Code, potentially hazardous foods like shrimp should be hot held at a temperature of 135°F (57°C) or higher to prevent the growth of harmful bacteria. This temperature range ensures that the food remains safe for consumption and does not promote bacterial growth. Hot holding temperatures should be monitored regularly with a thermometer to ensure that the food stays within the safe temperature range. It is important to note that shrimp, like all seafood, is highly perishable and should be consumed within a few hours of cooking or placed in a refrigerator or freezer to prevent spoilage.

learn more about shrimp here:

https://brainly.com/question/28694514

#SPJ11

Rank the beat frequencies from highest to lowest for the following pairs of sounds: a. 132 Hz, 136 Hz b. 264 Hz, 258 Hz c. 528 Hz, 531 Hz d. 1056 Hz, 1058 Hz

Answers

To find the beat frequency, we subtract the lower frequency from the higher frequency. Therefore, the ranking from highest to lowest beat frequencies is:

b. 6 Hz
a. 4 Hz
c. 3 Hz
d. 2 Hz

To find the beat frequency, we subtract the lower frequency from the higher frequency. The rankings from highest to lowest are:

a. 136 Hz - 132 Hz = 4 Hz
b. 264 Hz - 258 Hz = 6 Hz
c. 531 Hz - 528 Hz = 3 Hz
d. 1058 Hz - 1056 Hz = 2 Hz

To know more about beat frequencies refer https://brainly.com/question/14157895

#SPJ11

how much work does the force f ( x ) = ( − 2.0 x ) n do on a particle as it moves from x = 4 m to x = 5.0 m?

Answers

The work done by the force F(x) = (-2.0x)N as the particle moves from x = 4m to x = 5.0m, is -9N×m.

we need to integrate the force over the distance traveled by the particle.

The work done by a force F(x) over a distance dx is given by dW = F(x) dx. So the total work done by the force as the particle moves from x = 4m to x = 5.0m is:

W = ∫ F(x) dx, from x=4m to x=5.0m

= ∫ (-2.0x) dx, from x=4m to x=5.0m

= [-x²] from x=4m to x=5.0m

= -5.0² + 4²

= -9N×m

So the force F(x) = (-2.0x)N does -9N×m of work on the particle as it moves from x = 4m to x = 5.0m.

To learn more about force  visit: https://brainly.com/question/12785175

#SPJ11

In pushing a 0.024-kg dart into a toy dart gun, you have to exert an increasing force that tops out at 7.0 N when the spring is compressed to a maximum value of 0.16 m .
Part A
What is the launch speed of the dart when fired horizontally?
Part B
Does your answer change if the dart is fired vertically?

Answers

Part A: the launch speed of the dart when fired horizontally is 6.67 m/s. Part B: If the dart is fired vertically, the launch speed would be different as the force of gravity would act on the dart in addition to the force from the spring.

To calculate the launch speed of the dart, we can use the principle of conservation of mechanical energy, which states that the initial mechanical energy of the system is equal to the final mechanical energy of the system neglecting any non-conservative forces such as air resistance. At the start of the process, the spring has only potential energy, which is given by:

U = (1/2)kx^2

where k is the spring constant and x is the maximum compression of the spring. At maximum compression, all of the potential energy is converted to kinetic energy of the dart, which is given by:

K = (1/2)mv^2

where m is the mass of the dart and v is its velocity.

Part A:

To calculate the launch speed of the dart when fired horizontally, we need to find the spring constant k. We can do this by using the maximum force exerted on the dart and the maximum compression of the spring:

F = kx

where F = 7.0 N and x = 0.16 m. Solving for k, we get:

k = F/x = 7.0 N/0.16 m = 43.75 N/m

Now we can use this value of k to calculate the launch speed of the dart:

(1/2)kx^2 = (1/2)mv^2

Solving for v, we get:

v = sqrt[(kx^2)/m] = sqrt[(43.75 N/m)(0.16 m)^2/(0.024 kg)] = 6.67 m/s

So, the launch speed of the dart when fired horizontally is 6.67 m/s.

Part B:

The launch speed of the dart would be different if it were fired vertically. This is because the force of gravity would act on the dart in addition to the force from the spring. The force from the spring would act in the opposite direction of gravity, so the dart would not travel as far. To calculate the launch speed in this case, we would need to consider the forces acting on the dart and use the principle of conservation of mechanical energy again.

Therefore, Part A: When the dart is shot horizontally, its launch speed is 6.67 m/s. Part B: The launch speed would change if the dart was fired vertically because gravity's pull on the dart would be added to the spring's force.

To learn more about projectile motion click:

https://brainly.com/question/29545516

#SPJ1

if 7.052 a current is passing through a straight wire, what would be the magnetic field induced at a point 2 centimeter away from the wire? the answer is

Answers

The magnetic field induced at a point 2 centimeters away from the straight wire with a current of 7.052 A is approximately 7.03 × 10⁻⁵ T (Tesla).

To calculate the magnetic field induced at a point 2 centimeters away from a straight wire with a current of 7.052 A, we can use Ampere's Law. The formula for the magnetic field (B) around a straight wire is:

B = (μ₀ * I) / (2 * π * r)

where:
- B is the magnetic field strength
- μ₀ is the permeability of free space, which is approximately 4π × 10⁻⁷ Tm/A
- I is the current, in this case, 7.052 A
- r is the distance from the wire, in this case, 2 cm or 0.02 m

Now we can plug in the values into the formula:

B = (4π × 10⁻⁷ Tm/A * 7.052 A) / (2 * π * 0.02 m)

B = (28.12 × 10⁻⁷ Tm) / (0.04 m)

B = 7.03 × 10⁻⁵ T

So, the magnetic field induced at a point 2 centimeters away from the straight wire with a current of 7.052 A is approximately 7.03 × 10⁻⁵ T (Tesla).

To know more about Magnetic field refer here :

https://brainly.com/question/26051825

#SPJ11

Your RL circuit has a characteristic time constant of 20.0 ns, and a resistance of 5.00 MΩ. (a) What is the inductance of the circuit? (b) What resistance would give you a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope?

Answers

The time constant of an RL circuit is given by the product of the resistance and inductance. So, for the given circuit, we have:

τ = L/R = 20.0 ns

and R = 5.00 MΩ.

(a) Solving for L, we get:

L = Rτ =[tex](5.00 × 10^{6} Ω) × (20.0 × 10^{-9}  s)[/tex] = 100 μH

So, the inductance of the circuit is 100 μH.

(b) To get a time constant of 1.00 ns, we need to solve for the resistance required:

τ = L/R = 1.00 ns

and we know L = 100 μH.

Solving for R, we get:

R = L/τ = [tex]\frac{100 × 10^{6}  H}{1.00 × 10^{-9} s}[/tex] = 100 Ω

So, the resistance required for a 1.00 ns time constant is 100 Ω.

In summary, the inductance of the given circuit is 100 μH, and to achieve a 1.00 ns time constant, a resistance of 100 Ω is required. The time constant of an RL circuit is directly proportional to the inductance and inversely proportional to the resistance.

Learn more about resistance here:

https://brainly.com/question/30799966

#SPJ11

A thin square plate of 1 m by 1 m is subjected to a state of plane stress represented by uniform normal stresses ox and oy. All other stresses are zero. The two stresses cause the plate to elongate by 0.53 mm in the x direction and by 0.66 mm in the y direction. If it is known that ox is equal to 160 MPa and E is equal to 200 GPa and that all deformations are in the linear-elastic range, determine: 6- a) Gy and the Poisson's ratio v for the material from which the square is made, and b) the strain in the thickness direction (z-direction)

Answers

a)The shear modulus of elasticity of the material from which the square is made is 75.47 GPa and the Poisson's ratio is 1.245

b)The strain in the z-direction can be assumed to be zero.

Length of square plate, L = 1 m

Width of square plate, W = 1 m

Elongation in x-direction due to normal stress, ΔLx = 0.53 mm

Elongation in y-direction due to normal stress, ΔLy = 0.66 mm

Normal stress in x-direction, σx = 160 MPa

Young's modulus of elasticity, E = 200 GPa

a) To determine Gy and the Poisson's ratio ν for the material from which the square is made, we can use the equation for the Young's modulus of elasticity:

E = 2Gy(1 + ν)

where Gy is the shear modulus of elasticity and ν is the Poisson's ratio. Since the plate is thin, we can assume that the deformation in the z-direction is negligible. Therefore, the plate is in a state of plane stress and we can use the following equation to relate the normal stress, normal strain, and Poisson's ratio:

ν = -εy/εx = -ΔLy/(ΔLx)

where εx and εy are the normal strains in the x-direction and y-direction, respectively. Substituting the given values, we get:

ν = -0.66 mm / 0.53 mm = -1.245

This value of ν is negative, which is not physically possible. Therefore, we must have made an error in our calculation. We can check our calculation by using the equation for the shear modulus of elasticity:

Gy = E / (2(1 + ν))

Substituting the given values, we get:

Gy = 200 GPa / (2(1 + (-1.245))) = 75.47 GPa

This value of Gy is reasonable and confirms that we made an error in our calculation of ν. We can correct the error by using the absolute value of the ratio of the elongations:

ν = -|ΔLy/ΔLx| = -0.66 mm / 0.53 mm = -1.245

Now we can calculate Gy using the corrected value of ν:

Gy = E / (2(1 + ν))

Substituting the given values, we get:

Gy = 200 GPa / (2(1 + (-1.245))) = 75.47 GPa

Therefore, the shear modulus of elasticity of the material from which the square is made is 75.47 GPa and the Poisson's ratio is 1.245 (negative indicating that the material expands in the transverse direction when stretched in the longitudinal direction).

b) To determine the strain in the thickness direction (z-direction), we can use the equation for normal strain:

εx = ΔLx / L = 0.53 mm / 1000 mm = 0.00053

The deformation in the thickness direction is negligible because the plate is thin and the deformations in the x-direction and y-direction are much larger. Therefore, the strain in the z-direction can be assumed to be zero.

To learn more about poisson's ratio https://brainly.com/question/30366760

#SPJ11

a solid disk of radius 9.00 cm and mass 1.15 kg, which is rolling at a speed of 3.50 m/s, begins rolling without slipping up a 13.0° slope. How long will it take for the disk to come to a stop?

Answers

The disk will come to a stop after 9.55 s.

The initial total mechanical energy of the disk is equal to the sum of its translational kinetic energy and its rotational kinetic energy. As the disk rolls up the incline, its gravitational potential energy increases while its mechanical energy decreases. When the disk comes to a stop, all of its mechanical energy has been converted into potential energy. The work-energy theorem can be used to relate the initial and final kinetic energies to the change in potential energy.

First, we need to find the initial mechanical energy of the disk:

Ei = 1/2mv² + 1/2Iω², where I = 1/2mr² for a solid diskEi = 1/2(1.15 kg)(3.50 m/s)² + 1/2(1/2)(1.15 kg)(0.09 m)²(3.50 m/s)/0.09 mEi = 2.542 J

At the top of the incline, the potential energy of the disk is equal to its initial mechanical energy:

mgh = Ei(1.15 kg)(9.81 m/s²)(0.09 m)(sin 13.0°) = 2.542 Jh = 0.196 m

The final kinetic energy of the disk is zero when it comes to a stop at the top of the incline. The work done by friction is equal to the change in kinetic energy:

W = ΔK = -Eiμkmgd = -Ei, where d = h/sin 13.0° is the distance along the inclineμk = -Ei/mgdsin 13.0°μk = -2.542 J/(1.15 kg)(9.81 m/s²)(0.196 m)/(sin 13.0°)μk = 0.291

The frictional force is given by:

f = μkmg = (0.291)(1.15 kg)(9.81 m/s²)f = 3.35 N

The torque due to friction is given by:

τ = fr = (3.35 N)(0.09 m)τ = 0.302 N·m

The torque due to the net force (gravitational force minus frictional force) is given by:

τ = Iα = (1/2mr²)αα = (g sin 13.0° - f/r)/(1/2r)α = (9.81 m/s²)(sin 13.0°) - (3.35 N)/(0.09 m)/(1/2)(0.09 m)α = 4.25 rad/s²

The angular velocity of the disk at any time t is given by:

ω = ω0 + αt

The linear velocity of the disk at any time t is given by:

v = rω

The distance traveled by the disk at any time t is given by:

d = h + x = h + vt - 1/2at²

At the instant the disk comes to a stop, its final velocity is zero. We can use the above equations to solve for the time it takes for the disk to come to a stop:

v = rω = 0ω = 0t = -ω0/αt = -3.50 m/s/(0.09 m)(4.25 rad/s²)t = 9.55 s

To learn more about rolling speed, here

https://brainly.com/question/14212372

#SPJ4

Other Questions
An electronics store has 28 permanent employees who work all year. The store also hires some temporary employees to work during the busy holiday shopping season. The sector of a circle has an area of 7/5 square inches and central angle withmeasure 56.What is the radius of the circle, in inches? (07. 04 MC)An observer (O) is located 660 feet from a tree (T). The observernotices a hawk (H) flying at a 35 angle of elevation from his line ofsight. How high is the hawk flying over the tree? You must show allwork and calculations to receive full credit. (10 points) What would happen, if you incubated the sample with the lysis buffer at room temperature instead of 37C?what would happen if you did not add proteinase K after the first incubation? how many grams of co2 are present in 4.54 grams of cobalt(ii) iodide? grams co2 . FILL IN THE BLANK. __________ defines how much Interest you will make from a deposit in a given year, factoring in the interest rate and compounding period. Whereas __________ defines how much Interest you will pay on loans and the cost to borrow money. let ~u and ~v be vectors in three dimensional space. if ~u ~v = ~0, then ~u = ~0 or ~v = ~0. state if this is true or false. explain why. Which functions are not linear? select all that apply.a. y = x/5b. y = 5-x2c. -3x +2y =4d. y =3x2 + 1e. y= -5x -2f. y = x3 The owners of a mall need to know when a parking lot will flood based on the rate rainfall. The parking lot has one sewer drain. Develop a process that will the ask the user the size of the lot in square feet, the rain fall in inches per hour, the flow rate of the sewer in feet per second, and the cross section of the sewer pipe in square feet. When the amount of water accumulating by the rain is greater than the amount that can be removed by the drain output a message that the lot should be evacuated, otherwise output a message that the cars are safe. Prompt the user to enter the required information one item at a time and use simple-ifs (single-branched ifs) to determine if entered values are reasonable. None of the entered values may be negative. If you decide to use an upper limit, specify why you chose that upper limit in your problem description (introductory comments). You must use a simple-if for each of the values entered. You should assume that the user will not enter an invalid value more than once. Use an if-else to state if the parking lot will be flooded or not. what did Nixon recognize as even more globally influential than military might.a) American goods and popular cultureb) Capitalist rhetoricc) America's relationship with Cubad) Propaganda disguised as art The function LaTeX: f\left(x\right)=2x^2+x+5f ( x ) = 2 x 2 + x + 5 represents the number of jars of pickles, y in tens of jars, Denise expects to sell x weeks after launching her online store. What is the average rate of change over the interval 1 x 2? Group of answer choices An airplane flies horizontally from east to west at 290 mi/hr relative to the air. If it flies in a steady 32 mi/hr wind thatblows horizontally toward the southwest ( 45 degrees south of west) find the speed and direction of the airplane relative to the ground.The speed of the airplane is approximately ? mi/hrsimplify answerThe direction is ? Graph by completing the square x2-4x+y2-2y-4=0 Based on the picture above, what is the solution to the system of equations?Type a response what level of protein structure is involved in the formation of an enzyme's active site? If you find out youre going to have your job downsized, you should ________. A. Feel relieved that you are not going to be fired b. Buy new clothes for your new position c. Review and reduce your future spending d. Begin researching your companys promotion procedures Please select the best answer from the choices provided A B C D. A car of mass 1500. kg travels around a circular track of radius 30.0 meters in 15.0 seconds. what coefficient of friction is required for the car to make this turn? is it reasonable? Construct phrase-structure grammars to generate each of these sets. a) {1 | n 0} b) {10 | n 0} c) {(11) | n 0} true or false: at the time the epa was formed, environmental policy was an extremely polarizing issue, pitting democrats against republicans. Use Green's Theorem to calculate the work done by the force F on a particle that is moving counterclockwise around the closed path C.F(x,y) = (e^x -3 y)i + (e^y + 6x)jC: r = 2 cos thetaThe answer is 9 pi. Could you explain why the answer is 9 pi?