A six-lane divided multilane highway (three lanes in each direction) has a measured free-flow speed of 50 mi/h. It is on mountainous terrain with a traffic stream consisting of 7% large trucks and buses and 3% recreational vehicles. The driver population adjustment in 0.92. One direction of the highway currently operates at maximum LOS C conditions and it is known that the highway has PHF = 0.90.

Required:
How many vehicles can be added to this highway before capacity is reached, assuming the proportion of vehicle types remains the same but the peak-hour factor increases to 0.95?

Answers

Answer 1

Answer:

2901 vehicles

Explanation:

We are given;

Percentage of large trucks & buses; p_t = 7% = 0.07

Percentage of recreational vehicles; p_r = 3% = 0.03

PHF = 0.90

Driver population adjustment; f_p = 0.92

First of all, let's Calculate the heavy vehicle factor from the formula;

f_hv = 1/[1 + p_t(e_t - 1) + p_r(e_r - 1)]

Where;

e_t = passenger car equivalents for trucks and buses

e_r = passenger car equivalents for recreational vehicles

From the table attached, for a mountainous terrain, e_t = 6 and e_r = 4. Thus;

f_hv = 1/[1 + 0.07(6 - 1) + 0.03(4 - 1)]

f_hv = 1.44

Let's now calculate the initial hourly volume from the formula;

v_p = V1/(PHF × N × f_hv × f_p)

Where;

v_p = 15-minute passenger-car equivalent flow rate

V1 = hourly volume

N = number of lanes in each direction

From online tables of LOS criteria for multilane freeway segments, v_p = 1300 pc/hr/ln

Thus;

1300 = V1/(0.9 × 3 × 1.44 × 0.92)

V1 = 1300 × (0.9 × 3 × 1.44 × 0.92)

V1 = 4650 veh/hr

Now, let's Calculate the final hourly volume;

From online sources, the maximum capacity of a 6 lane highway with free-flow speed of 50 mi/h is 2000 pc/hr/ln.

We are told the online peak-hour factor increases to 0.95 and so PHF = 0.95.

Thus;

2000 = V2/(0.95 × 3 × 1.44 × 0.92)

V2 = 2000(0.95 × 3 × 1.44 × 0.92)

V2 = 7551 veh/hr

Number of vehicles added to the highway = V2 - V1 = 7551 - 4650 = 2901 vehicles

A Six-lane Divided Multilane Highway (three Lanes In Each Direction) Has A Measured Free-flow Speed Of

Related Questions

Steam enters a turbine with a pressure of 30 bar, a temperature of 400 oC, and a velocity of 160 m/s. Saturated vapor at 100 oC exits with a velocity of 100 m/s. At steady state, the turbine develops work equal to 540 kJ per kg of steam flowing through the turbine. Heat transfer between the turbine and its surroundings occurs at an average outer surface temperature of 350 K. Determine the rate at which entropy is produced within the turbine per kg of steam flo

Answers

Answer:

The rate at which entropy is produced within the turbine is 22.762 kilojoules per kilogram-Kelvin.

Explanation:

By either the Principle of Mass Conservation and First and Second Laws of Thermodynamics, we model the steam turbine by the two equations described below:

Principle of Mass Conservation

[tex]\dot m_{in} - \dot m_{out} = 0[/tex] (1)

First Law of Thermodynamics

[tex]-\dot Q_{out} + \dot m \cdot \left[h_{in}-h_{out}+ \frac{1}{2}\cdot (v_{in}^{2}-v_{out}^{2}) - w_{out} \right] = 0[/tex] (2)

Second Law of Thermodynamics

[tex]-\frac{\dot Q_{out}}{T_{out}} + \dot m\cdot (s_{in}-s_{out}) + \dot S_{gen} = 0[/tex] (3)

By dividing each each expression by [tex]\dot m[/tex], we have the following system of equations:

[tex]-q_{out} + h_{in}-h_{out} + \frac{1}{2}\cdot (v_{in}^{2}-v_{out}^{2}) - w_{out} = 0[/tex] (2b)

[tex]-\frac{q_{out}}{T_{out}} + s_{in}-s_{out} + s_{gen} = 0[/tex] (3b)

Where:

[tex]\dot Q_{out}[/tex] - Heat transfer rate between the turbine and its surroundings, in kilowatts.

[tex]q_{out}[/tex] - Specific heat transfer between the turbine and its surroundings, in kilojoules per kilogram.

[tex]T_{out}[/tex] - Outer surface temperature of the turbine, in Kelvin.

[tex]\dot m[/tex] - Mass flow rate through the turbine, in kilograms per second.

[tex]h_{in}[/tex], [tex]h_{out}[/tex] - Specific enthalpy of water at inlet and outlet, in kilojoules per kilogram.

[tex]v_{in}[/tex], [tex]v_{out}[/tex] - Speed of water at inlet and outlet, in meters per second.

[tex]w_{out}[/tex] - Specific work of the turbine, in kilojoules per kilogram.

[tex]s_{in}[/tex], [tex]s_{out}[/tex] - Specific entropy of water at inlet and outlet, in kilojoules per kilogram-Kelvin.

[tex]s_{gen}[/tex] - Specific generated entropy, in kilojoules per kilogram-Kelvin.

By property charts for steam, we get the following information:

Inlet

[tex]T = 400\,^{\circ}C[/tex], [tex]p = 3000\,kPa[/tex], [tex]h = 3231.7\,\frac{kJ}{kg}[/tex], [tex]s = 6.9235\,\frac{kJ}{kg\cdot K}[/tex]

Outlet

[tex]T = 100\,^{\circ}C[/tex], [tex]p = 101.42\,kPa[/tex], [tex]h = 2675.6\,\frac{kJ}{kg}[/tex], [tex]s = 7.3542\,\frac{kJ}{kg\cdot K}[/tex]

If we know that [tex]h_{in} = 3231.7\,\frac{kJ}{kg}[/tex], [tex]h_{out} = 2675.6\,\frac{kJ}{kg}[/tex], [tex]v_{in} = 160\,\frac{m}{s}[/tex], [tex]v_{out} = 100\,\frac{m}{s}[/tex], [tex]w_{out} = 540\,\frac{kJ}{kg}[/tex], [tex]T_{out} = 350\,K[/tex], [tex]s_{in} = 6.9235\,\frac{kJ}{kg\cdot K}[/tex] and [tex]s_{out} = 7.3542\,\frac{kJ}{kg\cdot K}[/tex], then the rate at which entropy is produced withing the turbine is:

[tex]q_{out} = h_{in} - h_{out} + \frac{1}{2}\cdot (v_{in}^{2}-v_{out}^{2})-w_{out}[/tex]

[tex]q_{out} = 3231.7\,\frac{kJ}{kg} - 2675.6\,\frac{kJ}{kg} + \frac{1}{2}\cdot \left[\left(160\,\frac{m}{s} \right)^{2}-\left(100\,\frac{m}{s} \right)^{2}\right] - 540\,\frac{kJ}{kg}[/tex]

[tex]q_{out} = 7816.1\,\frac{kJ}{kg}[/tex]

[tex]s_{gen} = \frac{q_{out}}{T_{out}}+s_{out}-s_{in}[/tex]

[tex]s_{gen} = \frac{7816.1\,\frac{kJ}{kg} }{350\,K} + 7.3542\,\frac{kJ}{kg\cdot K} - 6.9235\,\frac{kJ}{kg\cdot K}[/tex]

[tex]s_{gen} = 22.762\,\frac{kJ}{kg\cdot K}[/tex]

The rate at which entropy is produced within the turbine is 22.762 kilojoules per kilogram-Kelvin.

Outline how the technological innovations of the Renaissance led to the Industrial Age.

Answers

Answer:

Printing press , lenses etc,

Explanation:

Almost all of the Renaissance innovations that influenced the world, printing press was one of them. The printing press is widely regarded as the Renaissance's most significant innovation. The press was invented by Johannes Gutenberg, and Germany's culture was altered forever.

Astrophysics, humanist psychology, the printed word, vernacular vocabulary of poetry, drawing, and sculpture practice are only a few of the Renaissance's main inventions.

identify the unit of the electrical parameters represented by L and C and prove that the resonant frequency (fr)=1÷2π√LC

Answers

Answer:

L = Henry

C = Farad

Explanation:

The electrical parameter represented as L is the inductance whose unit is Henry(H).

The electrical parameter represented as C is the inductance whose unit is Farad

Resonance frequency occurs when the applied period force is equal to the natural frequency of the system upon which the force acts :

To obtain :

At resonance, Inductive reactance = capacitive reactance

Equate the inductive and capacitive reactance

Inductive reactance(Xl) = 2πFL

Capacitive Reactance(Xc) = 1/2πFC

Inductive reactance(Xl) = Capacitive Reactance(Xc)

2πFL = 1/2πFC

Multiplying both sides by F

F * 2πFL = F * 1/2πFC

2πF²L = 1/2πC

Isolating F²

F² = 1/2πC2πL

F² = 1/4π²LC

Take the square root of both sides to make F the subject

F = √1 / √4π²LC

F = 1 /2π√LC

Hence, the proof.

Hey answr this sajida Yusof

Answers

What do u need? Rusbaisuwvwbs

Answer:

that not even a question

A 50 mm 45 mm 20 mm cell phone charger has a surface temperature of Ts 33 C when plugged into an electrical wall outlet but not in use. The surface of the charger is of emissivity 0.92 and is subject to a free convection heat transfer coefficient of h 4.5 W/m2 K. The room air and wall temperatures are T 22 C and Tsur 20 C, respectively. If electricity costs C $0.18/kW h, determine the daily cost of leaving the charger plugged in when not in use.

Answers

Answer:

C = $0.0032 per day

Explanation:

We are given;

Dimension of cell phone; 50 mm × 45 mm × 20 mm

Temperature of charger; T1 = 33°C = 306K

Emissivity; ε = 0.92

convection heat transfer coefficient; h = 4.5 W/m².K

Room air temperature; T∞ = 22°C = 295K

Wall temperature; T2 = 20°C = 293 K

Cost of electricity; C = $0.18/kW.h

Chargers are usually in the form of a cuboid, and thus, surface Area is;

A = (50 × 45) + 2(50 × 20) + 2(45 × 20)

A = 6050 mm²

A = 6.05 × 10^(-3) m²

Formula for total heat transfer rate is;

E_t = hA(T1 - T∞) + εσA((T1)⁴ - (T2)⁴)

Where σ is Stefan Boltzmann constant with a value of; σ = 5.67 × 10^(-8) W/m².K⁴

Thus;

E_t = 4.5 × 6.05 × 10^(-3) (306 - 295) + (0.92 × 6.05 × 10^(-3) × 5.67 × 10^(-8)(306^(4) - 293^(4)))

E_t = 0.7406 W = 0.7406 × 10^(-3) KW

Now, we know C = $0.18/kW.h

Thus daily cost which has 24 hours gives;

C = 0.18 × 0.7406 × 10^(-3) × 24

C = $0.0032 per day

Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric flow rate of 21 m3/min and exits at 12 bar, 400 K. Heat transfer occurs at a rate of 3.5 kW from the compressor to its surroundings.
Assuming the ideal gas model for air and neglecting kinetic and potential energy effects, determine the power input, in kW.

Answers

Answer:

- 46.5171kW

Explanation:

FIrst, the value given:

P1 = 1.05 bar (Initial pressure)

P2 = 12 bar (final pressure)

Heat transfer, Q = - 3.5 kW (It is negative because the compressor losses heat to the surroundings)

Mgaseous nitrogen = Mair = 28.0134 Kg/mol (constant)

Universal gas constant, Ru = 8.3143 Kj/Kgmolk

Specific gas constant, R = 0.28699 Kj/KgK

Initial temperature, T1 = 300 K

Final temperature, T2 = 400 K

Finding the volume:

P1V1 = RT1

V1 = RT1 ÷ P1

= (0.28699 Kj/KgK X 300k) ÷ 105

Note convert bar to Kj/Nm by multiply it by 100

V1 =  0.81997 m3/Kg

To get the mass flow rate:

m = volumetric flow rate / V1

= (21 m3/min x 1/60seconds) ÷ 0.81997 m3/Kg

= 0.4268Kg/s

Using tables for the enthalpy,

hT1 = 300.19 KJ/Kg

hT2 = 400.98 KJ/Kg

The enthalpy change = hT2 - hT1

= 100.79 KJ/Kg

Power, P = Q - (m X enthalpy change)

= - 3.5 - (0.4268 X 100.79)

= - 46.5171kW

A triangular plate with a base 5 ft and altitude 3 ft is submerged vertically in water. If the base is in the surface of water, find the force against onr side of the plate. Express the hydrostatic force against one side of the plate as an integral and evaluate it. (Recall that the weight density of water is 62.5 lb/ft3.)

Answers

Answer:

Hydrostatic force = 41168 N

Explanation:

Complete question

A triangular plate with a base 5 ft and altitude 3 ft is submerged vertically in water  so that the top is 4 ft below the surface. If the base is in the surface of water, find the force against onr side of the plate. Express the hydrostatic force against one side of the plate as an integral and evaluate it. (Recall that the weight density of water is 62.5 lb/ft3.)

Let "x" be the side length submerged in water.

Then

w(x)/base = (4+3-x)/altitude

w(x)/5 = (4+3-x)/3

w(x) = 5* (7-x)/3

Hydrostatic force = 62.5 integration of  x * 4 * (10-x)/3 with limits from 4 to 7

HF = integration of 40x - 4x^2/3

HF = 20x^2 - 4x^3/9 with limit 4 to 7

HF = (20*7^2 - 4*7^(3/9))- (20*4^2 - 4*4^(3/9))

HF = 658.69 N *62.5 = 41168 N

If the old radiator is replaced with a new one that has longer tubes made of the same material and same thickness as those in the old unit, what should the total surface area available for heat exchange be in the new radiator to achieve the desired cooling temperature gradient

Answers

Answer: hello some parts of your question is missing attached below is the missing information

The radiator of a car is a type of heat exchanger. Hot fluid coming from the car engine, called the coolant, flows through aluminum radiator tubes of thickness d that release heat to the outside air by conduction. The average temperature gradient between the coolant and the outside air is about 130 K/mm . The term ΔT/d  is called the temperature gradient which is the temperature difference ΔT between coolant inside and the air outside per unit thickness of tube

answer : Total surface area = 3/2 * area of old radiator

Explanation:

we will use this relation

K = [tex]\frac{Qd }{A* change in T }[/tex]

change in T =  ΔT  

therefore New Area  ( A ) = 3/2 * area of old radiator

Given that the thermal conductivity is the same in the new and old radiators

How do guest room hotel smoke alarms work and differ then regular home versions?

Answers

Because the ones at hotels are more expensive and the one at your house is meant for like smoke from a pan I think.

Answer: As to the more sophisticated way of detecting "smoke" from an object a human may use in hotel rooms, this sensor called a Fresh Air Sensor does not just detect and, and but alerts the management about a smoking incident in a hotel room

Other Questions
Which of the following joints are primarily synovial? help me with these 2 questions pls Context Clues, Prefixes, and Suffixes 1Identify which is MOST helpful to determine the meaning of the underlined word in each sentence, the prefix of the wordthe word, or context clues.ITEM BANK: Move to BottomIt is so frustrating to see the total lack ofinterest and concern our peers have forthe recycling program. They couldn't careless. Such apathy!Jadi could not believe that her sister wastraining so hard, until she learned thatSarah wants to be a triathlete.Ted could not decide if he wanted to be apolitician or a musician..You bet I'm frugal! I save half mypaycheck and spend money VERYcarefully. Economy is the name of thegame.Context CluesPrefixesSuffixesEven though he was generallyrespons ne Ragin wasnot verydependable en it came to showing upon time. what is pressure?SI unit youranswer sheet.FamilyPeers1. Having a lack of faith/beliefs.2. Bad influence friends3. Having a failing grade4. Harassed by a stranger5. Feeling alone Let a be a nonzero rational number. Is rational or irrational? Prove your answer by picking a value for a and simplifyingthe expression. Then explain your reasoning. What is a transferable skill?OA.A summary of experiencesOB.the ability to do somethingO C.the movement of skills from one experience to anotherOD.a skill you learn from another person PLSSSSSSSSSSS ASAP!!!!! Find the area of the figure shown below. 4) Solve for w: P = 4L + 4W 1+1 why does my dog not love me? May I have help to figure out how to do this? It is confusing! :( What is the relationship between a planet's period of rotation and diameter? Select all the correct answers.Read Robert Frost's "The Road Not Taken." What are two key themes of this poem?Two roads diverged in a yellow wood,And sorry I could not travel bothAnd be one traveler, long I stoodAnd looked down one as far as I couldTo where it bent in the undergrowth;Then took the other, as just as fair,And having perhaps the better claim,Because (im covering this as a question but who has d!scord)it was grassy and wanted wear;Though as for that the passing thereHad worn them really about the same,And both that morning equally layIn leaves no step had trodden black.Oh, I kept the first for another day!Yet knowing how way leads on to way,I doubted if I should ever come back.I shall be telling this with a sighSomewhere ages and ages hence:Two roads diverged in a wood, and II took the one less traveled by,And that has made all the difference.We are faced with choices between good and bad.It is necessary to make choices in life.Choices are not mandatory.Choices shape a persons life. Ayudenme porfavorFactoriza 1. 210+212. 2+5243. 2304. 5210755. 23+102486. 3339290 correct answer gets brainlest, The answer is not 14-16 i already tried it Life on the Slave ShipHow would you describe a slave ship? Write at least one sentence Can someone explain the meaning of Friendships ? Please please I need it fast 21. A Figure is shown below.What is the area of the figure, in square inches? Solve for a and b in the following circles:A) Are viruses living or non- living?Provide short explanationNo links please