Answer:
Hello the needed relation is missing below is the required relation
[tex]X_{p} = \frac{x_{s} }{1+x_{s} }[/tex] composition : propane = 0.70, butane = 0.3
Answer : ≈ 5.75 hrs
Explanation:
Applying the data given in regards to the material balance
Butane balance input into the still = 5 mole feed/hr | 0.30 mol butane/molfeed
since the total volume of the liquid in the still is constant
The output from the still is = 5mol condensed/hr | x[tex]_{p}[/tex] mol butane/mol condensed
unsteady state equation = [tex]\frac{dx_{s} }{dt}[/tex] = 0.15 - [tex]0.5X_{p}[/tex]
note : to reduce the equation a single dependent variable we have to substitute for [tex]x_{p}[/tex]
[tex]\frac{dx_{s} }{dt}[/tex] [tex]= 0.15 + x_{s} / 1 + (0.5)x_{s}[/tex]
In order to find the time it will take for X to change from 0.3 to 0.35
integrate the above equation using the limits : t = 0, x[tex]_{s}[/tex] = 0.3 and t = Ф,
x[tex]_{s} = 0.35[/tex]
= [tex][ - (x_{s} /0.35 - (1/(0.35)^2)* In(0.15 - 0.35x_{s} ) ]_{0.3} ^{0.35}[/tex]
hence t = Ф ≈ 5.75 hrs
While having a discussion, Technician A says that you should never install undersized tires on a vehicle. The vehicle will be lower, and the speedometer will no longer be accurate. Technician B says that the increase in engine rpm for a given speed will result in a decrease in fuel economy. Who is correct
Answer:
Both technician A and technician B are correct.
Explanation: Vehicle manufacturers always specify the size of the tires required for a given vehiclefor optimal efficiency,this will ensure that the speedometer is accurate and the level of the vehicle is good enough to ensure the vehicle works efficiently.
It is also a known fact that an increase in a vehicle's rpm(revolution per minute) will eventually lead to increased fuel consumption which means the fuel economy of the vehicle will be reduced making the vehicle less efficient in its fuel consumption.
The screw of shaft straightener exerts a load of 30 as shown in Figure . The screw is square threaded of outside diameter 75 mm and 6 mm pitch.
force required at the rim of a 300mm diameter hand wheel, if there is a collar
bearing of 50 mm mean diameter provided in the arrangement to exert axial
load. Assume the coefficient of friction for the collar as 0.2.
Answer:
See calculation below
Explanation:
Given:
W = 30 kN = 30x10³ N
d = 75 mm
p = 6 mm
D = 300 mm
μ = tan Φ = 0.2
1. Force required at the rim of handwheel
Let P₁ = Force required at the rim of handwheel
Inner diameter or core diameter of the screw = dc = do - p = 75 - 6 = 69 mm
Mean diameter of screw: *d = [tex]\frac{do + dc}{2}[/tex] = (75 + 69) / 2 = 72 mm
and
tan α = p / πd = 6 / (π x 72) = 0.0265
∴ Torque required to overcome friction at he threads is T = P x d/2
T = W tan (α + Ф) d/2
T = [tex]W(\frac{tan \alpha + tan \theta}{1 - tan \alpha + tan \theta } ) * \frac{d}{2}[/tex]
T = 30x10³ * ((0.0265 + 0.2) / (1 - 0.0265 x 0.2)) x 72/2
T = 245,400 N-mm
We know that the torque required at the rim of handwheel (T)
245,400 = P1 x D/2 = P1 x (300/2) = 150 P1
P1 = 245,400 / 150
P1 = 1636 N
2. Maximum compressive stress in the screw
30x10³
Qc = W / Ac = -------------- = 8.02 N/mm²
π/4 * 69²
Qc = 8.02 MPa
Bearing pressure on the threads (we know that number of threads in contact with the nut)
n = height of nut / pitch of threads = 150 / 6 = 25 threads
thickness of threads, t = p/2 = 6/2 = 3 mm
bearing pressure on the threads = Pb = W / (π d t n)
Pb = 30 x 10³ / (π * 72 * 3 * 25)
Pb = 1.77 N/mm²
Max shear stress on the threads = τ = 16 T / (π dc³)
τ = (16 * 245,400) / ( π * 69³ )
τ = 3.8 M/mm²
*the mean dia of the screw (d) = d = do - p/2 = 75 - 6/2 = 72
∴max shear stress in the threads τmax = 1/2 * sqrt(8.02² + (4 * 3.8²))
τmax = 5.5 Mpa
3. efficiency of the straightener
To = W tan α x d/2 = 30x10³ * 0.0265 * 72/2 = 28,620 N-mm
∴Efficiency of the straightener is η = To / T = 28,620 / 245,400
η = 0.116 or 11.6%
By assuming the coefficient of friction for the collar as 0.2. efficiency of straightner is 11.6%.
What is Wheel?Wheels are circular frames or disks that are mounted on machines or vehicles and are designed to rotate around an axis.
Given:
W = 30 kN = 30x10³ N
d = 75 mm
p = 6 mm
D = 300 mm
μ = tan Φ = 0.2
1. Force required at the rim of handwheel :
Let P₁ = Force required at the rim of handwheel
Inner diameter or core diameter of the screw = dc = do - p = 75 - 6 = 69 mm
Mean diameter of screw: *d = = (75 + 69) / 2 = 72 mm and
tan α = p / πd = 6 / (π x 72) = 0.0265
Torque required to overcome friction at he threads is T = P x d/2
T = W tan (α + Ф) d/2
T = 30x10³ * ((0.0265 + 0.2) / (1 - 0.0265 x 0.2)) x 72/2
T = 245,400 N-mm
We know that the torque required at the rim of handwheel (T)
245,400 = P1 x D/2 = P1 x (300/2) = 150 P1
P1 = 245,400 / 150
P1 = 1636 N
2. Maximum compressive stress in the screw :
30x10³
Qc = W / Ac = -------------- = 8.02 N/mm²
π/4 * 69²
Qc = 8.02 MPa
Bearing pressure on the threads (we know that number of threads in contact with the nut)
n = height of nut / pitch of threads = 150 / 6 = 25 threads
thickness of threads, t = p/2 = 6/2 = 3 mm
bearing pressure on the threads = Pb = W / (π d t n)
Pb = 30 x 10³ / (π * 72 * 3 * 25)
Pb = 1.77 N/mm²
Max shear stress on the threads = τ = 16 T / (π dc³)
τ = (16 * 245,400) / ( π * 69³ )
τ = 3.8 M/mm²
*the mean dia of the screw (d) = d = do - p/2 = 75 - 6/2 = 72
max shear stress in the threads τmax = 1/2 * sqrt(8.02² + (4 * 3.8²))
τmax = 5.5 Mpa
Therefore, efficiency of the straightener :
To = W tan α x d/2 = 30x10³ * 0.0265 * 72/2 = 28,620 N-mm
Efficiency of the straightener is η = To / T = 28,620 / 245,400
η = 0.116 or 11.6%
Learn more about Wheel, here;
https://brainly.com/question/29297499
#SPJ2
how can we prevent chemical hazards in labotary
Answer:
We can prevent it by:
a) By wearing GOOGLES.
b) By wearing our Lab coat.
c) Fire extinguisher should always be present in the lab.
d) Hand Gloves must be worn.
e) No playing in the lab.
f) No touching of things/equipment's e.g bottles, in the lab.
g) No eating/snacking in the lab.
h) Always pay attention, no gisting.
i) Adult/qualified person must be present in the lab with pupils/students.
Explanation:
Hope it helps.
A 60-Hz 220-V-rms source supplies power to a load consisting of a resistance in series with an inductance. The real power is 1500 W, and the apparent power is 4600 VA.
a. Determine the value of the resistance.
b. Determine the value of the inductance.
Answer:
(a) The value of the resistance is 3.431 Ω
(b) The value of the inductance is 0.0264 H
Explanation:
Given;
frequency of the source, f = 60 Hz
rms voltage, V-rms = 220 V
real power, Pr = 1500 W
apparent power, Pa = 4600 VA
(a). Determine the value of the resistance
[tex]P_r = I_{rms}^2R[/tex]
where;
R is resistance
[tex]I_{rms} = \frac{Apparent \ Power}{V_{rms}} \\\\I_{rms} = \frac{P_a}{V_{rms}}\\\\I_{rms}= \frac{4600}{220} \\\\I_{rms}= 20.91 \ A[/tex]
Resistance is calculated as;
[tex]R = \frac{P_r}{I_{rms}^2} \\\\R = \frac{1500}{(20.91)^2} \\\\R = 3.431 \ ohms[/tex]
(b). Determine the value of the inductance.
[tex]Q_L = I_{rms}^2 X_L[/tex]
where;
[tex]Q_L[/tex] is reactive power
[tex]X_L[/tex] is inductive reactance
[tex]Apparent \ power = \sqrt{Q_L^2 + P_r^2} \\\\P_a^2 = Q_L^2 + P_r^2\\\\Q_L^2 = P_a^2 - P_r^2\\\\Q_L^2 = 4600^2 - 1500^2\\\\Q_L^2 = 18910000\\\\Q_L = \sqrt{18910000}\\\\Q_L = 4348.56 \ VA[/tex]
inductive reactance is calculated as;
[tex]X_L = \frac{Q_L}{I_{rms}^2} \\\\X_L = \frac{4348.56}{(20.91)^2} \\\\X_L = 9.95 \ ohms[/tex]
inductance is calculated as;
[tex]X_L = \omega L\\\\X_L = 2\pi f L\\\\L = \frac{X_L}{2\pi f} \\\\L = \frac{9.95}{2\pi *60} \\\\L = 0.0264 \ H\\\\L = 26.4 \ mH[/tex]
what are the conditions for sheet generator to build up its voltage?
Answer:
There are six conditions
1. Poles should contain some residual flux.
2. Field and armature winding must be correctly connected so that initial mmm adds residual flux.
3. Resistance of field winding must be less than critical resistance.
4. Speed of prime mover of generator must be above critical speed.
5. Generator must be on load.
6. Brushes must have proper contact with commutators.
Explanation:
Which statement about tensile stress is true? A. Forces that act perpendicular to the surface and pull an object apart exert a tensile stress on the object. B. Forces that act perpendicular to the surface and squeeze an object exert a tensile stress on the object. C. Forces that act parallel to the surface exert a tensile stress on the object. D. Forces that decrease the length of the material exert a tensile stress on the object.
Answer:
A. Forces that act perpendicular to the surface and pull an object apart exert a tensile stress on the object.
Explanation:
Tensile stress is due to tension forces on a material. Tensile force acts perpendicularly away from the surface of the substance. The pull on the material due to the tensile force exerts tensile stress on the material, that tends to pull the material apart. The magnitude of the tensile stress is given as
σ = [tex]\frac{P}{A}[/tex]
where σ is the tensile stress
P is the tensile force pulling the material apart
A is the cross-sectional area through which the tensile force acts perpendicularly.
4.116 The lid of a roof scuttle weighs 75 lb. It is hinged at corners A and B and maintained in the desired position by a rod CD pivoted at C. A pin at end D of the rod fits into one of several holes drilled in the edge of the lid. For α 5 50°, determine (a) the magnitude of the force exerted by rod CD, (b) the reactions at the hinges. Assume that the hinge at B does not exert any axial thrust. Beer, Ferdinand. Vector Mechanics for Engineers: Statics (p. 219). McGraw-Hill Higher Education. Kindle Edition.
Answer:
(a) The magnitude of force is 116.6 lb, as exerted by the rod CD
(b) The reaction at A is (-72.7j-38.1k) lb and at B it is (37.5j) lb.
Explanation:
Step by step working is shown in the images attached herewith.
For this given system, the coordinates are the following:
A(0, 0, 0)
B(26, 0, 0)
And the value of angle alpha is 20.95°
Hope that answers the question, have a great day!
1. How many PWM generator blocks are there in LM3S1968? What are they? 2. How many independent PWM outputs can be generated on an LM3S1968? 3. List at least two applications for PWM. 4. What does NVIC in a timer stand for? Explain its significance. 5. Where does the counter/timer derive its time period from? 6. Draw the waveforms (square wave) with duty cycles (on) 25%, 50%, 75%.One of the purpose of the lab is to generate a PWM signal in one of the ports using systick timer. a. Given a signal with 1 KHz, find out the time period of each cycle. Find out the time span of the high signal and the low signal given 10%, 20%, 30% and 90% duty cycles. b. We would like to generate a signal with a certain frequency (ex. 100 Hz, 1 KHz, etc.) and certain duty cycle (10%, 20%, etc.), find out the values we need to load into the timer register? Given that the XTAL = 8 MHz.
Answer:
1) There are three (3) PWM generator blocks in LM3S1968 and they are
PWM signal generatorADC trigger selectorPWM dead-band generator2) Two (2) independent PWM outputs can be generated on an LM3S1968
3) Applications for PWM
Control Brightness of LED using Duty Cycle controlSpeed Control of DC Motor4) NVIC in a timer stand for ; Nested Vectored Interrupt Controller
its significance is that it is used to handle and give priorities to exception and Interrupts
5) The counter/timer derive its time period from counting the output pulses for one cycle which is the duration over which gate is open
Explanation:
1) There are three (3) PWM generator blocks in LM3S1968 and they are
PWM signal generatorADC trigger selectorPWM dead-band generator2) Two (2) independent PWM outputs can be generated on an LM3S1968
3) Applications for PWM
Control Brightness of LED using Duty Cycle controlSpeed Control of DC Motor4) NVIC in a timer stand for ; Nested Vectored Interrupt Controller
its significance is that it is used to handle and give priorities to exception and Interrupts
5) The counter/timer derive its time period from counting the output pulses for one cycle which is the duration over which gate is open
6) THE WAVEFORM DIAGRAMS IS ATTACHED BELOW
it can be seen that 50 % rises and goes down at half interval. 75 % goes down at half more of 50% and 25% goes down at half less of 50%
An inventor claims to have developed a device requiring no work or heat transfer input yet able to produce hot and cold air streams at steady state.
a. True
b. False
Answer:
a. True
Explanation:
Apply the principle of conservation of mass.
and also the expression for the steady flow energy equation.
kinetic and potential energy effects can be neglected.
The given statement by the inventor who is claiming the development of a device that requires no work or heat transfer input yet is able to produce hot and cold air streams at a steady state is definitely false.
What is heat transfer?Heat transfer may be characterized as a type of process which involves the migration of heat from one object or component to another by numerous mechanisms like conduction, convection, and/or radiation.
The process of heat transfer may occur where there is a temperature difference between two objects exist. It significantly utilizes the mechanism of exchanging thermal energy between two or more physical systems.
According to the concept of physics, no object or thing has the ability to perform its function without the utilization of any source of heat or energy. Then, how it is possible for that device to produce hot and cold air streams at a steady state.
Therefore, the given statement by the inventor is absolutely false.
To learn more about Heat transfer, refer to the link:
https://brainly.com/question/16055406
#SPJ2
Determine the normal stress in a ball, which has an outside diameter of 160 mm and a wall thickness of 3.8 mm, when the ball is inflated to a gage pressure of 78 kPa.
Answer:
The normal stress is 0.7821 MPa
Explanation:
The external diameter D = 160 mm
The thickness t = 3.8 mm = 3.8 x 10^-3 m
gauge pressure P = 78 kPa = 78 x 10^3 Pa
The maximum shear stress τmax = ?
The external radius of the shell from the external surface R = D/2 = 160/2 = 80 mm
The internal radius of the shell r = R - t
==> 80 - 3.8 = 76.2 mm
Therefore the internal diameter d = 2r = 2 x 76.2 = 152.4 mm
==> d = 152.4 x 10^-3 m
The normal stress σ = [tex]\frac{Pd}{4t}[/tex] = [tex]\frac{78*10^{3}*152.4*10^{-3} }{4*3.8*10^{-3} }[/tex] = 782052.63 Pa
==> σ = 0.7821 MPa
Given the unity feedback system
G(s)= K(s+4)/s(s+1.2)(s+2)
Find:
a. The range of K that keeps the system stable
b. The value of K that makes the system oscillate
c. The frequency of oscillation when K is set to the value that makes the system oscillate
Answer:
A.) 0 > K > 9.6
B.) K = 9.6
C.) w = +/- 2 sqrt (3)
Explanation:
G(s)= K(s+4)/s(s+1.2)(s+2)
For a closed loop stability, we can analyse by using Routh - Horwitz analysis.
To make the pole completely imaginary, K must be equal to 9.6 Because for oscillations. Whereas, one pair of pole must lie at the imaginary axis.
Please find the attached files for the solution
4. ""ABC constriction Inc."" company becomes the lowest in the bed process to get a $21 million construction project for ""Northern Inc."". Now ""ABC construction Inc."" planning to make a formal contract agreement
Answer:
hello your question is incomplete here is the complete question
. “ABC construction Inc.” company becomes the lowest in the bed process to get a $21 million construction project for “Northern Inc.”. Now “ABC construction Inc.” planning to make a formal contract agreement with the “Northern Inc.”. What are the main elements of this agreement to consider it as a legal contract?
Answer : elements of the agreement
offeracceptancecapacity certaintyconsiderationintention to create legal relationExplanation:
Offer : an offer is the beginning element for any valid agreement to be started or reached between two or more bodies. ABC construction would have to make an offer first for the agreement to be valid
Acceptance: This is part where by the company "Northern Inc" after receiving the offer from ABC construction Inc would have to consent to the approval of the offer made.
capacity : This the element of the agreement that helps to ensure that both parties have the legal and financial backings to embark on the contract agreement .
certainty : This element ensures that both parties understands the terms and conditions attached to the agreement and this to ensure that there are no bogus conditions
Consideration : This is a very vital element because the both parties have to give something in return while going into a valid agreement
Intention to create legal relation : Legal relations are applied to contract agreements whereby both parties want the contract agreement to b legally enforced and this is important in order to prevent contract breach by any party involved in the agreement
In the LC-3 data path, the output of the address adder goes to both the MARMUX and the PCMUX, potentially causing two very different register transfers to take place. Why does this not happen
Answer:
no need for that
Explanation:
they are not the same at all
A four-cylinder four-stroke engine is modelled using the cold air standard Otto cycle (two engine revolutions per cycle). Given the conditions at state 1, total volume (V1) of each cylinder, compression ratio (r), maximum cycle temperature (T3), and engine speed in RPM, determine the efficiency and other values listed below. The specific heats for air are given as Cp 1.0045 kJ/kg-K and Cv-0.7175 kJ/kg-K.
--Given Values--
T1 (K) 325
P1 (kPa)= 185
V1 (cm^3) = 410
r=8
T3 (K) 3420
Speed (RPM) 4800
Answer:
56.47%
Explanation:
Determine the efficiency of the Engine
Given data : T1 (k) = 325, P1 (kpa) = 185,
V1 (cm^3) = 410 , r = 8, T3(k) = 3420
speed ( RPM) = 4800
USING THIS FORMULA
efficiency ( n ) = [tex]1 - (\frac{1}{(rp)^{r-1} })[/tex]
= 1 - [tex](\frac{1}{(8)^{r-1} })[/tex] = 1 - (1/8^1.4-1 )
= 0.5647 = 56.47%
An AISI/SAE 4340-A steel rod with the yield strength of 450 MPa, 2.0 m long will be subjected to a tensile force, must have the minimum weight possible, and must behave elastically for this load. The elastic modulus of steel is 207 GPa. What is the engineering strain of the rod
Answer: 0.002174
Explanation:
Given that the
Yield strength rho = 450 MPa
Length = 2 m
Elastic modulus E= 207 GPa
According to Hook's law, if the elastic limits is not reached, the elastic modulus is the ratio of elastic strength to the elastic strain ə
E = rho/ə
Make ə the subject of formula
ə = rho/ E
ə = (450 × 10^6) / (207 × 10^9)
ə = 2.174 × 10^-3
Therefore, the engineering strain which depends on engineering stress and elastic modulus is 2.174 × 10^-3
Elastic Strain has no S.I Units.
what is the rated power output in ( kw) of a 8 pole motor designed to an IEC 180L motor frame ?
Answer:
P=11 kW
Explanation:
Given that
Number of poles= 8
I.E.C. 180L motor frame
From data book , for 8 poles motor at 50 Hz
Speed = 730 rpm
Power factor = 0.75
Efficiency at 100 % load= 89.3 %
Efficiency at 50 % load= 89.1 %
Output power = 11 kW
Therefore the rated output power of 8 poles motor will be 11 kW. Thus the answer will be 11 kW.
P=11 kW
Carbon dioxide (CO2) at 1 bar, 300 K enters a compressor operating at steady state and is compressed adiabatically to an exit state of 10 bar, 520 K. The CO2 is modeled as an ideal gas, and kinetic and potential energy effects are negligible. For the compressor, determine (a) the work input, in kJ per kg of CO2 flowing, (b) the rate of entropy production, in kJ/K per kg of CO2 flowing, and (c) the isentropic compressor efficiency.
Answer:
A.) 0.08 kJ/kg.K
B.) 207.8 KJ/Kg
C.) 0.808
Explanation:
From the question, the use of fluids mechanic table will be required. In order to get the compressor processes, the kinetic energy and the potential energy will be negligible while applying the ideal gas model.
Since the steam is a closed system, the carbon dioxide will be compressed adiabatically.
Please find the attached files for the solution and the remaining explanation.
You are the curator of a museum. The museum is running short of funds, so you decide to increase revenue. Should you increase or decrease the price of admission? Explain
Answer:
Explanation:
If the museum is running short of funds, and you decide to increase revenue. An increase or decrease in the price of admission into the museum depends on the following:
1. If demand for admission into the museum is elastic there are two possible outcomes
a. An increase in the price of admission leads to a decrease in the quantity demand of admission into the museum
b. A decrease in price of admission into the museum leads to an increase in the quantity demand of admission into the museum.
This follows the law of demand which states that "the higher the price, the lower the quantity demanded and the lower the price, the higher the quantity demanded".
2. If the demand for admission into the museum is inelastic, then an increase in price will lead to an increase in revenue of the museum.
Therefore, before the curator increase the price of admission into the museum, he should first determine the price elasticity of demand of the museum.
A car travels from A, due north to a town B 4 km away. It then travels due east until it arrives town C 5 km from B. determine the distance of town C from A
Answer:
A to C = 6.4 km
Explanation:
A to B = 4 km
B to C = 5 km
A to C = using pythagorean theorem
a² + b² = c²
a = A to B = 4
b = B to C = 5
c = A to C
c² = 4² + 5²
c = 6.4 km (A to C)
According to the scenario, the distance between town C from town A is found to be 6.40 Km.
Which background does this question depend on?The background that this question depends on is known as the direction-based question. These types of questions completely depend on the distance of moving bodies like cars, persons, or any other objects as well with respect to the initial position.
According to the question,
The distance between town A to town B = 4 km.
The distance between town B to town C = 5 km.
Now, according to the Pythagoras theorem, the distance between town C to town A is as follows:
[tex]AC^2[/tex] = [tex]AB^2 +BC^2[/tex].
[tex]AC^2[/tex] = [tex]4^2+5^2[/tex]
[tex]AC^2[/tex] = 16 + 25 = 41.
AC = √41 = 6.40 km.
Therefore, the distance between town C from town A is found to be 6.40 Km.
To learn more about Pythagoras' theorem, refer to the link:
https://brainly.com/question/343682
#SPJ5
The following liquids are stored in a storage vessel at 1 atm and 25°C. The vessels are vented with air. Determine whether the equilibrium vapor above the liquid will be flammable. The liquids are:________.
a. Acetone
b. Benzene
c. Cyclohexane
d. Toluene Problem
Answer:
The liquids are TOLUENE because the equilibrum vapor above it will be flammable ( D )
Explanation:
Liquids stored at : 1 atm , 25⁰c and they are vented with air
Determining whether the equilibrum vapor above the liquid will be flammable
We can determine this by using Antoine equation to calculate saturation vapor pressure also apply Dalton's law to determine the volume % concentration of air and finally we compare answer to flammable limits to determine which liquid will be flammable
A) For acetone
using the Antoine equation to calculate saturation vapor pressure
[tex]In(P^{out} ) = A - \frac{B}{C + T}[/tex]
values gotten appendix E ( chemical process safety (3rd edition) )
A = 16.6513
B = 2940.46
C = -35.93
T = 298 k input values into Antoine equation
therefore ; [tex]p^{out}[/tex] = 228.4 mg
calculate volume percentage using Dalton's law
= V% = (saturation vapor pressure / pressure ) *100
= (228.4 mmHg / 760 mmHg) * 100 = 30.1%
The liquid is not flammable because its UFL = 12.8%
B) For Benzene
using the Antoine equation to calculate saturation vapor pressure
[tex]In(P^{out} ) = A - \frac{B}{C + T}[/tex]
values gotten appendix E ( chemical process safety (3rd edition) )
A= 15.9008
B = 2788.52
C = -52.36
T = 298 k input values into the above equation
[tex]p^{out}[/tex] = 94.5 mmHg
calculate volume percentage using Dalton's law
V% = (saturation vapor pressure / pressure ) *100
= (94.5 / 760 ) * 100 = 12.4%
Benzene is not flammable under the given conditions because its UFL =7.1%
C) For cyclohexane
using the Antoine equation to calculate saturation vapor pressure
[tex]In(P^{out} ) = A - \frac{B}{C + T}[/tex]
values gotten appendix E ( chemical process safety (3rd edition) )
A = 15.7527
B = 2766.63
c = -50.50
T = 298 k
solving the above equation using the given values
[tex]p^{out}[/tex] = 96.9 mmHg
calculate volume percentage using Dalton's law
V% = (saturation vapor pressure / pressure ) *100
= ( 96.9 mmHg /760 mmHg) * 100 = 12.7%
cyclohexane not flammable under the given conditions because its UFL= 8%
D) For Toluene
using the Antoine equation to calculate saturation vapor pressure
[tex]In(P^{out} ) = A - \frac{B}{C + T}[/tex]
values gotten from appendix E ( chemical process safety (3rd edition) )
A = 16.0137
B = 3096.52
C = -53.67
T = 298 k
solving the above equation using the given values
[tex]p^{out}[/tex] = 28.2 mmHg
calculate volume percentage using Dalton's law
V% = (saturation vapor pressure / pressure ) *100
= (28.2 mmHg / 760 mmHg) * 100 = 3.7%
Toluene is flammable under the given conditions because its UFL= 7.1%
A car radiator is a cross-flow heat exchanger with both fluids unmixed. Water, which has a flow rate of 0.05 kg/s, enters the radiator at 400 K and is to leave at 330 K. The water is cooled by air that enters at 0.75 kg/s and 300 K. If the overall heat transfer coefficient is 200 W/m2-K, what is the required heat transfer surface area?
Answer:
Explanation:
Known: flow rate and inlet temperature for automobile radiator.
Overall heat transfer coefficient.
Find: Area required to achieve a prescribed outlet temperature.
Assumptions: (1) Negligible heat loss to surroundings and kinetic and
potential energy changes, (2) Constant properties.
Analysis: The required heat transfer rate is
q = (m c)h (T h,i - T h,o) = 0.05 kg/s (4209J / kg.K) 70K = 14,732 W
Using the ε-NTU method,
Cmin = Ch = 210.45 W / K
Cmax = Cc = 755.25W / K
Hence, Cmin/Cmx(Th,i - Th,o) = 210.45W / K(100K) = 21,045W
and
ε=q/qmax = 14,732W / 21,045W = 0.700
NTU≅1.5, hence
A=NTU(cmin / U) = 1.5 x 210.45W / K(200W) / m² .K) = 1.58m²
1. the air outlet is..
Tc,o = Tc,i + q / Cc = 300K + (14,732W / 755.25W / K) = 319.5K
2. using the LMTD approach ΔTlm = 51.2 K,, R=0.279 and P=0.7
hence F≅0.95 and
A = q/FUΔTlm = (14,732W) / [0.95(200W / m².K) 51.2K] = 1.51m²
If you see a red, a green, and a white light on another boat, what does this tell you?
A boat is approaching you head on.
The red and green lights are sidelights that are positioned on the port side (red) (left as facing the bow) and starboard (green) (right as facing the bow) side of the boat. Various white lights are required depending on the size of the boat, but generally, a white masthead light and stern light are required. See the US Coast Guard site in the link below for more specific information.
Hope this helps
an adiabatic compressor receives 1.5 meter cube per second of air at 30 degrees celsius and 101 kpa. The discharge pressure is 505 kpa and the power supplied is 325 kW, what is the discharge temperature
Answer:
The discharge temperature is 259.82 K
Explanation:
In this question, we are concerned with calculating the discharge temperature
Please check attachment for complete solution
True or false : In improper integrals infinte intervals mean that both of the integration limits are should be infinity
Answer:
An improper integral is a definite integral that has either or both limits infinite or an integrand that approaches infinity at one or more points in the range of integration
Explanation:
Searches related to Probability questions - A person frequents one of the two restaurants KARIM or NAZEER, choosing Chicken's item 70% of the time and fish's item 30% of the time. Regardless of where he goes , he orders Afghani Chicken 60% of his visits. (a) The next time he goes into a restaurants, what is the probability that he goes to KARIM and orders Afghani Chicken. (b) Are the two events in part a independent? Explain. (c) If he goes into a restaurants and orders Afghani Chicken, what is the probability that he is at NAZEER. (d) What is the probability that he goes to KARIM or orders Afghani Chicken or both?
Answer:
a) 0.42
b) Independent
c) 30%
d) 0.88
Explanation:
Person chooses Chicken's item : 70% = 0.7
Person chooses fish's item : 30% = 0.3
Visits in which he orders Afghani Chicken = 60% = 0.6
a) Probability that he goes to KARIM and orders Afghani Chicken:
P = 0.7 * 0.6 = 0.42
b) Two events are said to be independent when occurrence of one event does not affect the probability of the other event's occurrence. Here the person orders Afghani Chicken regardless of where he visits so the events are independent.
c) P = 0.30 because he orders Afghani Chicken regardless of where he visits.
d) Let A be the probability that he goes to KARIM:
P(A) = 0.7 * ( 1 - 0.6 ) = 0.28
Let A be the probability that he orders Afghani Chicken:
P(B) = 0.3 * 0.6 = 0.18
Let C be the probability that he goes to KARIM and orders Afghani chicken:
= 0.7 * 0.6 = 0.42
So probability that he goes to KARIM or orders Afghani Chicken or both:
P(A) + P(B) + P(C) = 0.28 + 0.18 + 0.42 = 0.88
A small submarine has a triangular stabilizing fin on its stern. The fin is 1 ft tall and 2 ft long. The water temperature where it is traveling is 60°F. Determine the drag on the fin when the submarine is traveling at 2.5 ft/s.
Answer:
[tex]\mathbf{F_D \approx 1.071 \ lbf}[/tex]
Explanation:
Given that:
The height of a triangular stabilizing fin on its stern is 1 ft tall
and it length is 2 ft long.
Temperature = 60 °F
The objective is to determine the drag on the fin when the submarine is traveling at a speed of 2.5 ft/s.
From these information given; we can have a diagrammatic representation describing how the triangular stabilizing fin looks like as we resolve them into horizontal and vertical component.
The diagram can be found in the attached file below.
If we recall ,we know that;
Kinematic viscosity v = [tex]1.2075 \times 10^{-5} \ ft^2/s[/tex]
the density of water ρ = 62.36 lb /ft³
[tex]Re_{max} = \dfrac{Ux}{v}[/tex]
[tex]Re_{max} = \dfrac{2.5 \ ft/s \times 2 \ ft }{1.2075 \times 10 ^{-5} \ ft^2/s}[/tex]
[tex]Re_{max} = 414078.6749[/tex]
[tex]Re_{max} = 4.14 \times 10^5[/tex] which is less than < 5.0 × 10⁵
Now; For laminar flow; the drag on the fin when the submarine is traveling at 2.5 ft/s can be determined by using the expression:
[tex]dF_D = (\dfrac{0.664 \times \rho \times U^2 (2-x) dy}{\sqrt{Re_x}})^2[/tex]
where;
[tex](2-x) dy[/tex] = strip area
[tex]Re_x = \dfrac{2.5(2-x)}{1.2075 \times 10 ^{-5}}[/tex]
Therefore;
[tex]dF_D = (\dfrac{0.664 \times 62.36 \times 2.5^2 (2-x) dy}{\sqrt{ \dfrac{2.5(2-x)}{1.2075 \times 10 ^{-5}}}})[/tex]
[tex]dF_D = 1.136 \times(2-x)^{1/2} \ dy[/tex]
Let note that y = 0.5x from what we have in the diagram,
so , x = y/0.5
By applying the rule of integration on both sides, we have:
[tex]\int\limits \ dF_D = \int\limits^1_0 \ 1.136 \times(2-\dfrac{y}{0.5})^{1/2} \ dy[/tex]
[tex]\int\limits \ dF_D = \int\limits^1_0 \ 1.136 \times(2-2y)^{1/2} \ dy[/tex]
Let U = (2-2y)
-2dy = du
dy = -du/2
[tex]F_D = \int\limits^0_2 \ 1.136 \times(U)^{1/2} \ \dfrac{du}{-2}[/tex]
[tex]F_D = - \dfrac{1.136}{2} \int\limits^0_2 \ U^{1/2} \ du[/tex]
[tex]F_D = -0.568 [ \dfrac{\frac{1}{2}U^{ \frac{1}{2}+1 } }{\frac{1}{2}+1}]^0__2[/tex]
[tex]F_D = -0.568 [ \dfrac{2}{3}U^{\frac{3}{2} } ] ^0__2[/tex]
[tex]F_D = -0.568 [0 - \dfrac{2}{3}(2)^{\frac{3}{2} } ][/tex]
[tex]F_D = -0.568 [- \dfrac{2}{3} (2.828427125)} ][/tex]
[tex]F_D = 1.071031071 \ lbf[/tex]
[tex]\mathbf{F_D \approx 1.071 \ lbf}[/tex]
The speed above which an airplane will experience structural damage when a load is applied, instead of stalling, is called the ______________ speed and varies with weight
Answer:
Maneuvering speed.
Explanation:
The speed above which an airplane will experience structural damage when a load is applied, instead of stalling, is called the maneuvering speed and varies with weight.
In aeronautical engineering, the maneuvering speed (Va) of an aircraft such as an aeroplane, helicopter, or jet is an airspeed limitation which is mainly selected by an aircraft designer.
Generally, at speeds higher or greater than the manoeuvring speed, aircraft pilots are advised not to attempt a full deflection of any flight control surface because it's capable of resulting in a damage to the structure of an aircraft.
If you're a pilot, to find the maneuvering speed of an aircraft, you should look at the flight manual of the aircraft or on the cockpit placard in the aircraft. The maneuvering speed of an aircraft is a calibrated speed and should not be exceeded by any pilot.
what's the maximum shear on a 3.0 m beam carrying 10 kN/m?
Answer:
max shear = R = V = 15 kN
Explanation:
given:
load = 10 kn/m
span = 3m
max shear = R = V = wL / 2
max shear = R = V = (10 * 3) / 2
max shear = R = V = 15 kN
Describe the similarities and differences between circuits with resistors combined in series and circuits with resistors combined in parallel
Answer:
from the below explanation... we can say that, in the series circuit, flowing current remains the same at each part of the circuit. While in parallel circuits, the voltage across two endpoints of the branches is the same as the supplied voltage.
Explanation:
1.
The components in a series circuit are arranged in a single path from one end of supply to another end. However, the multiple components in a parallel circuit are arranged in multiple paths wrt the two end terminals of the battery.
2.
In a series circuit, a common current flows through all the components of the circuit. While in a parallel circuit, a different amount of current flows through each parallel branch of the circuit.
3.
In the series circuit, different voltage exists across each component in the circuit. Whereas in the parallel circuit, the same voltage exists across the multiple components in the circuit.
4.
A fault in one of the components of the series circuit causes hindrance in the operation of a complete circuit. As against fault in a single component in a parallel network do not hinder the functioning of another part of the circuit.
5.
The detection of a fault in case of a series circuit is difficult, but it is quite easy in parallel circuits.
6.
The equivalent resistance in case of a series circuit is always more than the highest value of resistance in the series connection. While the equivalent resistance in the parallel circuit is always less than any of the individual resistances in parallel combination.
The system is stimulated, via the voltage source, with a pulse of height 2 and width 4 s. Determine the voltage across the resistor.
Answer:
Voltage across resistor = 2 v
Explanation:
Given data
pulse height = 2 v
pulse width = 4s
calculate voltage across resistor ( the free hand sketch attached below explains more )
pulse height is also = amplitude of voltage ) = 2v
The voltage across the resistor = 2v Since the voltage from the source of the circuit is equal to the amplitude voltage in the circuit ( assuming no loss of voltage )
also the graphical representation of the problem is attached below