Answer:
16 km due west
Step-by-step explanation:
The bearing of the school p from school q is 16 km due west.
To find the bearing of school q from school p, we have to find the direction that the school q is with respect to school p.
Since p is directly west of q, then it implies that q must be directly east of p.
We now know the direction.
Since the distance from q to p is exactly the same as the distance from p to q, then, the distance from p to q is 16 km.
Hence, the bearing of q from p is 16 km due west.
For the triangle show, what are the values of x and y (urgent help needed)
we just have to use the Pythagoras theorem and then calculate the value of x and y.
Would this be correct even though I didn’t use the chain rule to solve?
Answer:
Dy/Dx=1/√ (2x+3)
Yeah it's correct
Step-by-step explanation:
Applying differential by chain differentiation method.
The differential of y = √(2x+3) with respect to x
y = √(2x+3)
Let y = √u
Y = u^½
U = 2x +3
The formula for chain differentiation is
Dy/Dx = Dy/Du *Du/Dx
So
Dy/Dx = Dy/Du *Du/Dx
Dy/Du= 1/2u^-½
Du/Dx = 2
Dy/Dx =( 1/2u^-½)2
Dy/Dx= u^-½
Dy/Dx=1/√ u
But u = 2x+3
Dy/Dx=1/√ (2x+3)
For each ordered pair, determine whether it is a solution to the system of equations. y=6x-7 9x-2y=8
Answer:
x = 2, y = 5
Step-by-step explanation:
Hello,
y=6x-7
9x-2y=8
can be written as
(1) 6x - y = 7
(2) 9x -2y = 8
(2)-2*(1) gives
9x -2y -12x +2y = 8 - 2*7 = 8 - 14 = -6
<=> -3x=-6
<=> x = 6/3=2
and we replace it in (1)
y = 6*2-7=12-7=5
hope this helps
At 95% confidence, how large a sample should be taken to obtain a margin of error of 0.05 for the estimation of a population proportion
Answer:
A sample of 385 is needed.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
How large a sample:
We need a sample of n.
n is found when M = 0.05.
We dont know the true proportion, so we work with the worst case scenario, which is [tex]\pi = 0.5[/tex]
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.05 = 1.96\sqrt{\frac{0.5*0.5}{n}}[/tex]
[tex]0.05\sqrt{n} = 1.96*0.5[/tex]
[tex]\sqrt{n} = \frac{1.96*0.5}{0.05}[/tex]
[tex](\sqrt{n})^{2} = (\frac{1.96*0.5}{0.05})^{2}[/tex]
[tex]n = 384.16[/tex]
Rounding up
A sample of 385 is needed.
Which proportion would convert 18 ounces into pounds?
Answer:
16 ounces = 1 pound
Step-by-step explanation:
You would just do 18/16 = 1.125 pounds. There are always 16 ounces in a pound, so it always works like this
Christopher collected data from a random sample of 800 voters in his state asking whether or not they would vote to reelect the current governor. Based on the results, he reports that 54% of the voters in his city would vote to reelect the current governor. Why is this statistic misleading?
Answer:
The statistic is misleading because Christopher collects his sample from a population (voters in his state) and make inferences about another population (voters in his city).
Step-by-step explanation:
The statistic is misleading because Christopher collects his sample from a population (voters in his state) and make inferences about another population (voters in his city).
He should make inferences about the population that is well represented by his sample (voters in his state), or take a sample only from voters from his city to make inferences about them.