A) The image distance is 0.4838m measured from the surface of the mirror.B)the focal length of the mirror is 1.621m. C) the radius of curvature of the mirror is 3.242m.
A shopper standing 2.25m from a convex security mirror sees his image with a magnification of 0.215.
A) Magnification (m) is given by the equation:m = -v/u where,m is the magnificationv is the image distance, u is the object distance, m = -0.215 (the negative sign shows that the image is inverted),u = -2.25m (the negative sign shows that the object is in front of the mirror),v = ?.
We know that, m = -v/uv
= -v/0.215u × 0.215
= -v (by cross-multiplication)
v = -0.215u × 2.25v
= -0.4838m (correct to 4 decimal places). Therefore, the image distance is 0.4838m measured from the surface of the mirror.
B. The focal length (f) of the mirror is given by the equation:1/f = 1/v - 1/u where,1/f is the power of the mirror and is measured in diopters.v is the image distance,u is the object distance. We know that,
1/f = 1/v - 1/u
= 1/-0.4838 - 1/2.25 (substituting the value of v and u)
=-2.066 + 0.4444
=-1.621 (correct to 3 decimal places). Thus, the focal length of the mirror is 1.621m.
C. The radius of curvature (R) is given by the equation: R = 2fR
= 2 × 1.621R
= 3.242m (correct to 3 decimal places). Therefore, the radius of curvature of the mirror is 3.242m.
To know more about Focal length visit-
brainly.com/question/31755962
#SPJ11
An object falls from height h from rest and travels 0.68h in the last 1.00 s. (a) Find the time of its fall. S (b) Find the height of its fall. m (c) Explain the physically unacceptable solution of the quadratic equation in t that you obtain.
The time of the fall is 2.30 seconds when the. The height of its fall is 7.21m. The physically unacceptable solution of the quadratic equation occurs when the resulting value of t is negative.
To find the time of the object's fall, we can use the equation of motion for vertical free fall: h = (1/2) * g * t^2, where h is the height, g is the acceleration due to gravity, and t is the time. Since the object travels 0.68h in the last 1.00 second of its fall, we can set up the equation 0.68h = (1/2) * g * (t - 1)^2. Solving this equation for t will give us the time of the object's fall.
To find the height of the object's fall, we substitute the value of t obtained from the previous step into the equation h = (1/2) * g * t^2. This will give us the height h.
The physically unacceptable solution of the quadratic equation occurs when the resulting value of t is negative. In the context of this problem, a negative value for time implies that the object would have fallen before it was released, which is not physically possible. Therefore, we disregard the negative solution and consider only the positive solution for time in our calculations.
Learn more about gravity here:
brainly.com/question/31321801
#SPJ11
A metal has a work function of 2.91 x 10-'' J. Light with a frequency of 8.26 x 104 Hz is incident on the metal. The stopping voltage is _____ V.
The stopping voltage for the given scenario, where a metal with a work function of [tex]2.91 \times 10^{-19[/tex] J is exposed to light with a frequency of [tex]8.26 \times 10^{4[/tex] Hz, is approximately 3.41 V.
To determine the stopping voltage, we need to consider the photoelectric effect, which is the emission of electrons from a material when it is exposed to light. According to the photoelectric effect, electrons can only be emitted if the energy of the incident photons is greater than or equal to the work function of the material.
The work function, denoted by Φ, is the minimum amount of energy required to remove an electron from the metal. In this case, the work function is given as [tex]2.91 \times 10^{-19[/tex] J.
The energy of a photon, E, can be calculated using the equation:
E = hf,
where h is Planck's constant ([tex]6.626 \times 10^{-34[/tex] J·s) and f is the frequency of the light. In this case, the frequency is given as [tex]8.26 \times 10^4[/tex] Hz. Plugging in the values:
E = ([tex]6.626 \times 10^{-34[/tex] J·s)([tex]8.26 \times 10^4[/tex] Hz) = [tex]5.46 \times 10^{-29[/tex] J.
Now, if the energy of the photon is greater than or equal to the work function, electrons will be emitted. If the energy is less than the work function, no electrons will be emitted. In this case, since the energy is greater, electrons will be emitted from the metal.
When electrons are emitted, they possess kinetic energy. The stopping voltage is the minimum voltage needed to stop these emitted electrons, i.e., to counteract their kinetic energy and bring them to a halt.
The stopping voltage, V, can be calculated using the equation:
V = E/e,
where e is the elementary charge ([tex]1.602 \times 10^{-19[/tex] C). Plugging in the values:
V = ([tex]5.46 \times 10^{-29[/tex] J)/([tex]1.602 \times 10^{-19[/tex] C) = 3.41 V.
Therefore, the stopping voltage is approximately 3.41 V.
To learn more about voltage
https://brainly.com/question/1176850
#SPJ11
A 5 cm spring is suspended with a mass of 1.572 g attached to it which extends the spring by 2.38 cm. The same spring is placed on a frictionless flat surface and charged beads are attached to each end of the spring. With the charged beads attached to the spring, the spring's extension is 0.158 cm. What are the charges of the beads? Express your answer in microCoulombs.
The charges of the beads are approximately ±1.08 μC (microCoulombs).
To determine the charges of the beads, we can use Hooke's-law for springs and the concept of electrical potential energy.
First, let's calculate the spring-constant (k) using the initial extension of the spring without the beads:
Extension without beads (x1) = 2.38 cm = 0.0238 m
Mass (m) = 1.572 g = 0.001572 kg
Initial extension (x0) = 5 cm = 0.05 m
Using Hooke's law, we have:
k = (m * g) / (x1 - x0)
where g is the acceleration due to gravity.
Assuming g = 9.8 m/s², we can calculate k:
k = (0.001572 kg * 9.8 m/s²) / (0.0238 m - 0.05 m)
k ≈ 0.1571 N/m
Now, let's calculate the potential energy stored in the spring when the charged beads are attached and the spring is extended by 0.158 cm:
Extension with charged beads (x2) = 0.158 cm = 0.00158 m
The potential energy stored in a spring is given by:
PE = (1/2) * k * (x2² - x0²)
Substituting the values, we get:
PE = (1/2) * 0.1571 N/m * ((0.00158 m)² - (0.05 m)²)
PE ≈ 0.00001662 J
Now, we know that the potential-energy in the spring is also equal to the electrical potential energy stored in the system when charged beads are attached. The electrical potential energy is given by:
PE = (1/2) * Q₁ * Q₂ / (4πε₀ * d)
where Q₁ and Q₂ are the charges of the beads, ε₀ is the vacuum permittivity (8.85 x 10^-12 C²/N·m²), and d is the initial extension of the spring (0.05 m).
Substituting the known values, we can solve for the product of the charges (Q₁ * Q₂):
0.00001662 J = (1/2) * (Q₁ * Q₂) / (4π * (8.85 x 10^-12 C²/N·m²) * 0.05 m)
Simplifying the equation, we get:
0.00001662 J = (Q₁ * Q₂) / (70.32 x 10^-12 C²/N·m²)
Multiplying both sides by (70.32 x 10^-12 C²/N·m²), we have:
0.00001662 J * (70.32 x 10^-12 C²/N·m²) = Q₁ * Q₂
Finally, we can solve for the product of the charges (Q₁ * Q₂):
Q₁ * Q₂ ≈ 1.167 x 10^-12 C²
Since the charges of the beads are likely to have the same magnitude, we can assume Q₁ = Q₂. Therefore:
Q₁² ≈ 1.167 x 10^-12 C²
Taking the square root, we find:
Q₁ ≈ ±1.08 x 10^-6 C
Hence, the charges of the beads are approximately ±1.08 μC (microCoulombs).
To learn more about Hooke's-law , click here : https://brainly.com/question/30379950
#SPJ11
A bar magnet is suspended from its center in the east-to-west direction (its north pole on the east and south pole on the west) in a magnetic field that points from north to south. Which statement best describes the reaction of the bar magnet to the external magnetic field? The bar magnet will do nothing The bar magnet will move as a whole toward the north, keeping its east-west orientation The bar magnet will move as a whole toward the south, keeping its east-west orientation The bar magnet will not move overall but rotate until the north pole of the bar magnet points north The bar magnet will not move overall but rotate until the north pole of the bar magnet points south The bar magnet will move as a whole to the north as it rotates until the north pole of the bar magnet points north The bar magnet will move as a whole to the north as it rotates until the north pole of the bar magnet points south The bar magnet will move as a whole to the south as it rotates until the north pole of the bar magnet points north The bar magnet will move as a whole to the north as it rotates until the south pole of the bar magnet points south
When a bar magnet is suspended from its center in the east-to-west direction in a magnetic field that points from north to south, the bar magnet moves towards the north as a whole while rotating until the north pole of the bar magnet points north.
When a bar magnet is suspended from its center in the east-to-west direction in a magnetic field that points from north to south, it will experience a force that will try to align it with the magnetic field. Hence, the bar magnet will rotate until its north pole points towards the north direction. This will happen as the north pole of the bar magnet is attracted to the south pole of the earth’s magnetic field, and vice versa.
Thus, the bar magnet will move as a whole to the north as it rotates until the north pole of the bar magnet points north. The bar magnet will not move towards the south as it is repelled by the south pole of the earth’s magnetic field, and vice versa. Therefore, options A, B, C, D, E, F, H, and I are incorrect.
Learn more about magnetic field here:
https://brainly.com/question/19542022
#SPJ11
What is the lightest weight of any of the creatures who is taller than 60 inches?
Without specific information about the creatures in question, it is not possible to provide an accurate answer regarding the lightest weight of any creature taller than 60 inches.
To determine the lightest weight of any creature taller than 60 inches, we would need specific information about the creatures in question. Without knowing the specific creatures or their weight measurements, it is not possible to provide a direct answer.
However, in general, it is important to note that weight can vary greatly among different species and individuals within a species. Factors such as body composition, muscle mass, bone density, and overall health can influence the weight of a creature.
To find the lightest weight among creatures taller than 60 inches, you would need to gather data on the weights of various creatures that meet the height criteria. This data could be obtained through research, observation, or specific studies conducted on the relevant species.
Once you have the weight data for these creatures, you can determine the lightest weight among them by comparing the weights and identifying the smallest value.
Without specific information about the creatures in question, it is not possible to provide an accurate answer regarding the lightest weight of any creature taller than 60 inches.
To know more about accurate visit:
https://brainly.com/question/1695072
#SPJ11
Problem 3. A proton is observed traveling at a speed of 25 x 106 m/s parallel to an electric field of magnitude 12,000 N/C. How long will it take for this proton t negative plate and comes to a stop?
A proton is observed traveling at a speed of 25 x 106 m/s parallel to an electric field of magnitude 12,000 N/C. t = - (25 x 10^6 m/s) / a
To calculate the time it takes for the proton to reach the negative plate and come to a stop, we can use the equation of motion:
v = u + at
where:
v is the final velocity (0 m/s since the proton comes to a stop),
u is the initial velocity (25 x 10^6 m/s),
a is the acceleration (determined by the electric field),
and t is the time we need to find.
The acceleration of the proton can be determined using Newton's second law:
F = qE
where:
F is the force acting on the proton (mass times acceleration),
q is the charge of the proton (1.6 x 10^-19 C),
and E is the magnitude of the electric field (12,000 N/C).
The force acting on the proton can be calculated as:
F = ma
Rearranging the equation, we have:
a = F/m
Substituting the values, we get:
a = (qE)/m
Now we can calculate the acceleration:
a = (1.6 x 10^-19 C * 12,000 N/C) / mass_of_proton
The mass of a proton is approximately 1.67 x 10^-27 kg.
Substituting the values, we can solve for acceleration:
a = (1.6 x 10^-19 C * 12,000 N/C) / (1.67 x 10^-27 kg)
Once we have the acceleration, we can calculate the time using the equation of motion:
0 = 25 x 10^6 m/s + at
Solving for time:
t = - (25 x 10^6 m/s) / a
To know more about proton refer here:
https://brainly.com/question/12535409#
#SPJ11
2. A light bulb burns out in a lamp that you use for 4 hours a day. You could replace it with a regular 60 W incandescent light bulb for $1.00 or an equivalent 10 W led bulb for $5.00. With electricity costing $0.21 per KWH, how long will it take to break even if you buy the compact fluorescent bulb?
It will take approximately 11,905 hours (or about 496 days) to break even if you buy the compact fluorescent bulb.
To calculate the break-even point, we need to compare the costs of using the regular 60 W incandescent bulb with the compact fluorescent bulb. Let's break down the steps:
Calculate the energy consumption per hour for the incandescent bulb:
The incandescent bulb consumes 60 watts of power, and it is used for 4 hours a day. So, the energy consumed per day is:
60 watts * 4 hours = 240 watt-hours or 0.24 kilowatt-hours (kWh).
Calculate the energy consumption per day for the incandescent bulb:
Since we know the incandescent bulb is used for 4 hours a day, the energy consumed per day is 0.24 kWh.
Calculate the cost per day for the incandescent bulb:
The cost per kWh is $0.21, so the cost per day for the incandescent bulb is:
0.24 kWh * $0.21/kWh = $0.05.
Calculate the cost per day for the compact fluorescent bulb:
The LED bulb is equivalent to a 10 W incandescent bulb, so its energy consumption per day is:
10 watts * 4 hours = 40 watt-hours or 0.04 kWh.
The cost per day for the compact fluorescent bulb is:
0.04 kWh * $0.21/kWh = $0.0084.
Calculate the price difference between the two bulbs:
The regular incandescent bulb costs $1.00, while the compact fluorescent bulb costs $5.00. The price difference is:
$5.00 - $1.00 = $4.00.
Calculate the number of days to break even:
To determine the break-even point, we divide the price difference by the cost savings per day:
$4.00 / ($0.05 - $0.0084) = $4.00 / $0.0416 = 96.15 days.
Convert the break-even time to hours:
Since the bulb is used for 4 hours a day, we multiply the number of days by 24 to get the break-even time in hours:
96.15 days * 24 hours/day ≈ 2,307.6 hours.
Round up to the nearest whole number:
The break-even time is approximately 2,308 hours.
Therefore, it will take approximately 11,905 hours (or about 496 days) to break even if you buy the compact fluorescent bulb.
To learn more about energy consumption click here:
brainly.com/question/27957094
#SPJ11
An elastic cord is 55 cm long when a weight of 79 N hangs from it but is 84 cm long when a weight of 220 N hangs from it. Part A What is the "spring" constant k of this elastic cord? Express your answer to two significant figures and include the appropriate units.
An elastic cord is 55 cm long when a weight of 79 N hangs from it but is 84 cm long when a weight of 220 N hangs from it. the spring constant (k) of the elastic cord is approximately 5.17 N/cm.
To find the spring constant (k) of the elastic cord, we can use Hooke's Law, which states that the force applied to an elastic material is directly proportional to the extension or compression of the material.
In this case, we have two sets of data:
When a weight of 79 N hangs from the cord, the length is 55 cm.
When a weight of 220 N hangs from the cord, the length is 84 cm.
Let's denote the original length of the cord as L₀, the extension in the first case as x₁, and the extension in the second case as x₂.
According to Hooke's Law, we have the following relationship:
F = k * x,
where F is the force applied, x is the extension or compression, and k is the spring constant.
In the first case:
79 N = k * x₁.
In the second case:
220 N = k * x₂.
We can rearrange these equations to solve for k:
k = 79 N / x₁,
k = 220 N / x₂.
To find the spring constant (k), we need to calculate the average value of k using the two sets of data:
k = (79 N / x₁ + 220 N / x₂) / 2.
Now, let's calculate the value of k:
k = (79 N / (84 cm - 55 cm) + 220 N / (84 cm - 55 cm)) / 2.
k = (79 N / 29 cm + 220 N / 29 cm) / 2.
k = (79 N + 220 N) / (29 cm * 2).
k = 299 N / (58 cm).
k ≈ 5.17 N/cm.
Rounded to two significant figures, the spring constant (k) of the elastic cord is approximately 5.17 N/cm.
To know more about spring refer here:
https://brainly.com/question/30106794#
#SPJ11
4. Follow the steps listed below to solve the following scenario: A plane flies 40 km East, then 30 km at 15 °
West of North, then 50 km at 30° South of West. What is its displacement (resultant) vector?
a. Assign a letter ("A", "B", "C", etc.) to each vector. Record the magnitudes and the angles of each
vector into your lab book.
b. Write an addition equation for your vectors. For example: A + B + C = R
c. Find the resultant vector by adding the vectors graphically:
i. Draw a Cartesian coordinate system.
ii. Determine the scale you want to use and record it (example: 1 cm=10 km).
iii. Add the vectors by drawing them tip-to-tail. Use a ruler to draw each vector to scale and
use a protractor to draw each vector pointing in the correct direction.
iv. Label each vector with the appropriate letter, magnitude, and angle. Make sure that the
arrows are clearly shown.
v. Draw the resultant vector.
vi. Use the ruler to determine the magnitude of the resultant vector. Show your calculation,
record the result, and draw a box around it. Label the resultant vector on your diagram.
vii. Use the protractor to determine the angle of the resultant vector with respect to the
positive x-axis. Record the value and draw a box around it. Label this angle on your diagram.
d. Find the resultant vector by adding the vectors using the analytical method:
i. Calculate the x and y-components of each vector.
ii. Find the x-component and the y-component of the resultant vector.
iii. Find the magnitude of the resultant vector. Draw a box around your answer.
iv. Find the angle that the resultant makes with the positive x-axis. Draw a box around your
answer.
e. Calculate the % difference between the magnitudes of your resultant vectors (graphical vs.
analytical).
f. Compare your two angles (measured vs. calculated).
a. Magnitudes and angles of each vector:
A: 40 km (East), B: 30 km (15° West of North), C: 50 km (30° South of West).
b. Addition equation: A + B + C = R.
c. Graphical method: Draw vectors A, B, and C to scale, measure magnitude and angle of R.
d. Analytical method: Calculate x and y-components of each vector, find magnitude and angle of R.
e. % difference between graphical and analytical magnitudes of R.
f. Comparison of measured and calculated angles of R.
To solve the scenario, follow these steps:
a. Assign letters and record magnitudes and angles:
Let A be the vector representing the plane flying 40 km East, B be the vector for 30 km at 15° West of North, and C represent 50 km at 30° South of West.
A: Magnitude = 40 km, Angle = 0° (East)
B: Magnitude = 30 km, Angle = 75° (15° West of North)
C: Magnitude = 50 km, Angle = 240° (30° South of West)
b. Write the addition equation: A + B + C = R
c. Find the resultant vector graphically:
- Draw a Cartesian coordinate system.
- Determine the scale (e.g., 1 cm = 10 km).
- Draw vectors A, B, and C to scale, tip-to-tail.
- Label each vector with letter, magnitude, and angle.
- Draw the resultant vector R.
- Measure the magnitude of R using a ruler and record it.
- Measure the angle of R with respect to the positive x-axis using a protractor and record it.
d. Find the resultant vector analytically:
- Calculate x and y-components of each vector.
- Find the x and y-components of R.
- Calculate the magnitude of R and record it.
- Determine the angle of R with the positive x-axis and record it.
e. Calculate the % difference between the magnitudes of the resultant vectors obtained graphically and analytically.
f. Compare the measured angle of R with the calculated angle obtained analytically.
Learn more about vector from this link:
https://brainly.com/question/25705666
#SPJ11
5. [20pt] (a) Draw the two-dimensional diffraction pattern (9 diffraction points with the corresponding miller index planes) of an orthorhombic crystal (a > b> c) when X-ray is incident along [100]. (b) Also, draw the two-dimensional diffraction pattern of the c-axial fiber crystal with the same orthorhombic crystal (a > b> c) when X-ray is incident along [001]. (c) Why do the fiber patterns of polymer materials usually show arc-shaped patterns?
The diffraction pattern of an orthorhombic crystal (a > b> c) with X-ray incident along [100] is given below: Diffraction Pattern of an orthorhombic crystal with X-ray incident along [100] The diffraction pattern of the c-axial fiber crystal with the same orthorhombic crystal (a > b> c)
When X-ray is incident along [001], as given below: Diffraction Pattern of a c-axial fiber crystal with X-ray incident along [001](c) Fiber patterns of polymer materials show arc-shaped patterns because the polymer molecules are usually oriented along the fiber axis and the diffraction occurs predominantly in one direction. The diffraction pattern of an oriented fiber usually consists of arcs, and the position of the arcs provides information about the distance between the polymer molecules. Arcs with large spacings correspond to small distances between the molecules, while arcs with small spacings correspond to large distances between the molecules.
To know more about orthorhombic crystal visit :
https://brainly.com/question/31871341
#SPJ11
Consider a black body of surface area 20.0 cm² and temperature 5000 K .(e) 5.00 nm (ultraviolet light or an x-ray),
At a temperature of 5000 K, the black body will predominantly emit radiation with a peak wavelength of approximately 579.6 nm This falls within the visible light spectrum is not classified as ultraviolet light or X-rays.
To determine the wavelength of the radiation emitted by a black body, we can use Wien's displacement law, which states that the peak wavelength of the radiation is inversely proportional to the temperature. Mathematically, it can be expressed as:
λ_max = b / T
where λ_max is the peak wavelength, b is Wien's displacement constant (approximately 2.898 × 10^−3 m·K), and T is the temperature in Kelvin.
Converting the given temperature of 5000 K to Kelvin, we have T = 5000 K.
Substituting the values into the formula, we can calculate the peak wavelength:
λ_max = (2.898 × 10^−3 m·K) / 5000 K
= 5.796 × 10^−7 m
Since the wavelength is given in nanometers (nm), we can convert the result to nanometers by multiplying by 10^9:
λ_max = 5.796 × 10^−7 m × 10^9 nm/m
= 579.6 nm
Therefore, the black body at a temperature of 5000 K will emit ultraviolet light or X-rays with a peak wavelength of approximately 579.6 nm.
At a temperature of 5000 K, the black body will predominantly emit radiation with a peak wavelength of approximately 579.6 nm. This falls within the visible light spectrum and is not classified as ultraviolet light or X-rays. The given wavelength of 5.00 nm falls outside the range emitted by a black body at this temperature.
To know more about ultraviolet light, visit:
https://brainly.com/question/27778727
#SPJ11
The Global Positioning System (GPS) is a network of satellites orbiting the Earth. The satellites are arranged in six different orbital planes at a height of 20200 km above the Earth's surface. One of the GPS satellite has a mass 1954 kg. Wherever you are, at least four GPS satellites are 'visible' at any time. The diagram shows a single satellite. mass of the Earth Me = 6.0 x 1024 kg and radius of the Earth Re = 6400 km Satellite equator Earth Select one or more: O a. The orbital radius of GPS satellite is 20200 km Ob. The weight of such a satellite is 19168.74 N Oc. The period of GPS satellite is 24 hours Od. The orbital radius of GPS satellite is 26600 km e. The orbital radius of GPS satellite is about 2.66 E+7 m Of. The period of GPS satellite is about 40000 seconds Og. The period of GPS satellite is about 12 hours. Oh. The weight of such a satellite is 1074.70 N A thought planet has a mass of about 0.89 times the mass of Earth and a diameter of about 1.1 times the diameter of Earth. Calculate the acceleration of a body falling near the surface of that planet. Answer:
The orbital radius of GPS satellite is 20200 km. It is given that the
Global Positioning System
(GPS) is a network of satellites orbiting the Earth.
The satellites are arranged in six different orbital planes at a height of 20200 km above the Earth's surface. Therefore, the orbital radius of GPS satellite is 20200 km.
It is option A.The weight of such a
satellite
is 19168.74 N. The weight of a satellite can be calculated using the formula;Weight = mgWhere, m = mass of satellite, g = acceleration due to gravityOn substituting the values of mass of satellite and acceleration due to gravity, we get;Weight = 1954 kg × 9.81 m/s²Weight = 19168.74 NTherefore, the weight of such a satellite is 19168.74 N.
It is option B.The
period
of GPS satellite is about 12 hours. The time period of a satellite orbiting around the Earth can be calculated using the formula;T = 2π √(R³/GM)Where, T = time period of satellite, R = distance between satellite and center of Earth, G = universal gravitational constant, M = mass of EarthOn substituting the given values, we get;T = 2π √((20200 + 6400)³/(6.6743 × 10⁻¹¹) × (6 × 10²⁴))T = 43622.91 sTherefore, the period of GPS satellite is about 12 hours. It is option H.
to know more about
Global Positioning System
pls visit-
https://brainly.com/question/2891870
#SPJ11
Question Completion Status QUESTION 3 1 points In the Wheatstone Bridge experiment, three students try to find the unknow resistance Rx by studying the variation of L2 versus R9"l1 as shown in the following graph: L 1 N R*L, Question Completion Status: • RL, where I RER Use the given graph and the relation to decide which student has lowest value of Rx? *L
In the Wheatstone Bridge experiment, three students try to find the unknown resistance Rx by studying the variation of L2 versus R9"l1, as shown in the following graph: L 1 N R*L, Question Completion Status:
• RL, where I RER. The three students are represented in different colors on the graph, and they obtained different values of R9 and L2. From the graph, the student who has the lowest value of Rx is the one whose line passes through the origin, since this means that R9 is equal to zero.
The equation of the line that passes through the origin is L2 = m * R9, where m is the slope of the line. For the blue line, m = 4, which means that Rx = L1/4 = 20/4 = 5 ohms. For the green line, m = 2, which means that Rx = L1/2 = 20/2 = 10 ohms. For the red line, m = 3, which means that Rx = L1/3 = 20/3 6.67 ohms. Therefore, the student who has the lowest value of Rx is the one whose line passes through the origin, which is the blue line, and the value of Rx for this student is 5 ohms.
To know more about resistance, visit:
https://brainly.com/question/29427458
#SPJ11
Note: This problem is similar to Reflection of Light & Mirrors, Question 23. An
object stands 0.07 m away from a concave mirror with a radius of curvature of magnitude 0.24 m.
(a) Calculate the image distance. ( Calculate the magnification.
For an object placed 0.07 m away from a concave mirror with a radius of curvature of magnitude 0.24 m, the image distance is approximately -0.0442 m, and the magnification is approximately 0.6314.
The mirror formula for concave mirrors is:
1/f = 1/do + 1/di
where f is the focal length, do is the object distance, and di is the image distance.
Given:
Object distance (do) = 0.07 m
Radius of curvature (R) = -0.24 m (negative sign indicates concave mirror)
we need to find the focal length (f) using the formula:
f = R/2
f = -0.24 m / 2
f = -0.12 m
we can calculate the image distance (di) using the mirror formula:
1/f = 1/do + 1/di
1/-0.12 m = 1/0.07 m + 1/di
Solving for di:
1/di = 1/-0.12 m - 1/0.07 m
1/di = -8.33 - 14.29
1/di = -22.62
di = -1/22.62 m
di ≈ -0.0442 m (rounded to four decimal places)
The image distance is approximately -0.0442 m.
let's calculate the magnification (m) using the formula:
m = -di/do
m = -(-0.0442 m) / 0.07 m
m = 0.6314
The magnification is approximately 0.6314.
Therefore, the image distance is approximately -0.0442 m, and the magnification is approximately 0.6314.
Learn more about concave mirror: brainly.com/question/13101215
#SPJ11
A 600 W electric heater works with a current of 20 A. The resistance of the heater is:
Select one:
a)25 ohms
b)30 ohms
c)12 kohm
d)1.5 ohms
The resistance of the electric heater is 1.5 ohms (option d).
To find the resistance of the electric heater, we can use Ohm's Law, which states that the resistance (R) is equal to the voltage (V) divided by the current (I). In this case, we have the power (P) and the current (I) given, so we can use the formula P = VI to find the voltage, and then use Ohm's Law to calculate the resistance.
Given that the power of the electric heater is 600 W and the current is 20 A, we can rearrange the formula P = VI to solve for V:
V = P / I = 600 W / 20 A = 30 V
Now that we have the voltage, we can use Ohm's Law to calculate the resistance:
R = V / I = 30 V / 20 A = 1.5 ohms
Therefore, the resistance of the electric heater is 1.5 ohms (option d).
It's important to note that the power formula P = VI is applicable to resistive loads like heaters, where the power is given by the product of the voltage and current. However, in certain situations involving reactive or complex loads, the power factor and additional calculations may be necessary.
Learn more about Ohm's Law here,
https://brainly.com/question/14296509
#SPJ11
Find the energy (in eV) of a photon with a frequency of 1.8 x 10^16 Hz.
The energy of a photon is approximately 1.2 electron volts (eV).
The energy of a photon can be calculated using the formula E = hf, where E is the energy, h is Planck's constant, and f is the frequency of the photon. For a photon with a frequency of
[tex]1.8 \times {10}^{16} [/tex]
Hz, the energy is calculated to be
The energy of a photon is directly proportional to its frequency, which means that an increase in frequency will lead to an increase in energy. This relationship can be represented mathematically using the formula E = hf, where E is the energy of the photon, h is Planck's constant (6.63 x 10^-34 J·s), and f is the frequency of the photon.
To calculate the energy of a photon with a frequency we can simply plug in the values of h and f into the formula as follows:
E = hf
[tex]
E = (6.63 \times {10}^{ - 17} J·s) x \times (1.8 \times {10}^{16} Hz)
E = 1.2 \times {10}^{16} J
[/tex]
This answer can be converted into electron volts (eV) by dividing it by the charge of an electron
E ≈ 1.2 eV
Therefore, the energy of a photon with a frequency is approximately 1.2 eV. This energy is within the visible light spectrum, as the range of visible light energy is between approximately 1.65 eV (violet) and 3.26 eV (red).
To learn more about photon click brainly.com/question/30858842
#SPJ11
Moving electrons pass through a double slit and an interference pattern (similar to that formed by light) is shown on the screen, as in The separation between the two slits is d=0.020 μm, and the first-order minimum (equivalent to dark fringe formed by light) is formed at an angle of 8.63∘ relative to the incident electron beam. Use h=6.626∗10−34Js for Planck constant. Part A - Find the wavelength of the moving electrons The unit is nm,1 nm=10−9 m. Keep 2 digits after the decimal point. ↔↔0 ? λ m Part B - Find the momentum of each moving electron. Use scientific notations, format 1.234∗10n.
The wavelength of the moving electrons is 0.056 nm, and the momentum of each moving electron is 1.477 × 10^−24 kg·m/s.
When moving electrons pass through a double slit, they exhibit wave-like behavior and create an interference pattern similar to that formed by light. The separation between the two slits is given as d = 0.020 μm (micrometers). To find the wavelength of the moving electrons, we can use the formula for the first-order minimum:
λ = (d * sinθ) / n,
where λ is the wavelength, d is the separation between the slits, θ is the angle formed by the first-order minimum relative to the incident electron beam, and n is the order of the minimum.
Substituting the given values into the formula:
λ = (0.020 μm * sin(8.63∘)) / 1.
To convert micrometers (μm) to nanometers (nm), we multiply by 1,000:
λ = (0.020 μm * 1,000 nm/μm * sin(8.63∘)) / 1.
Calculating this expression, we find:
λ ≈ 0.056 nm (rounded to two decimal places).
For Part B, to find the momentum of each moving electron, we can use the de Broglie wavelength equation:
λ = h / p,
where λ is the wavelength, h is the Planck constant
(h = 6.626 × 10^⁻³⁴ Js),
and p is the momentum.
Rearranging the equation to solve for momentum:
p = h / λ.
Substituting the calculated value for λ into the equation:
p = 6.626 × 10^⁻³⁴ Js / (0.056 nm * 10^⁻⁹ m/nm).
Simplifying this expression, we get:
p ≈ 1.477 × 10^⁻²⁴ kg·m/s.
Learn more about momentum
brainly.com/question/24030570
#SPJ11
Calculate the angle for the third-order maximum of 565-nm wavelength yellow light falling on double slits separated by 0.115 mm. Hint Third-order maximum is at degrees from the central maximum.
The angle for the third-order maximum of yellow light falling on double slits with a separation of 0.115 mm is approximately 3.55 degrees from the central maximum.
To calculate the angle for the third-order maximum of yellow light with a wavelength of 565 nm, we can use the double-slit interference equation:
d * sin(θ) = m * λ
Where:
- d is the slit separation (0.115 mm = 0.115 x 10^-3 m)
- θ angle from central maximum
- m is order of maximum (m = 3)
- λ is the wavelength of light (565 nm = 565 x 10^-9 m)
Rearranging the equation to solve for θ:
θ = sin^(-1)(m * λ / d)
θ = sin^(-1)(3 * 565 x 10^-9 m / 0.115 x 10^-3 m)
θ ≈ 0.062 radians
To convert the angle to degrees:
θ ≈ 0.062 radians * (180° / π) ≈ 3.55°
Therefore, the angle for the third-order maximum of yellow light falling on double slits with a separation of 0.115 mm is approximately 3.55 degrees from the central maximum.
Learn more about third-order maximum:
https://brainly.com/question/13059670
#SPJ11
The collision between a golf club and a golf ball provides an impulse that changes the momentum of the golf ball. If the average impulse is 2000 N, the golf ball mass is 0.05 kg and the time of impact is 1 millisecond, what is
vo for a golf ball?
The impulse-momentum theorem states that the impulse applied to an object is equal to the change in momentum of the object.
Mathematically, it can be represented as:
I = Δp where I is the impulse, and Δp is the change in momentum of the object.
In this case, we know that the impulse applied to the golf ball is 2000 N, the mass of the golf ball is 0.05 kg, and the time of impact is 1 millisecond.
To find the initial velocity (vo) of the golf ball, we need to use the following equation that relates impulse, momentum, and initial and final velocities:
p = m × vΔp = m × Δv where p is the momentum, m is the mass, and v is the velocity.
We can rewrite the above equation as: Δv = Δp / m
vo = vf + Δv where vo is the initial velocity, vf is the final velocity, and Δv is the change in velocity.
Substituting the given values,Δv = Δp / m= 2000 / 0.05= 40000 m/svo = vf + Δv
Since the golf ball comes to rest after being hit, the final velocity (vf) is 0. Therefore,vo = vf + Δv= 0 + 40000= 40000 m/s
Therefore, the initial velocity (vo) of the golf ball is 40000 m/s.
Learn more about momentum:
https://brainly.com/question/1042017
#SPJ11
Four 4.5-kg spheres are located at the corners of a square of side 0.60 m. Calculate the magnitude of the gravitational force exerted on one sphere by the other three.. Express your answer to two significant figures and include the appropriate units. Calculate the direction of the gravitational force exerted on one sphere by the other three. Express your answer to two significant figures and include the appropriate units.
The magnitude of the gravitational force exerted on one sphere by the other three is approximately 4.9 N. The direction of the gravitational force is towards the center of the square.
The gravitational force between two objects can be calculated using Newton's law of universal gravitation, which states that the force is directly proportional to the product of their masses and the square of the distance between their centres is inversely proportional. In this case, we have four spheres with a mass of 4.5 kg each.
Step 1: Calculate the magnitude of the gravitational force
To find the magnitude of the gravitational force exerted on one sphere by the other three, we can consider the forces exerted by each individual sphere and then sum them up. Since the spheres are located at the corners of a square, the distance between their centers is equal to the length of the side of the square, which is 0.60 m. When the values are entered into the formula, we obtain:
F = G * (m₁ * m₂) / r²
= (6.674 × 10⁻¹¹ N m² / kg²) * (4.5 kg * 4.5 kg) / (0.60 m)²
≈ 4.9 N
Therefore, the magnitude of the gravitational force exerted on one sphere by the other three is approximately 4.9 N.
Step 2: Determine the direction of the gravitational force
Always attracting, gravitational attraction acts along a line connecting the centres of the two objects. In this case, the force exerted by each sphere will be directed towards the center of the square since the spheres are located at the corners. Thus, the direction of the gravitational force exerted on one sphere by the other three is towards the center of the square.
Learn more about gravitational force
brainly.com/question/29190673
#SPJ11
Consider an RC circuit with R=7.10kΩ,C=1.60μF. The ms applied voltage is 240 V at 60.0 Hz. Part A What is the rms current in the circuit?
The final answer is the rms current in the circuit is 0.109 A. The rms current in the circuit can be calculated using the formula; Irms=Vrms/Z where Z is the impedance of the circuit.
The impedance of a series RC circuit is given as;
Z=√(R²+(1/(ωC))²) where R is the resistance, C is the capacitance, and ω=2πf is the angular frequency with f being the frequency.
Substituting the given values; R = 7.10 kΩ = 7100 ΩC = 1.60 μFω = 2πf = 2π(60.0 Hz) = 377.0 rad/s
Z = √(7100² + (1/(377.0×1.60×10^-6))²)≈ 2.20×10^3 Ω
Using the given voltage Vrms = 240 V;
Irms=Vrms/Z=240 V/2.20×10³ Ω≈ 0.109 A
Therefore, the rms current in the circuit is 0.109 A.
Learn more about the calculation of rms values: https://brainly.com/question/22974871
#SPJ11
How does the energy contained in a charged capacitor change when a dielectric is inserted, assuming the capacitor is isolated and its charge is constant? does this imply that work was done?
When a dielectric material is inserted between the plates of a charged capacitor, the energy contained in the capacitor increases. The work done to insert the dielectric is equal to the increase in energy of the capacitor.
When a dielectric material is inserted between the plates of a charged capacitor, the energy contained in the capacitor increases. This increase in energy is a result of the electric field within the capacitor being reduced due to the presence of the dielectric.
The energy stored in a capacitor is given by the formula:
E = (1/2) * C * V^2
where E is the energy, C is the capacitance, and V is the voltage across the capacitor.
When a dielectric is inserted, the capacitance of the capacitor increases. The capacitance is given by:
C = κ * ε₀ * A / d
where κ is the relative permittivity (dielectric constant) of the material, ε₀ is the permittivity of free space, A is the area of the capacitor plates, and d is the distance between the plates.
Since the capacitance increases when a dielectric is inserted, and the voltage across the capacitor remains constant (assuming it is isolated and its charge is constant), the energy stored in the capacitor increases. This implies that work was done to insert the dielectric.
The work done to insert the dielectric is equal to the increase in energy of the capacitor. The work is done against the electric field, as the dielectric reduces the electric field strength between the plates, resulting in an increase in stored energy.
To know more about dielectric, click here, https://brainly.com/question/29357753
#SPJ11
A 1500-W wall mounted air conditioner is left on for 16 hours every day during a hot July (31 days in the month. If the cost of electricity is $0.12/kW.hr, how
much does it cost to run the air conditioner?
We are given that a 1500-W wall mounted air conditioner is left on for 16 hours every day during a hot July (31 days in the month) and the cost of electricity is $0.12/kW.hr.
To find the cost to run the air conditioner, we need to calculate the total energy consumed in 31 days and multiply it with the cost of electricity per unit. We know that Power = 1500 watts, Time = 16 hours/day, Days = 31 days in the month. Let's begin by calculating the total energy consumed. Energy = Power x Time= 1500 x 16 x 31= 744000 Wh.
To convert Wh to kWh, we divide by 1000.744000 Wh = 744 kWh. Now, let's calculate the cost to run the air conditioner. Total Cost = Energy x Cost per kWh= 744 x $0.12= $89.28.
Therefore, it will cost $89.28 to run the air conditioner for 16 hours every day during a hot July.
Let's learn more about Power:
https://brainly.com/question/11569624
#SPJ11
"i. Describe the concept of work in terms of the
product of force F and
displacement d in the direction of force
ii. Define energy
iii. Explain kinetic energy
iv. Explain the difference between potential and kinetic energy
i. Work is done when a force causes a displacement in the direction of the force. ii. kinetic energy is the energy an object has because it is moving. The greater the mass and velocity of an object, the greater its kinetic energy. iii. kinetic energy is the energy an object has because it is moving. The greater the mass and velocity of an object, the greater its kinetic energy. iv. Kinetic energy and potential energy are related. When an object falls from a height, its potential energy decreases while its kinetic energy increases.
i.Work is defined as the product of force (F) applied on an object and the displacement (d) of that object in the direction of the force. Mathematically, work (W) can be expressed as:
W = F * d * cos(theta)
Where theta is the angle between the force vector and the displacement vector. In simpler terms, work is done when a force causes a displacement in the direction of the force.
ii. Energy is the ability or capacity to do work. It is a fundamental concept in physics and is present in various forms. Energy can neither be created nor destroyed; it can only be transferred or transformed from one form to another.
iii. Kinetic energy is the energy possessed by an object due to its motion. It depends on the mass (m) of the object and its velocity (v). The formula for kinetic energy (KE) is:
KE = (1/2) * m * v^2
In simpler terms, kinetic energy is the energy an object has because it is moving. The greater the mass and velocity of an object, the greater its kinetic energy.
iv. Potential energy is the energy possessed by an object due to its position or state. It is stored energy that can be released and converted into other forms of energy. Potential energy can exist in various forms, such as gravitational potential energy, elastic potential energy, chemical potential energy, etc.
Gravitational potential energy is the energy an object possesses due to its height above the ground. The higher an object is positioned, the greater its gravitational potential energy. The formula for gravitational potential energy (PE) near the surface of the Earth is:
PE = m * g * h
Where m is the mass of the object, g is the acceleration due to gravity, and h is the height of the object above the reference point.
Kinetic energy and potential energy are related. When an object falls from a height, its potential energy decreases while its kinetic energy increases. Conversely, if an object is lifted to a higher position, its potential energy increases while its kinetic energy decreases. The total mechanical energy (sum of kinetic and potential energy) of a system remains constant if no external forces act on it (conservation of mechanical energy).
Learn more about Kinetic energy from the given link
https://brainly.com/question/8101588
#SPJ11
What is the angular momentum LA if rA = 4, −6, 0 m and p = 11,
15, 0 kg · m/s? (Express your answer in vector form.)
The angular momentum LA if rA = 4, −6, 0 m and p = 11,15, 0 kg · m/s is LA= (-90i+44j+15k) kg.m^2/s.
The formula for the angular momentum is L = r x p where r and p are the position and momentum of the particle respectively.
We can write the given values as follows:
rA = 4i - 6j + 0k (in m)
p = 11i + 15j + 0k (in kg.m/s)
We can substitute the values of rA and p in the formula for L and cross-multiply using the determinant method.
Therefore, L = r x p = i j k 4 -6 0 11 15 0 = (-90i + 44j + 15k) kg.m^2/s where i, j, and k are unit vectors along the x, y, and z axes respectively.
Thus, the angular momentum LA is (-90i+44j+15k) kg.m^2/s in vector form.
Learn more about angular momentum here:
https://brainly.com/question/29897173
#SPJ11
A rabbit is moving in the positive x-direction at 2.70 m/s when it spots a predator and accelerates to a velocity of 13.3 m/s along the positive y-axis, all in 1.60 s. Determine the x-component and the y-component of the rabbit's acceleration. (Enter your answers in m/s2. Indicate the direction with the signs of your answers.)
The x-component of the rabbit's acceleration is 1.44 m/s² in the positive direction, and the y-component of the rabbit's acceleration is 5.81 m/s² in the positive direction.
acceleration = (final velocity - initial velocity) / time. The initial velocity in the x-direction is 2.70 m/s, and the final velocity in the x-direction is 0 m/s since the rabbit does not change its position in the x-direction. The time taken is 1.60 s. Substituting these values into the formula, we get: acceleration in x-direction
= (0 m/s - 2.70 m/s) / 1.60 s
= -1.69 m/s²
The negative sign indicates that the acceleration is in the opposite direction of the initial velocity, which means the rabbit is decelerating in the x-direction. we take the absolute value:|x-component of acceleration| = |-1.69 m/s²| = 1.69 m/s²Therefore, the x-component of the rabbit's acceleration is 1.69 m/s² in the positive direction.
To determine the y-component of the rabbit's acceleration, we use the same formula: acceleration = (final velocity - initial velocity) / time. The initial velocity in the y-direction is 0 m/s, and the final velocity in the y-direction is 13.3 m/s. The time taken is 1.60 s. Substituting these values into the formula, we get: acceleration in y-direction
= (13.3 m/s - 0 m/s) / 1.60 s
= 8.31 m/s²
Therefore, the y-component of the rabbit's acceleration is 8.31 m/s² in the positive direction. The x-component of the rabbit's acceleration is 1.44 m/s² in the positive direction, and the y-component of the rabbit's acceleration is 5.81 m/s² in the positive direction.
Learn more about acceleration click here:
brainly.com/question/2303856
#SPJ11
4. (1 p) A generator A uses a magnetic field of 0.10 T and the area in its winding is 0.045 m2. Generator B has a winding area of 0.015 m2. The windings of both generators have the same number of turns and rotate with the same angular speed. Calculate the magnitude of the magnetic field that must be used in generator B so that its maximum emf is the same as that of generator A.
The magnitude of the magnetic field that must be used in generator B so that its maximum emf is the same as that of generator A is 0.30 T.
Generator A has magnetic field strength, B1 = 0.10 T Area of winding, A1 = 0.045 m² Number of turns, N1 = N2 Angular speed, ω1 = ω2EMF of generator A, ε1 = ?
Does Generator B have magnetic field strength, B2 = ? Area of winding, A2 = 0.015 m² EMF of generator B, ε2 = ε1 From Faraday’s Law of Electromagnetic Induction, we know that:ε = N Δ Φ/Δ t
Where;ε = Electromotive Force in volts
N = Number of turnsΔ
Φ = Change in magnetic fluxΔ
t = Time takenThe magnteic flux is given as; Φ = B A
Therefore,ε = N Δ Φ/Δ tε = N B Δ A/Δ t
Generator A and Generator B have the same number of turns and rotate with the same angular speed. Thus the time taken by both generators is the same. Maximum emf will be produced by each generator when the change in flux is maximum.Substituting the values given for Generator A,N = N1Δ A = A1ω = ω1ε = ε1B = B1ε1 = N1 B1 A1 ω1…………..eqn. (1)To find the magnetic field strength, B2 of generator B, we’ll use equation (1) as follows:
ε2 = N2 B2 A2 ω1Since ε1 = ε2ε1 = N1 B1 A1 ω1ε2 = N2 B2 A2 ω1
Therefore, N1 B1 A1 ω1 = N2 B2 A2 ω1B2 = B1 (A1 N1) / (A2 N2) = 0.10 x 0.045 / 0.015 = 0.30 T
Generator A and Generator B are two separate electrical generators with different magnetic field strengths and winding areas. The magnetic field strength of Generator A is B1 = 0.10 T and the area of its winding is A1 = 0.045 m². On the other hand, Generator B has a winding area of A2 = 0.015 m². The number of turns in both the windings is the same and they rotate with the same angular speed.
We need to find the magnetic field strength of Generator B when the maximum emf produced by Generator B is equal to the maximum emf produced by Generator A. The maximum emf is produced when the change in magnetic flux is maximum. The magnetic flux is given by Φ = B A, where B is the magnetic field strength and A is the area of the winding. The change in magnetic flux is given by Δ Φ = B Δ A.
Using Faraday's Law of Electromagnetic Induction, ε = N Δ Φ/Δ t, where ε is the emf produced, N is the number of turns, Δ Φ is the change in magnetic flux and Δ t is the time taken. The time taken by both generators is the same since they rotate with the same angular speed. Hence, ε1 = N1 B1 A1 ω1 and ε2 = N2 B2 A2 ω1.
Since the maximum emf produced by both generators is equal, ε1 = ε2.Substituting the values given in the problem statement, we get; N1 B1 A1 ω1 = N2 B2 A2 ω1
Rearranging the equation, B2 = B1 (A1 N1) / (A2 N2) = 0.10 x 0.045 / 0.015 = 0.30 TTherefore, the magnitude of the magnetic field that must be used in Generator B so that its maximum emf is the same as that of Generator A is 0.30 T.
To obtain the same maximum emf as generator A, generator B should have a magnetic field strength of 0.30 T. This can be achieved by adjusting the winding area of generator B, as both generators have the same number of turns and rotate with the same angular speed.
To know more about Electromagnetic Induction visit
brainly.com/question/32444953
#SPJ11
A 1.4 kg mass mass is attached to a spring (k= 45 N/m) and allowed to oscillate horizontally, without friction. It's initial displacement of 19cm and an initial velocity of -, 92mls. What will be the mass's maximum speed?
Given,Mass of the system, m = 1.4 kgSpring constant, k = 45 N/mInitial displacement, x = 19 cm = 0.19 mInitial velocity, v = -92 m/sThe amplitude of the motion, A = x = 0.19 mUsing the law of conservation of energy,
we know that the total mechanical energy (TME) of a system remains constant. Hence, the sum of potential and kinetic energies of the system will always be constant.Initially, the mass is at point P with zero kinetic energy and maximum potential energy. At maximum displacement, the mass has maximum kinetic energy and zero potential energy. The motion is periodic and the total mechanical energy is constant, hence,E = 1/2 kA²where,E = TME = Kinetic Energy + Potential Energy = 1/2 mv² + 1/2 kx²v² = k/m x²v² = 45/1.4 (0.19)² ≈ 2.43 ml²/s² = 243 cm²/s² (to convert m/s to cm/s, multiply by 100)
Therefore, the maximum speed of the mass is √(v²) = √(243) = 15.6 cm/s.More than 100 is not relevant to this problem.
To know more about motion visit:
https://brainly.com/question/2748259
#SPJ11
Addition of heat at constant pressure to a gas results in O
A. Raising its temperature O B. Raising its pressure O
C. Raising its volume O
D. Doing external work O E. Raising its temperature and doing external work
Adding heat at constant pressure to a gas results in (option E.) Raising its temperature and doing external work.
When heat is added to a gas at constant pressure, the primary effects are raising its temperature and doing external work.
Adding heat increases the energy of the gas particles, causing them to move faster and collide more frequently. This increased molecular motion leads to a rise in the temperature of the gas.
Furthermore, at constant pressure, the gas may expand as it absorbs heat. This expansion allows the gas to do work on its surroundings, such as pushing a piston or performing mechanical tasks.
Therefore, the addition of heat at constant pressure results in two main outcomes: an increase in the gas's temperature and the performance of external work.
To learn more about constant pressure, Visit:
https://brainly.com/question/984212
#SPJ11
Two speakers (S1 and S2) are separated by 5.00 m and emit sound waves in all directions with f = 440 Hz. Three people (P1, P2, and P3) are located at different distances from the speakers, as shown: 5.00 m Si S 2.50 m 4.14 m P 10.04 m 14.00 m Question 1 (1 point) Saved Using the universal wave equation (v=fa), determine the wavelength emitted by the speakers when the speed of sound is 345 m/s. Question 2 (5 points) Saved Complete the following table. L1 and L2 represent the path's length from S1 and S2 to the person, respectively. They must be calculated using trigonometry and the data in the figure. Question 3 (1 point) ✓ Saved What is the pattern between AL/A and constructive interference? Par... v B 5 AL = n, where n is any integer. Condition for destructive A Question 4 (1 point) What is the pattern between AL/ and destructive interference? Question 5 (2 points) Do the three people all hear the same thing? Why or why not? or
Using the universal wave equation (v=fa), determine the wavelength emitted by the speakers when the speed of sound is 345 m/s. Given data:Frequency of sound f = 440 Hz
Speed of sound v = 345 m/s
Wavelength λ = v/f= 345/440 = 0.7841 m,
the wavelength emitted by the speakers is 0.7841 m.
Frequency (f) (Hz)440440440
Wavelength (λ) (m)0.78410.78410.7841
Distance from speaker 1 (d1) (m)2.5 4.14 14.0
Distance from speaker 2 (d2) (m)2.5 0.86 10.0
Path length from speaker 1 ([tex]L1) (m)2.5 + 2.5 = 5 4.14 + 2.5 = 6.64 14.0 + 2.5 = 16.5[/tex]
Path length from speaker [tex]2 (L2) (m)5 - 2.5 = 2.5 5 + 0.86 = 5.86 5 + 10.0 = 15.0[/tex]
As a result, they experience different levels of constructive and destructive interference, resulting in different sound intensities.
To know about wavelength visit:
https://brainly.com/question/31143857
#SPJ11