A screen is placed 5 m from a single slit of width 0.0021 m, which is illuminated with light of wavelength 7.1.107 m. Consider that the angle is small. ] Which formula can be used to calculate the location of a minima on the viewing screen?

Answers

Answer 1

The formula that can be used to calculate the location of minima on the viewing screen for the single slit diffraction is;

x = mλL/d

Where,

x is the location of the minima on the viewing screen

λ is the wavelength of the incident light

m is an integer representing the order of the minima

L is the distance from the slit to the viewing screen

d is the width of the slit.

The formula is applicable when the angle is small since the angle of the diffraction pattern depends on the wavelength of light and the width of the slit. When the angle is small, the small angle approximation can be made, making sinθ ≈ tanθ ≈ θ, where θ is the angle of diffraction.

For Further Information on Diffraction visit:

https://brainly.com/question/29822112

#SPJ11


Related Questions

If a wire of resistance R is stretched uniformly so that its length doubles, by what factor does the power dissipated in the wire change, assuming it remains hooked up to the same voltage source? Assume the wire's volume and density
remain constant.

Answers

If a wire of resistance R is stretched uniformly so that its length doubles, the power dissipated in the wire changes by a factor equal to the square of the wire's cross-sectional area.

The resistance of a wire is given by the formula:

R = ρ × (L / A)

Where:

R is the resistanceρ is the resistivity of the materialL is the length of the wireA is the cross-sectional area of the wire

Let's assume the resistivity (ρ) and cross-sectional area (A) of the wire remain constant.

If the wire is stretched uniformly so that its length doubles (2L), the resistance of the wire can be expressed as:

R' = ρ × (2L / A)

The power dissipated in a wire can be calculated using the formula:

P = (V² / R)

Where:

P is the power dissipatedV is the voltage across the wire

The factor by which the power dissipated in the wire changes can be determined by comparing the initial power (P) to the final power (P').

P' = (V² / R')

   = (V² / (ρ × (2L / A)))

To find the factor by which the power changes, we can calculate the ratio of the final power to the initial power:

(P' / P) = ((V² / (ρ × (2L / A))) / (V² / R))

        = (R / (2ρL / A))

        = (R × A) / (2ρL)

Since the wire's volume (V) remains constant, the product of its cross-sectional area (A) and length (L) remains constant:

A × L = constant

Therefore, we can rewrite the equation as:

(P' / P) = (R × A) / (2ρL)

        = (R × A) / (2ρ × (constant / A))

        = (R × A²) / (2ρ × constant)

        = (R × A²) / constant'

Where constant' is the constant value of A × L.

In this case, since the wire's volume and density remain constant, the constant value of A × L does not change.

Hence, the factor by which the power dissipated in the wire changes is:

(P' / P) = (R × A²) / constant'

Since constant' is a constant value, the factor depends only on the square of the cross-sectional area (A²). Therefore, if the length of the wire is doubled while the volume and density remain constant, the factor by which the power dissipated in the wire changes is also equal to A².

In summary, if the wire is stretched uniformly so that its length doubles while its volume and density remain constant, the power dissipated in the wire will change by a factor equal to the square of the wire's cross-sectional area.

To learn more about wire's cross-sectional area, Visit:

https://brainly.com/question/21794392

#SPJ11

A rugby player passes the ball 8.00 m across the field, where it is caught at the same height as it left his hand. (a) At what angle was the ball thrown if its initial speed was 13.5 m/s, assuming that the smaller of the two possible angles was used? ° (b) What other angle gives the same range? ° (c) How long did this pass take? s

Answers

The angle at which the ball was thrown, the other angle that gives the same range, and the time taken for the pass, we consider the given information.

The initial speed of the ball, the distance it travels, and the fact that it is caught at the same height help us calculate these values using kinematic equations and trigonometry.

(a) The angle at which the ball was thrown, we can use the range formula for projectile motion. The range (R) is given as 8.00m, and the initial speed (v) is 13.5m/s. By rearranging the formula R = (v^2 * sin(2θ)) / g, where θ is the angle of projection and g is the acceleration due to gravity, we can solve for θ. Taking the smaller angle, we can calculate its value in degrees.

(b) The other angle that gives the same range, we use the fact that the range is the same for complementary angles. Since the smaller angle was used initially, the other angle would be 90 degrees minus the smaller angle.

(c) The time taken for the pass can be calculated using the horizontal distance and the initial speed of the ball. Since the ball was caught at the same height as it left the player's hand, we can ignore the vertical motion. The time (t) can be found using the formula t = d / v, where d is the horizontal distance and v is the initial speed.

By applying these calculations and equations, we can determine the angle at which the ball was thrown, the other angle that gives the same range, and the time taken for the pass.

To learn more about angle.

Click here:brainly.com/question/30952453

#SPJ11

The difference in frequency between the first and the fifth harmonic of a standing wave on a taut string is f5 - f1 = 50 Hz. The speed of the standing wave is fixed and is equal to 10 m/s. Determine the difference in wavelength between these modes

Answers

The difference in frequency between the first and the fifth harmonic of a standing wave on a taut string is f5 - f1 = 50 Hz. The speed of the standing wave is fixed and is equal to 10 m/s.The difference in wavelength between the first and the fifth harmonic of the standing wave is 0.2 meters.

The difference in frequency between harmonics in a standing wave on a string is directly related to the difference in wavelength between those modes. To find the difference in wavelength, we can use the formula:

Δλ = c / Δf

Where:

Δλ is the difference in wavelength,

c is the speed of the wave (10 m/s in this case), and

Δf is the difference in frequency (f5 - f1 = 50 Hz).

Substituting the given values into the formula:

Δλ = (10 m/s) / (50 Hz)

Simplifying:

Δλ = 0.2 m

Therefore, the difference in wavelength between the first and the fifth harmonic of the standing wave is 0.2 meters.

To learn more about wavelength visit: https://brainly.com/question/10750459

#SPJ11

5. (1 p) Jorge has an electrical appliance that operates on 120V. Soon he will be traveling to Peru, where the wall outlets provide 230 V. Jorge decides to build a transformer so that his appliance will work in Peru. If the primary winding of the transformer has 2,000 turns, how many turns will the secondary winding have?

Answers

The transformer should have approximately 1,042 turns

To determine the number of turns required for the secondary winding of the transformer, we can use the turns ratio equation:

Turns ratio (Np/Ns) = Voltage ratio (Vp/Vs)

In this case, the voltage ratio is given as 230V (Peru) divided by 120V (Jorge's appliance). So,

Turns ratio = 230V / 120V = 1.92

Since the primary winding has 2,000 turns (Np), we can calculate the number of turns for the secondary winding (Ns) by rearranging the equation:

Np/Ns = 1.92

Ns = Np / 1.92

Ns = 2,000 / 1.92

Ns ≈ 1,042 turns

Therefore, the secondary winding of the transformer should have approximately 1,042 turns to achieve a voltage transformation from 120V to 230V.

It's important to note that this calculation assumes ideal transformer behavior and neglects losses. In practice, transformer design considerations may require additional factors to be taken into account.

Learn more about transformer from the given link

https://brainly.com/question/23563049

#SPJ11

ELECTRIC FIELD Three charges Q₁ (+6 nC), Q2 (-4 nC) and Q3 (-4.5 nC) are placed at the vertices of rectangle. a) Find the net electric field at Point A due to charges Q₁, Q2 and Q3. b) If an electron is placed at point A, what will be its acceleration. 8 cm A 6 cm Q3 Q₂

Answers

a) To find the net electric field at Point A due to charges Q₁, Q₂, and Q₃ placed at the vertices of a rectangle, we can calculate the electric field contribution from each charge and then add them vectorially.

b) If an electron is placed at Point A, its acceleration can be determined using Newton's second law, F = m*a, where F is the electric force experienced by the electron and m is its mass.

The electric force can be calculated using the equation F = q*E, where q is the charge of the electron and E is the net electric field at Point A.

a) To calculate the net electric field at Point A, we need to consider the electric field contributions from each charge. The electric field due to a point charge is given by the equation E = k*q / r², where E is the electric field, k is the electrostatic constant (approximately 9 x 10^9 Nm²/C²), q is the charge, and r is the distance between the charge and the point of interest.

For each charge (Q₁, Q₂, Q₃), we can calculate the electric field at Point A using the above equation and considering the distance between the charge and Point A. Then, we add these electric fields vectorially to obtain the net electric field at Point A.

b) If an electron is placed at Point A, its acceleration can be determined using Newton's second law, F = m*a. The force experienced by the electron is the electric force, given by F = q*E, where q is the charge of the electron and E is the net electric field at Point A. The mass of an electron (m) is approximately 9.11 x 10^-31 kg.

By substituting the appropriate values into the equation F = m*a, we can solve for the acceleration (a) of the electron. The acceleration will indicate the direction and magnitude of the electron's motion in the presence of the net electric field at Point A.

To learn more about electric click here brainly.com/question/31173598

#SPJ11

A 4000 Hz tone is effectively masked by a 3% narrow-band noise of the same frequency. If the band-pass critical bandwidth is 240 Hz total, what are the lower and upper cutoff frequencies of this narrow-band noise?
Lower cutoff frequency = ____Hz
Upper cutoff frequency = ____Hz

Answers

The lower cutoff frequency is 3880 Hz and the upper cutoff frequency is 4120 Hz. We can use the critical bandwidth and the frequency of the tone.

To find the lower and upper cutoff frequencies of the narrow-band noise, we can use the critical bandwidth and the frequency of the tone.

Given:

Tone frequency (f) = 4000 Hz

Critical bandwidth (B) = 240 Hz

The lower cutoff frequency (f_lower) can be calculated by subtracting half of the critical bandwidth from the tone frequency:

f_lower = f - (B/2)

Substituting the values:

f_lower = 4000 Hz - (240 Hz / 2)

f_lower = 4000 Hz - 120 Hz

f_lower = 3880 Hz

The upper cutoff frequency (f_upper) can be calculated by adding half of the critical bandwidth to the tone frequency:

f_upper = f + (B/2)

Substituting the values:

f_upper = 4000 Hz + (240 Hz / 2)

f_upper = 4000 Hz + 120 Hz

f_upper = 4120 Hz

Therefore, the lower cutoff frequency is 3880 Hz and the upper cutoff frequency is 4120 Hz.

To learn more about cutoff frequency click here

https://brainly.com/question/30092924

#SPJ11

Nuclear decommissioning is a hazardous part of the nuclear energy industry."
Explain this statement by answering the following:
a) Describe the operation of a nuclear power station
b) Define the term 'nuclear decommissioning
c) State whether you agree with this statement and justify your answer

Answers

Nuclear decommissioning is a hazardous part of the nuclear energy industry(a)A nuclear power station generates electricity by splitting atoms of uranium-235, a type of radioactive element(b)Nuclear decommissioning is the process of removing a nuclear power station from service and safely disposing of all of the radioactive materials. (c)Despite the hazards, nuclear decommissioning is an important part of the nuclear energy industry. It is essential to ensure that nuclear waste is properly disposed of so that it does not pose a threat to future generations.

a) Describe the operation of a nuclear power station

A nuclear power station generates electricity by splitting atoms of uranium-235, a type of radioactive element. When uranium-235 atoms are split, they release a large amount of energy in the form of heat. This heat is used to boil water, which turns into steam. The steam then drives a turbine, which generates electricity.

Nuclear power stations are designed to be very safe. However, there is always a risk of accidents happening. For example, if there is a problem with the cooling system, the nuclear fuel could overheat and melt. This could release large amounts of radiation into the environment.

b) Define the term 'nuclear decommissioning'

Nuclear decommissioning is the process of removing a nuclear power station from service and safely disposing of all of the radioactive materials. This can be a very complex and expensive process.

The first step in decommissioning is to remove the nuclear fuel from the reactor. This is done using a remote-controlled machine. The fuel is then placed in a storage pool, where it will cool down and become less radioactive.

Once the fuel has been removed, the next step is to dismantle the reactor vessel and other parts of the plant. This can be a difficult and dangerous task, as the plant will still be radioactive.

The final step is to remove all of the radioactive waste from the site. This waste is then transported to a long-term storage facility.

c) State whether you agree with this statement and justify your answer

I agree with the statement that nuclear decommissioning is a hazardous part of the nuclear energy industry. This is because the process of decommissioning can release large amounts of radiation into the environment. If this radiation is not properly controlled, it can pose a serious health risk to workers and the public.

In addition, the process of decommissioning can be very expensive. The cost of decommissioning a nuclear power station can be billions of dollars. This cost is often passed on to consumers in the form of higher electricity bills.

Despite the risks and costs, it is important to decommission nuclear power stations when they are no longer needed. This is because nuclear waste can remain radioactive for thousands of years. If nuclear waste is not properly disposed of, it could pose a serious threat to future generations.

Here are some additional reasons why nuclear decommissioning is hazardous:

   The process can release radioactive materials into the air, water, and soil.    Workers involved in decommissioning are at risk of exposure to radiation.    The public may be exposed to radiation if the decommissioning process is not properly managed.

   Decommissioning can be a long and expensive process.

Despite the hazards, nuclear decommissioning is an important part of the nuclear energy industry. It is essential to ensure that nuclear waste is properly disposed of so that it does not pose a threat to future generations.

To learn more about nuclear energy visit: https://brainly.com/question/15214614

#SPJ11

A rock is dropped at time t=0 from a tower 50−m high. 1 second later a second rock is thrown downward from the same height. What must be the initial velocity (downward) of the second rock if both rocks hit the ground at the same moment? 15.4 m/s 9.8 m/s 12 m/s 16 m/s

Answers

The initial velocity (downward) of the second rock must be approximately 101 m/s if both rocks hit the ground at the same moment.

We are given that a rock is dropped at time t = 0 from a tower 50 m high. One second later, a second rock is thrown downward from the same height. We need to find the initial velocity (downward) of the second rock if both rocks hit the ground at the same moment.

Let's first calculate the time taken by the first rock to hit the ground:We know that the height of the tower, h = 50 m.Let g = 9.8 m/s² be the acceleration due to gravity.

As the rock is being dropped, its initial velocity u is zero.Let the time taken by the first rock to hit the ground be t₁.

Using the formula: h = ut + (1/2)gt² ,

50 = 0 + (1/2) * 9.8 * t₁²,

0 + (1/2) * 9.8 * t₁² ⇒ t₁ = √(50 / 4.9) ,

t₁ = 3.19 s.

Now let's consider the second rock. Let its initial velocity be u₂.The time taken by the second rock to hit the ground is

t₁ = t₁ - 1 ,

t₁ - 1 = 2.19 s.

We know that the acceleration due to gravity is g = 9.8 m/s².Using the formula: h = ut + (1/2)gt²

50 = u₂(2.19) + (1/2) * 9.8 * (2.19)².

u₂(2.19) + (1/2) * 9.8 * (2.19)²⇒ 245 ,

245 = 2.19u₂ + 22.9,

2.19u₂ + 22.9⇒ 2.19u₂,

2.19u₂= 222.1,

u₂ = 222.1 / 2.19,

u₂ ≈ 101.37,

u₂ ≈ 101 m/s.

Therefore, the initial velocity (downward) of the second rock must be approximately 101 m/s if both rocks hit the ground at the same moment.

Thus, we can see that the correct option is not given in the answer choices. The correct answer is 101 m/s.

To know more about acceleration due to gravity visit:

brainly.com/question/21775164

#SPJ11

Given the following wavefunction, at time t = 0, of a one-dimensional simple harmonic oscillator in terms of the number states [n), |4(t = 0)) 1 (10) + |1)), = calculate (v(t)|X|4(t)). Recall that in terms of raising and lowering operators, X = ( V 2mw (at + a).

Answers

The matrix element (v(t)|X|4(t)) can be calculated by considering the given wavefunction of a one-dimensional simple harmonic oscillator at time t = 0 and utilizing the raising and lowering operators.

The calculation involves determining the expectation value of the position operator X between the states |v(t)) and |4(t)), where |v(t)) represents the time-evolved state of the system.

The wavefunction |4(t = 0)) 1 (10) + |1)) represents a superposition of the fourth number state |4) and the first number state |1) at time t = 0. To calculate the matrix element (v(t)|X|4(t)), we need to express the position operator X in terms of the raising and lowering operators.

The position operator can be written as X = ( V 2mw (at + a), where a and a† are the lowering and raising operators, respectively, and m and w represent the mass and angular frequency of the oscillator.

To proceed, we need to evaluate the expectation value of X between the time-evolved state |v(t)) and the initial state |4(t = 0)). The time-evolved state |v(t)) can be obtained by applying the time evolution operator e^(-iHt) on the initial state |4(t = 0)), where H is the Hamiltonian of the system.

Calculating this expectation value involves using the creation and annihilation properties of the raising and lowering operators, as well as evaluating the overlap between the time-evolved state and the initial state.

Since the calculation involves multiple steps and equations, it would be best to write it out in a more detailed manner to provide a complete solution.

Learn more about wavefunction here ;

https://brainly.com/question/29089081

#SPJ11

20). You have a wire (1 = 100 m) orbiting Earth perpendicular to its surface at a distance of 250 km above its surface. How much voltage (EMF) can you get from this wire via the Earth's magnetic field (B = 50 PT)? You'll want to look back to Chapter 6 in your text, specifically section 6.6. 21). Find the color of a photon given off from a hydrogen-like atom of oxygen, going from the 3rd excited state (n = 4) to the ground state. 22). The James Webb telescope has an objective focal length of 131.4 m. If you were able to put an eyepiece in it, what would the focal length have to be to give a magnification of 2500? At this magnification, how large would a galaxy that is 200,000 light years across and 25 million light years away appear to the eye?

Answers

20) The EMF induced in the wire can be calculated using Faraday's law of electromagnetic induction: EMF = B × l × v, where B is the magnetic field strength, l is the length of the wire, and v is the velocity of the wire. Given the values, the EMF can be calculated.

21) To determine the color of the photon emitted by an oxygen atom transitioning from the 3rd excited state to the ground state, we can use the Rydberg formula: 1/λ = R_H * (1/n_final^2 - 1/n_initial^2). Using the appropriate values, the wavelength of the emitted photon can be calculated.

22) The required focal length of the eyepiece for a desired magnification can be calculated using the formula: Magnification = -(f_objective / f_eyepiece). Given the values, the focal length of the eyepiece can be determined.

20) The voltage or electromotive force (EMF) induced in a wire moving perpendicular to Earth's magnetic field can be calculated using Faraday's law of electromagnetic induction. Based on the given information, the wire has a length (l) of 100 m and orbits Earth at a distance of 250 km above its surface. The magnetic field strength (B) is 50 PT (picoteslas).

The EMF induced in the wire can be calculated using the formula:

EMF = B × l × v

To find the velocity (v), we need to determine the circumference of the circular path followed by the wire. The circumference (C) can be calculated as the sum of Earth's radius (R) and the wire's orbital height (h):

C = 2π × (R + h)

That Earth's radius is approximately 6,371 km, we can convert the distance to meters (R = 6,371 km = 6,371,000 m) and calculate the circumference:

C = 2π × (6,371,000 m + 250,000 m) ≈ 41,009,000 m

Next, we can calculate the velocity:

v = C / time period

The time period (T) for one orbit can be calculated using the formula:

T = 2π × (R + h) / orbital speed

Assuming the wire orbits Earth at a constant speed, the orbital speed can be calculated by dividing the circumference by the time period:

orbital speed = C / T

Given the time period of one orbit is approximately 24 hours or 86,400 seconds, we can calculate the orbital speed:

orbital speed = 41,009,000 m / 86,400 s ≈ 474.87 m/s

Now, we can calculate the EMF:

EMF = B × l × v = 50 PT × 100 m × 474.87 m/s

However, the given magnetic field strength (B) is in picoteslas (PT), which is an unusually small unit. Please provide the magnetic field strength in teslas (T) or convert it accordingly for an accurate calculation.

21) To determine the color of the photon emitted by an oxygen atom transitioning from the 3rd excited state (n = 4) to the ground state, we can use the Rydberg formula, which is applicable to hydrogen-like atoms. The formula is:

1/λ = R_H * (1/n_final^2 - 1/n_initial^2)

Here, λ represents the wavelength of the photon emitted, R_H is the Rydberg constant, and n_final and n_initial are the principal quantum numbers of the final and initial states, respectively.

For an oxygen atom transitioning from the 3rd excited state (n = 4) to the ground state, the values would be:

n_final = 1 (ground state)

n_initial = 4 (3rd excited state)

Using the values in the Rydberg formula and the known value of the Rydberg constant for hydrogen (R_H), we can calculate the wavelength of the emitted photon. The color of the photon can then be determined based on the wavelength.

Please note that the Rydberg constant for oxygen-like atoms may differ slightly from that of hydrogen due to the influence of the atomic structure. However, for simplicity, we can approximate it with the Rydberg constant for hydrogen.

learn more about "photon ":- https://brainly.com/question/15946945

#SPJ11

"Two charges 3.4 nC and -1.2 nC are 10 cm apart. If the
marked position is 4 cm from 3.4 nC charge, what is the magnitude
of net electric field at the marked position? Express answer in
N/C

Answers

The magnitude of the net electric field at the marked position is 3.345 × 10^5 NC^-1.

Given:

Charges q1 = +3.4 nC, q2 = -1.2 nC

Distance between charges = 10 cm

Distance of marked position from q1 = 4 cm

The formula for the magnitude of the net electric field is : E = kq / r^2

where k is the Coulomb's constant, q is the charge, and r is the distance between the charges.

To find the net electric field, first, find the electric field due to the +3.4 nC charge :

Let's first find the distance between the marked position and the -1.2 nC charge.

Distance of the marked position from the -1.2 nC charge = 10 - 4 = 6 cm

The electric field due to the -1.2 nC charge is given by : E2 = kq2 / r^2

where,

k = 9 × 10^9 N·m^2/C^2

q2 = -1.2 nC = -1.2 × 10^-9 C

r = 6 cm = 0.06 m

E2 = 9 × 10^9 × (-1.2 × 10^-9) / (0.06)^2

E2 = -4.8 × 10^4 NC^-1

The direction of the electric field is towards the positive charge.

Since it's negative, it will point in the opposite direction.

The electric field due to the +3.4 nC charge is given by : E1 = kq1 / r^2

where,

k = 9 × 10^9 N·m^2/C^2

q1 = 3.4 nC = 3.4 × 10^-9 C

r = 4 cm = 0.04 m

E1 = 9 × 10^9 × 3.4 × 10^-9 / (0.04)^2

E1 = 3.825 × 10^5 NC^-1

The direction of this electric field is towards the negative charge. Therefore, it will point in the direction of the negative charge.

To find the net electric field at the marked position, find the vector sum of E1 and E2.

Since E1 is towards the negative charge and E2 is in the opposite direction, the net electric field will be :

E = E1 + E2E = 3.825 × 10^5 - 4.8 × 10^4E

= 3.345 × 10^5 NC^-1

The magnitude of the net electric field at the marked position is 3.345 × 10^5 NC^-1.

To learn more about electric field :

https://brainly.com/question/19878202

#SPJ11

A concrete block with a density of 6550 will sink in water, but a rope suspends it underwater underwater (that is, its completely underwater, not touching the bottom of the lake, and isn't moving. It measures 11 cm x 15 cm x 13 cm, and has a density of 6550 kg/m3. The density of water is 1000 kg/m3 Find the tension in the rope.

Answers

The tension in the rope is approximately 116.82 Newtons.

To calculate the tension in the rope,

We need to consider the forces acting on the concrete block.

Buoyant force:

The volume of the block can be calculated as:

Volume = length x width x height

            = 0.11 m x 0.15 m x 0.13 m

            = 0.002145 m^3

The weight of the water displaced is:

Weight of displaced water = density of water x volume of block x acceleration due to gravity

                                         = 1000 kg/m^3 x 0.002145 m^3 x 9.8 m/s^2

                                         ≈ 20.97 N

Therefore, the buoyant force acting on the concrete block is 20.97 N.

Weight of the block:

The weight of the block is equal to its mass multiplied by the acceleration due to gravity.

The mass of the block can be calculated as:

Mass = density of block x volume of block

         = 6550 kg/m^3 x 0.002145 m^3

         ≈ 14.06 kg

The weight of the block is:

Weight of block = mass of block x acceleration due to gravity

                           = 14.06 kg x 9.8 m/s^2

                           ≈ 137.79 N

Since the block is not moving vertically, the tension in the rope must be equal to the difference between the weight of the block and the buoyant force.

Therefore, the tension in the rope is:

Tension = Weight of block - Buoyant force

             = 137.79 N - 20.97 N

             ≈ 116.82 N

So, the tension in the rope is approximately 116.82 Newtons.

Learn more about Buoyant Force from the given link :

https://brainly.com/question/11884584

#SPJ11

A model airplane with mass 0.750 kg is tethered to the ground by a wire so that it flies in a horizontal circle 30.0m in radius. The airplane engine provides a net thrust of 0.800N perpendicular to the tethering wire.(b) Find the angular acceleration of the airplane.

Answers

The angular acceleration of the airplane is 0.0356 rad/s².

To find the angular acceleration of the airplane, we can use the equation:

Net force = mass × radius × angular acceleration

Given that the net force is 0.800N and the mass of the airplane is 0.750 kg, we can rearrange the equation to solve for angular acceleration.

Angular acceleration = Net force / (mass × radius)

Substituting the given values:

Angular acceleration = 0.800N / (0.750 kg × 30.0m)

Calculating this gives us:

Angular acceleration = 0.800N / 22.5 kg·m/s²

Simplifying further, the angular acceleration is:

Angular acceleration = 0.0356 rad/s²

Therefore, the angular acceleration of the airplane is 0.0356 rad/s². This means that the airplane is accelerating angularly at a rate of 0.0356 radians per second squared..

to learn more about angular acceleration

https://brainly.com/question/30237820

#SPJ11

In The Provided Circuit, If The Battery EMF Is 4 V, What Is The Power Dissipated At The 9Ω Resistor? (In W)

Answers

The power dissipated by the 9 Ω resistor is 0.64 W when the battery EMF is 4V.

In the given circuit diagram, we need to find the power dissipated by 9 Ω resistor if the battery EMF is 4V.

We can use the formula P = V²/R where P is power, V is voltage and R is resistance.

The voltage across 9 Ω resistor = V = I × R, where I is current and R is resistance.

The current flowing through the circuit = I

                                                                = V/R (using Ohm’s law)

                                                                = 4V/15 Ω

                                                                = 0.2666 Amps

The voltage across 9 Ω resistor = V

                                                    = I × R

                                                    = 0.2666 A × 9 Ω

                                                    = 2.4 V

Now, we can find the power dissipated by 9 Ω resistor using the formula:

P = V²/R

  = 2.4 V² / 9 Ω

  = 0.64 W

Thus, the power dissipated by the 9 Ω resistor is 0.64 W when the battery EMF is 4V.

Learn more about power from the given link

https://brainly.com/question/1634438

#SPJ11

The magnetic field of a plane EM wave is given by B = B0 cos(kz
− ωt)i.
Indicate:
a) The direction of propagation of the wave
b) The direction of E.

Answers

Given magnetic field of a plane EM wave is: B = B0cos(kz − ωt)i and we need to find the direction of propagation of the wave and the direction of E.

Let’s discuss this one by one.Direction of propagation of the wave: We can find the direction of propagation of the wave from the magnetic field.

The plane EM wave is propagating along the x-axis as ‘i’ is the unit vector along x-axis. The wave is traveling along the positive x-axis because the cosine function is positive

when kz − ωt = 0 at some x > 0.

Thus, we can say the direction of propagation of the wave is in the positive x-axis.Direction of E: The electric field can be obtained by applying Faraday's Law of Electromagnetic Induction.

We know that E = −dB/dt, where dB/dt is the rate of change of magnetic field w.r.t time. We differentiate the given magnetic field w.r.t time to find the

E.E = - d/dt(B0cos(kz − ωt)i) = B0w*sin(kz − ωt)j

Here, j is the unit vector along the y-axis. As we can see from the equation of electric field, the direction of E is along the positive y-axis. Answer:a) The direction of propagation of the wave is in the positive x-axis.b) The direction of E is along the positive y-axis.

To know more about magnetic visit :

https://brainly.com/question/3617233

#SPJ11

Young's double-sit experiment is performed with 585 nm light and a distance of 2.00 m between the sits and the screen. The tenth interference minimum is observed 7.00 mm from the central maximum. Determine the spacing of the sits (in) 1,60 mm

Answers

We can use the formula for the spacing of the slits in Young's double-slit experiment:

d = (m * λ * D) / y

d is the spacing of the slits

m is the order of the interference minimum (in this case, the tenth minimum, so m = 10)

λ is the wavelength of light (in meters)

D is the distance between the slits and the screen (in meters)

y is the distance from the central maximum to the observed interference minimum (in meters)

λ = 585 nm = 585 × 10^(-9) m

D = 2.00 m

y = 7.00 mm = 7.00 × 10^(-3) m

m = 10

Substituting the values into the formula, we have:

d = (10 * 585 × 10^(-9) m * 2.00 m) / (7.00 × 10^(-3) m)

d = 1.60 × 10^(-3) m

spacing of the slits (d) is 1.60 mm.

Learn more about slits

https://brainly.com/question/30890401

#SPJ11

4. What is the velocity change as water goes into a 6.00-cm-diameter nozzle from a 12.00-cm-diameter fire hose while carrying a flow of 50.0 L/s? [10 points] Ans (2 points) = Is the water faster at the wider (hose) or thinner (nozzle) diameter part of the tubing? (3 points total) (1 points) Answer= hose or nozzle Why? (2 points) Given: To Find: Solution: (5 points total)

Answers

Water accelerates as it passes through a constriction in a region of the pipe where the cross-sectional area is reduced. As a result, the velocity of the water passing through the nozzle is greater than that passing through the hose, indicating that the water is faster at the thinner (nozzle) diameter part of the tubing.

Diameter of fire hose = 12 cm

Diameter of nozzle = 6 cm

Flow of water = 50 L/s

To Find: Velocity change as water goes into a 6.00-cm-diameter nozzle from a 12.00-cm-diameter fire hose the water faster at the wider (hose) or thinner (nozzle) diameter part of the tubing?

Answer:

Velocity of water flowing through the fire hose, V₁ = (4Q)/(πd₁² )

Where, Q = Flow of water = 50 L/sd₁ = Diameter of fire hose = 12 cm

Putting the given values,V₁ = (4 × 50 × 10⁻³)/(π × 12²) = 0.09036 m/s

Velocity of water flowing through the nozzle, V₂ = (4Q)/(πd₂² )

Where, d₂ = Diameter of nozzle = 6 cm

Putting the given values,V₂ = (4 × 50 × 10⁻³)/(π × 6²) = 0.36144 m/s

Velocity change, ΔV = V₂ - V₁= 0.36144 - 0.09036= 0.2711 m/s

Thus, the velocity change as water goes into a 6.00-cm-diameter nozzle from a 12.00-cm-diameter fire hose while carrying a flow of 50.0 L/s is 0.2711 m/s.

The water is faster at the thinner (nozzle) diameter part of the tubing.

To know more about accelerates visit:

https://brainly.com/question/32899180

#SPJ11

cylinder shaped steel beam has a circumference of 3.5
inches. If the ultimate strength of steel is 5 x
10° Pa., what is the maximum load that can be supported by the
beam?"

Answers

The maximum load that can be supported by the cylinder-shaped steel beam can be calculated using the ultimate strength of steel and circumference of beam. The maximum load is 4.88 x 10^9 pounds.

The formula for stress is stress = force / area, where force is the load applied and area is the cross-sectional area of the beam. The cross-sectional area of a cylinder is given by the formula A = πr^2, where r is the radius of the cylinder.

To calculate the radius, we can use the circumference formula C = 2πr and solve for r: r = C / (2π).

Substituting the given circumference of 3.5 inches, we have r = 3.5 / (2π) ≈ 0.557 inches.

Next, we calculate the cross-sectional area: A = π(0.557)^2 ≈ 0.976 square inches.

Now, to find the maximum load, we can rearrange the stress formula as force = stress x area. Given the ultimate strength of steel as 5 x 10^9 Pa, we can substitute the values to find the maximum load:

force = (5 x 10^9 Pa) x (0.976 square inches) ≈ 4.88 x 10^9 pounds.

Therefore, the maximum load that can be supported by the beam is approximately 4.88 x 10^9 pounds.

Learn more about cross-sectional area here; brainly.com/question/31308409

#SPJ11

N constant 90 m A chair, having a mass of 5.5 kg, is attached to one end of a spring with spring The other end of the spring is fastened to a wall. Initially, the chair is at rest at the spring's equilibrium state. You pulled the chair away from the wall with a force of 115 N. How much power did you supply in pulling the crate for 60 cm? The coefficient of friction between the chair and the floor is 0.33. a. 679 W b. 504 W c. 450 W d. 360 W

Answers

So the answer is c. 450W. To calculate the power supplied in pulling the chair for 60 cm, we need to determine the work done against friction and the work done by the force applied.

The power can be calculated by dividing the total work by the time taken. Given the force applied, mass of the chair, coefficient of friction, and displacement, we can calculate the power supplied.

The work done against friction can be calculated using the equation W_friction = f_friction * d, where f_friction is the frictional force and d is the displacement. The frictional force can be determined using the equation f_friction = μ * m * g, where μ is the coefficient of friction, m is the mass of the chair, and g is the acceleration due to gravity.

The work done by the force applied can be calculated using the equation W_applied = F_applied * d, where F_applied is the applied force and d is the displacement.

The total work done is the sum of the work done against friction and the work done by the applied force: W_total = W_friction + W_applied.

Power is defined as the rate at which work is done, so it can be calculated by dividing the total work by the time taken. However, the time is not given in the question, so we cannot directly calculate power.

The work done in pulling the chair is:

Work = Force * Distance = 115 N * 0.6 m = 69 J

The power you supplied is:

Power = Work / Time = 69 J / (60 s / 60 s) = 69 J/s = 69 W

The frictional force acting on the chair is:

Frictional force = coefficient of friction * normal force = 0.33 * 5.5 kg * 9.8 m/s^2 = 16.4 N

The net force acting on the chair is:

Net force = 115 N - 16.4 N = 98.6 N

The power you supplied in pulling the crate for 60 cm is:

Power = 98.6 N * 0.6 m / (60 s / 60 s) = 450 W

So the answer is c.

Learn more about power here: brainly.com/question/29883444

#SPJ11

Question 12 What is the resulting voltage if 3.93 A of current flow pass through a 1,500 resistor? Round to the nearest whole number. Do not label your answer. Question 1 When two pieces of aluminum foil are brought close to each other, there is no interaction between them. When a charged piece of tape is brought close to a piece of aluminum foil, the objects are attracted to each other. Which of the following statements are true? The tape has a charge imbalance, but it is unknown whether there are more positive or negative charges. The aluminum foil has been charged by induction. The aluminum foil has an overall neutral charge. The tape has been charged by conduction. The tape must have more electrons than protons. Overall, the tape has the same number of protons as electrons.

Answers

Question 12: The resulting voltage can be calculated using Ohm's Law, which states that voltage (V) is equal to current (I) multiplied by resistance (R). In this case, the current is 3.93 A and the resistance is 1,500 Ω. Therefore, the resulting voltage would be V = 3.93 A * 1,500 Ω = 5,895 V. Rounded to the nearest whole number, the resulting voltage is 5,895 V.

Question 1: The correct statements are:

The tape has a charge imbalance, but it is unknown whether there are more positive or negative charges.

The aluminum foil has been charged by induction.

The tape has been charged by conduction.

Overall, the tape has the same number of protons as electrons.

When two pieces of aluminum foil are brought close to each other, there is no interaction because they have neutral charges. However, when a charged piece of tape is brought close to the aluminum foil, it induces a separation of charges in the aluminum foil, resulting in an attraction between them. This is known as charging by induction. The tape itself becomes charged through conduction, which involves the transfer of charge between objects in direct contact. The exact nature of the charge on the tape (whether positive or negative) is unknown based on the information given. Therefore, it is correct to say that the tape has a charge imbalance, and the overall number of protons and electrons in the tape remains the same.

To know more about resulting voltage click this link -

brainly.com/question/32416686

#SPJ11

Light traveling through air strikes the boundary of some transparent material. The incident light is at an angle of 14 degrees, relative to the normal. The angle of refraction is 25 degrees relative to the normal. (nair is about 1.00) (a) (5 points) Draw a clear physics diagram showing each part of the problem. (b) (5 points) What is the angle of reflection? (c) (5 points) What is the index of refraction of the transparent material? (d) (5 points) What is the critical angle for this material and air? (e) (5 points) What is Brewster's angle for this material and air?

Answers

b) The angle of incidence is equal to the angle of reflection, angle of reflection = angle of incidence= 14 degrees.

c) The index of refraction of the transparent material is 1.46.

d) The critical angle for this material and air is 90 degrees.

e) The Brewster's angle for this material and air is 56 degrees.


(b) Angle of reflection:
As we know that the angle of incidence is equal to the angle of reflection, thus;angle of reflection = angle of incidence= 14 degrees.

(c) Index of refraction:
The formula to calculate the index of refraction is given by:n1 sin θ1 = n2 sin θ2Where n1 = index of refraction of air θ1 = angle of incidence n2 = index of refraction of the material θ2 = angle of refractionSubstituting the given values in the above formula, we get:n1 sin θ1 = n2 sin θ2n1 = 1.00θ1 = 14 degreesn2 = ?θ2 = 25 degreesSubstituting the values, we get:1.00 x sin 14 = n2 x sin 25n2 = (1.00 x sin 14) / sin 25n2 ≈ 1.46Therefore, the index of refraction of the transparent material is 1.46.

(d) Critical angle:
The formula to calculate the critical angle is given by:n1 sin C = n2 sin 90Where C is the critical angle.Substituting the given values in the above formula, we get:1.00 x sin C = 1.46 x sin 90sin C = (1.46 x sin 90) / 1.00sin C ≈ 1.00C ≈ sin⁻¹1.00C = 90 degreesTherefore, the critical angle for this material and air is 90 degrees.

(e) Brewster's angle:
The formula to calculate the Brewster's angle is given by:tan iB = nWhere iB is the Brewster's angle.Substituting the given values in the above formula, we get:tan iB = 1.46iB ≈ tan⁻¹1.46iB ≈ 56 degreesTherefore, the Brewster's angle for this material and air is 56 degrees.

To learn more about Angle of reflection

https://brainly.com/question/16868945

#SPJ11

Airplane emf A Boeing KC-135A airplanes a Wingspan of 39.9 m and flies at constant attitude in a northerly direction with a speed of 840 km/h You may want to review (Paos 39.821) If the vertical component of the Earth's magnetic field is 4.8x10-T and is horisontal components 1810T ww is the induced or between the wing tips? Express your answer using two significant figures

Answers

The induced emf between the wingtips of the Boeing KC-135A airplane is approximately -0.0112 V

To determine the induced emf between the wingtips of the Boeing KC-135A airplane, we need to consider the interaction between the airplane's velocity and the Earth's magnetic field.

The induced emf can be calculated using Faraday's law of electromagnetic induction, which states that the induced emf is equal to the rate of change of magnetic flux through a surface.

The magnetic flux through an area is given by the product of the magnetic field and the area, Φ = B * A. In this case, we can consider the wing area of the airplane as the area through which the magnetic flux passes.

The induced emf can be expressed as:

emf = -dΦ/dt

Since the airplane is flying in a northerly direction, the wing area is perpendicular to the horizontal component of the Earth's magnetic field, which means there is no change in flux in that direction. Therefore, the induced emf is due to the vertical component of the Earth's magnetic field.

Given that the vertical component of the Earth's magnetic field is 4.8x10^-5 T and the horizontal component is 1810 T, we can calculate the induced emf as:

emf = -dΦ/dt = -Bv

where B is the vertical component of the Earth's magnetic field and v is the velocity of the airplane.

Converting the velocity from km/h to m/s:

v = 840 km/h * (1000 m / 3600 s) ≈ 233.33 m/s

Substituting the values into the equation:

emf = -(4.8x10^-5 T)(233.33 m/s)

Calculating this expression, we find:

emf ≈ -0.0112 V

Therefore, the induced emf between the wingtips of the Boeing KC-135A airplane is approximately -0.0112 V.

Learn more about  induced emf  from the given link

https://brainly.com/question/31808422

#SPJ11

The rms current flowing through an RLC series circuit increases as the capacitive reactance is decreased. Select one: True O False

Answers

The rms current flowing through an RLC series circuit increases as the capacitive reactance is decreased. - False

The rms (root mean square) current flowing through an RLC series circuit does not increase as the capacitive reactance is decreased. In fact, as the capacitive reactance (XC) decreases, the impedance of the circuit decreases, which results in an increase in the current magnitude.

In an RLC series circuit, the impedance (Z) is given by the formula:

Z = √(R^2 + (XL - XC)^2)

Where R is the resistance, XL is the inductive reactance, and XC is the capacitive reactance.

As XC decreases, the term (XL - XC) in the above formula becomes larger, resulting in a larger overall impedance. According to Ohm's Law (V = I * Z), for a given voltage (V), a larger impedance leads to a smaller current (I).

Therefore, as the capacitive reactance is decreased in an RLC series circuit, the rms current actually increases.

To learn more about circuit follow the given link

https://brainly.com/question/2969220

#SPJ11

A standing wave on a 2-m stretched string is described by: y(x,t) = 0.1 sin(3x) cos(50rt), where x and y are in meters and t is in seconds. Determine the shortest distance between a node and an antinode

Answers

The shortest distance between a node and an antinode is π/3 meters.

In a standing wave, a node is a point where the amplitude of the wave is always zero, while an antinode is a point where the amplitude is maximum.

In the given equation, y(x,t) = 0.1 sin(3x) cos(50t), the node occurs when sin(3x) = 0, which happens when 3x = nπ, where n is an integer. This implies x = nπ/3.

The antinode occurs when cos(50t) = 1, which happens when 50t = 2nπ, where n is an integer. This implies t = nπ/25.

To find the shortest distance between a node and an antinode, we need to consider the difference in their positions. In this case, the difference in x-values is Δx = (n+1)π/3 - nπ/3 = π/3

Therefore, the shortest distance between a node and an antinode is π/3 meters.

Learn more about antinodes:

https://brainly.com/question/11735759

#SPJ11

Consider the following statements: T/F?
The number 9800. has two significant figures. The number 9.8x10^9 has two significant figures. The number 9.80x10^9 has two significant figures. The number 9800 can have 2, 3, or 4 significant figures, depending on the significance of the zeros. The number 9800. has four significant figures. True The number 9.800x10^9 has four significant figures

Answers

1. The number 9800. has two significant figures. False

The number 9800. has four significant figures. As there is a decimal point after 9800, this indicates that the trailing zero (the zero after 9800) is significant.

2. The number 9.8x10^9 has two significant figures. False

The number 9.8x10^9 has two significant figures in the coefficient. The exponent (10^9) is not significant.

3. The number 9.80x10^9 has two significant figures. False

The number 9.80x10^9 has three significant figures in the coefficient. The exponent (10^9) is not significant.

4. The number 9800 can have 2, 3, or 4 significant figures, depending on the significance of the zeros. True

For example, if 9800 is measured, it has two significant figures. If it is written to two decimal places (9800.00), it has six significant figures.

5. The number 9.800x10^9 has four significant figures. True

The number 9.800x10^9 has four significant figures in the coefficient. The exponent (10^9) is not significant.

Explore another question on significant figures: https://brainly.com/question/24491627

#SPJ11

Which of the following situations would produce the greatest magnitude of acceleration? A. A 3.0 N force acting west and a 5.5 N force acting east on a 2.0 kg object. B. A 1.0 N force acting west and a 9.0 N force acting east on a 5.0 kg object. C. A 8.0 N force acting west and a 5.0 N force acting east on a 2.0 kg object. D. A 8.0 N force acting west and a 12.0 N force acting east on a 3.0 kg object.

Answers

Correct option is D) A 8.0 N force acting west and a 12.0 N force acting east on a 3.0 kg object, produces the greatest magnitude of acceleration.

The magnitude of acceleration can be determined using Newton's second law, which states that acceleration is directly proportional to the net force acting on an object and inversely proportional to its mass. In this case, we compare the net forces and masses of the given options.

In option A, the net force is 2.5 N (5.5 N - 3.0 N) acting east on a 2.0 kg object, resulting in an acceleration of 1.25 m/s².

In option B, the net force is 8.0 N (9.0 N - 1.0 N) acting east on a 5.0 kg object, resulting in an acceleration of 1.6 m/s².

In option C, the net force is 3.0 N (5.0 N - 8.0 N) acting west on a 2.0 kg object, resulting in an acceleration of -1.5 m/s² (negative direction indicates deceleration).

In option D, the net force is 4.0 N (12.0 N - 8.0 N) acting east on a 3.0 kg object, resulting in an acceleration of 1.33 m/s².

Comparing the magnitudes of acceleration, we can see that option D has the greatest value of 1.33 m/s². Therefore, option D produces the greatest magnitude of acceleration.

To learn more about acceleration click here:

brainly.com/question/460763

#SPJ11

Current Attempt in Progress If Superman really had x-ray vision at 0.12 nm wavelength and a 4.4 mm pupil diameter, at what maximum altitude could he distinguish villains from heroes, assuming that he needs to resolve points separated by 5.1 cm to do this? Number i Units

Answers

He would be able to distinguish villains from heroes at a maximum altitude of approximately 149.1 km. With Superman's x-ray vision operating at a wavelength of 0.12 nm and a 4.4 mm pupil diameter.

To determine the maximum altitude at which Superman can distinguish points separated by 5.1 cm, we need to consider the diffraction limit of his x-ray vision. The diffraction limit determines the smallest resolvable angle of separation between two points. In this case, the diffraction limit can be calculated using the formula:

θ = 1.22 * (λ / D),

where θ is the angular separation, λ is the wavelength, and D is the diameter of the pupil (assuming it acts as the aperture). Plugging in the given values, we have:

θ = 1.22 * (0.12 nm / 4.4 mm) ≈ 3.344 x 10^-9 radians.

Now, to find the altitude at which the angular separation corresponds to 5.1 cm, we can use basic trigonometry. The tangent of the angular separation is equal to the opposite side (5.1 cm) divided by the hypotenuse (the distance from Superman to the points he is trying to resolve). Rearranging the formula, we get: tan(θ) = 5.1 cm / h,

where h represents the altitude. Solving for h, we have: h = 5.1 cm / tan(θ) ≈ 1.491 x 10^6 cm.

Converting the altitude to kilometers, we get: h ≈ 1.491 x 10^4 km ≈ 149.1 km.

Therefore, Superman would be able to distinguish villains from heroes at a maximum altitude of approximately 149.1 km with his x-ray vision abilities.

To know more about wavelength click here

brainly.com/question/28466888

#SPJ11

A boy throws a ball with speed v = 12 m/s at an angle of 30
degrees relative to the ground. How far does the ball go (D) before
it lands on the ground? Give your answer with 1 decimal place.

Answers

The ball goes a horizontal distance of `14.05 m` before it lands on the ground. ` (rounded to one decimal place)

Given that a boy throws a ball with speed `v = 12 m/s` at an angle of `30 degrees` relative to the ground. We need to find how far the ball goes before it lands on the ground. Initial velocity of the ball along the horizontal direction is

`u = v cosθ

`Initial velocity of the ball along the vertical direction is

`u = v sinθ`

Where, `θ = 30°` and `v = 12 m/s

`So, `u = 12 cos30

° = 10.39 m/s` and

`v = 12 sin30° = 6 m/s`

Now we need to find the time taken by the ball to reach maximum height, `t` We know that the time taken by a ball to reach maximum height is given by:` t = u/g`

Where, `g = 9.8 m/s²` is the acceleration due to gravity.

Substituting `u = 6 m/s`, we get:

`t = 6/9.8 = 0.612 s`

Now we need to find the maximum height `H` of the ball. Using the kinematic equation:

`v = u - gt `Substituting `u = 6 m/s`,

`t = 0.612 s`, and `g = 9.8 m/s²`,

we get:`0 = 6 - 9.8t`Solving for `t`,

we get: `t = 6/9.8 = 0.612 s

`Substituting this value of `t` in the following equation:

`H = ut - 0.5gt²`

We get:` H = 6(0.612) - 0.5(9.8)(0.612)²

= 1.86 m`

Now we can find the total time `T` taken by the ball to fall back to the ground:`

T = 2t = 2 × 0.612

= 1.224 s

`Finally, we can find the horizontal distance `D` traveled by the ball using the following equation:`

D = vT = 12 cos30° × 1.224

= 14.05 m`

To know more about distance visit:

https://brainly.com/question/13034462

#SPJ11

1. A 500 mH ideal inductor is connected to an open switch in series with a 60 £2 resistor through and an ideal 15 V DC power supply. a) An inductor will always (select the best answer below): i) oppose current ii) oppose changes in current b) When the switch is closed, the effect of the inductor will be to cause the current to (select the best answer below): i) increase to its maximum value faster than if there was no inductor ii) increase to its maximum value more slowly than if there was no inductor

Answers

An inductor always opposes changes in current. When the switch is closed, the inductor causes the current to increase to its maximum value more slowly than if there was no inductor.

a) According to the property of inductors, they oppose changes in current. When current starts to flow or change in an inductor circuit, it induces an opposing electromotive force (EMF) in the inductor, which resists the change in current. This opposition to changes in current is commonly known as inductance.

b) When the switch is closed in the given circuit, the inductor initially behaves like an open circuit since the current cannot change instantly. As a result, the inductor resists the flow of current and gradually allows it to increase. This gradual increase in current is due to the inductor's property of opposing changes in current. Therefore, the current will increase to its maximum value more slowly than if there was no inductor in the circuit.

Learn more about ”electromotive force” here:

brainly.com/question/30083242

#SPJ11

Which graphs could represent a person standing still

Answers

There are several graphs that could represent a person standing still, including a horizontal line, a flat curve, or a straight line graph with zero slopes.

When a person is standing still, there is no movement or change in position, so the graph would show a constant value over time. Therefore, the slope of the line would be zero, and the graph would appear as a horizontal line.

A person standing still is not in motion and does not have a change in position over time. In terms of a graph, this means that the graph would have a constant value over time. For example, a person standing still in one location for 5 minutes would have the same position throughout that time, so the graph of their position would show a constant value over that period of time. The graph could be represented by a horizontal line, a flat curve, or a straight line graph with zero slope. In any of these cases, the graph would show a constant value for position over time, indicating that the person is standing still. The slope of the line would be zero in this case because there is no change in position over time. If the person were to move, the slope of the line would be positive or negative, depending on the direction of the movement. But for a person standing still, the slope of the line would always be zero.

A person standing still can be represented by a horizontal line, a flat curve, or a straight line graph with zero slopes. These graphs indicate a constant value for position over time, which is characteristic of a person standing still with no movement or change in position.

To know more about slopes visit

brainly.com/question/3605446

#SPJ11

Other Questions
Based to the case analysis of the case .Hill, L&weber, k.(1994) lisa Benton (A)After reading through the case study for this week, answer the following questions. Each answer may be brief, but should be sufficient in length to adequately respond to the questions.Case study Questions:1.Did lisa take the wrong job? Explain your answer2.what should lisa do to fix this situation3.should she stay,or should she go? justify your answer A circular breath of 200 turns and 12 cm in diameter, it is designed to rotate 90 in 0.2 s. Initially, the spire is placed in a magnetic field in such a way that the flux is zero and then the spire is rotated 90. If the fem induced in the spire is 0.4 mV, what is the magnitude of the magnetic field? Describe and analyze three or four manifest and latent functions of participating in the situation using appropriate terminology from the text. Be sure to (1) use and explain one or two major concepts and theories, (2) describe the individual effects of each function, and (3) analyze each functions social effects, such as its role in socialization and social control. The discussion of EFN in the chapter implicitly assumed that the company was operating at full capacity. Often, this is not the case. Assume that Rosengarten was operating at 90 perent capacity. Full-capacity sales would be $1,000/90= $1,111. The balance sheet shows $1,800 in fixed assets. The capital intensity ratio for the company is: Capital intensity ratio = Fixed assets/Full-capacity sales = $1,800/$1,111 =1.62 This means that Rosengarten needs $1.62 in fixed assets for every dollar in sales when it reaches full capacity. At the projected sales level of $1,250, it needs $1,250 x 162 = $2,025 in fixed assets, which is $225 lower than our projection of $2,250 in fixed assets. So. EFN is $565-225= $340. Blue Sky Mfg., Inc., Is currently operating at 90 percent of fixed asset capacity. Current sales are $738,000 and sales are projected to grow to $843,000. The current fixed assets are $703,000. How much in new fixed assets is required to support this growth in sales? (Do not round intermediate calculations and round your answer to the nearest dollar amount, e.g.. 32. In the context of infant physical development, the cephalocaudal principle states that: a the upper parts of the body develop before the lower parts of the trunk. b. the parts of the body near the center develop before the extremities e the lower parts of the trunk develop before the upper parts of the body. Od the extremities develop before the parts of the body near the trunk. 1 pts Respond to the following prompt in a post with a minimum of 150 words.In your own words, what is utility? Can utility be measured? Can you measure your own utility? Can someone else measure your utility? Why or why not? Can social welfare be measured by "adding up" peoples utilities? Why or why not? If not by using utility, how can policy makers estimate the welfare of government policies? Question 4 A book of mass m is taken to a heighth with a constant speed. A rock of mass 2m is taken to the same height also at a constant speed. The rock rises to this height twice as fast as the book. The work the gravitational force does on the rock is one quarter of the the work done on the book one half of the work done on the book twice the work done on the book four times the work done on the book the same as the work done on the book An AC generator with a peak voltage of 120 volts is placedacross a 10- resistor. What is the average power dissipated?A.650Wb.1000Wc.500Wd120WE720W In what ways has globalization negatively impacted people in Brazil? For example, are there national or international government or trade policies that have reshaped cultural life for people of indigenous/Indian or African descent in this country?2. Detail at least ONE example of a resistance movement that has occurred in the last 50 years in Brazil.3. Investigate and describe at least ONE example of violence that has negatively impacted people of lower socioeconomic status in Brazil. What are the origins of the violence? What is the current status of this violence? This can be state/military violence against citizens, civil war, international war, military occupation, drug cartel violence, revolutionary war, or any other large-scale violence. For the situation in #1B, what happens in each of the following parameters? (This question is NOT a MC question, but parts a-d. For example, in part a, will cardioinhibitory center or cardioacceleratory center be stimulated? Highlight the correct answer in color. Same for b through d.)a.Cardioinhibitory center OR cardioaccelatory center is stimulatedb.Increase OR decrease in cardiac outputc.Increase OR decrease respiratory rated.More OR less oxygen getting to tissues Let N be the greatest number that will divide 1305,4665 and 6905 leaving the same remainder in each case. What is the sum of the digits in N. Describethe significant characteristics of a general survey. 16) (10 points) Alpha particles (charge - +2e, mass - 6.68 x 10-27 kg) are accelerated in a cyclotron to a final orbit radius of 0.50 m. The magnetic field in the cyclotron is 0.50T What is the kinetic energy? Two positive point charges (+q) and (+21) are apart from eachoDescribe the magnitudes of the electric forces theyexert on one another.Explain why they exert these magnitudes on oneanother. The vertical distance between average cost and average variable cost is equal to marginal cost. True False Reset Selection (hrwc10p72_6e) The linear momentum of a 1350 kg car increased by 6.5010 kg m/s in 13.0 s. What is the magnitude of the constant force that accelerated the car? Submit Answer Tries 0/8 By how much did the speed of the car increase? Submit Answer Tries 0/7 Question 2The following factors are listed in Sunlight Radio Taxisincomplete SWOT analysis: Complete the SWOT matrix and show aminimum of FOUR (4) potentialstrategies. (5marks) A hawker bought boxes of tomatoes at R18 per box at the market. He sold all but 5 boxes which went bad, at R25 per box. If he made a profit of R155, how many boxes of tomatoes did he buy? The surface area of a cone is 216 pi square units. The height of the cone is 5/3 times greater than the radius. What is the length of the radius of the cone to the nearest foot? 1. Do I have a budget? What is a budget for me? How do I prepare a budget?2. How do I live within my means?3. Understanding credit. What is credit?4. What is a debt? How do I deal with debt?5. What do I know about saving and investing. Do I do or want to do saving and/ or invest?6. Do You Have a Financial Plan? Why? What is its purpose of it?7. How to protect yourself from financial fraud or scams? Am I exposed to all of these? Why?