The time period of motion of a satellite revolving around Earth with an orbital radius of 1.5 x 10^4 km is 67805.45 seconds
The time period of a satellite revolving around Earth with an orbital radius of 1.5 x 10^4 km can be calculated as follows: Given values are:
Mass of Earth (M) = 5.97 x 10^24 kg
Radius of Earth (R) = 6.38 x 10^3 km
Newton's Gravitational Constant (G) = 6.67 x 10^-11 N m^2/kg^2
Mass of the Satellite (m) = 1050 kg
Formula used for finding the time period is
T= 2π√(r^3/GM) where r is the radius of the orbit and M is the mass of the Earth
T= 2π√((1.5 x 10^4 + 6.38 x 10^3)^3/(6.67 x 10^-11 x 5.97 x 10^24))T = 2π x 10800.75T = 67805.45 seconds
The time period of motion of the satellite is 67805.45 seconds.
We have given the radius of the orbit of a satellite revolving around the Earth and we have to find its time period of motion. The given values of the mass of the Earth, the radius of the Earth, Newton's gravitational constant, and the mass of the satellite can be used for calculating the time period of motion of the satellite. We know that the time period of a satellite revolving around Earth can be calculated by using the formula, T= 2π√(r^3/GM) where r is the radius of the orbit and M is the mass of the Earth. Hence, by substituting the given values in the formula, we get the time period of the satellite to be 67805.45 seconds.
The time period of motion of a satellite revolving around Earth with an orbital radius of 1.5 x 10^4 km is 67805.45 seconds.
To know more about Gravitational Constant visit
brainly.com/question/17239197
#SPJ11
Three resistors, each having a resistance of 30 Q2, are connected in parallel with each other. What is the value of their effective resistance? A string of 50 identical tree lights connected in series dissipates 100 W when connected to a 120 V power outlet. What is the equivalent resistance of the string?
The effective resistance of the three resistors connected in parallel is 10 Q2. To find the effective resistance of resistors connected in parallel, you can use the formula:
1/Req = 1/R1 + 1/R2 + 1/R3 + ...
In this case, you have three resistors connected in parallel, each with a resistance of 30 Q2. So, we can substitute these values into the formula:
1/Req = 1/30 Q2 + 1/30 Q2 + 1/30 Q2
1/Req = 3/30 Q2
1/Req = 1/10 Q2
Req = 10 Q2
Therefore, the effective resistance of the three resistors connected in parallel is 10 Q2.
Learn more about resistance here : brainly.com/question/32301085
#SPJ11
Finnish saunas can reach temperatures as high as 130 - 140 degrees Celcius - which extreme sauna enthusiasts can tolerate in short bursts of 3 - 4 minutes. Calculate the heat required to convert a 0.8 kg block of ice, brought in from an outside temperature of -8 degrees Celcius, to steam at 104.0 degrees Celcius in the sauna. [The specific heat capacity of water vapour is 1.996 kJ/kg/K; see the lecture notes for the other specific heat capacities and specific latent heats].
To calculate heat required to convert a 0.8 kg block of ice to steam at 104.0 degrees Celsius in a sauna, we need to consider stages of phase change and specific heat capacities and specific latent heats involved.
First, we need to calculate the heat required to raise the temperature of the ice from -8 degrees Celsius to its melting point at 0 degrees Celsius. The specific heat capacity of ice is 2.09 kJ/kg/K. The equation for this heat transfer is:
Q1 = mass * specific heat capacity * temperature change
Q1 = 0.8 kg * 2.09 kJ/kg/K * (0 - (-8)) degrees Celsius. Next, we calculate the heat required to melt the ice at 0 degrees Celsius. The specific latent heat of fusion for ice is 334 kJ/kg. The equation for this heat transfer is:
Q2 = mass * specific latent heat
Q2 = 0.8 kg * 334 kJ/kg
After the ice has melted, we need to calculate the heat required to raise the temperature of the water from 0 degrees Celsius to 100 degrees Celsius. The specific heat capacity of water is 4.18 kJ/kg/K. The equation for this heat transfer is:
Q3 = mass * specific heat capacity * temperature change
Q3 = 0.8 kg * 4.18 kJ/kg/K * (100 - 0) degrees Celsius
Finally, we calculate the heat required to convert the water at 100 degrees Celsius to steam at 104.0 degrees Celsius. The specific latent heat of vaporization for water is 2260 kJ/kg. The equation for this heat transfer is:
Q4 = mass * specific latent heat
Q4 = 0.8 kg * 2260 kJ/kg
The total heat required is the sum of Q1, Q2, Q3, and Q4:
Total heat = Q1 + Q2 + Q3 + Q4
Calculating these values will give us the heat required to convert the ice block to steam in the sauna.
To learn more about specific latent heats click here : brainly.com/question/30460917
#SPJ11
How much input force is required to extract an output force of 500 N from a simple machine that has a mechanical advantage of 8?
An input force of 62.5 N is required to extract an output force of 500 N from a simple machine that has a mechanical advantage of 8.
The mechanical advantage of a simple machine is defined as the ratio of the output force to the input force. Therefore, to find the input force required to extract an output force of 500 N from a simple machine with a mechanical advantage of 8, we can use the formula:
Mechanical Advantage (MA) = Output Force (OF) / Input Force (IF)
Rearranging the formula to solve for the input force, we get:
Input Force (IF) = Output Force (OF) / Mechanical Advantage (MA)
Substituting the given values, we have:
IF = 500 N / 8IF = 62.5 N
Therefore, an input force of 62.5 N is required to extract an output force of 500 N from a simple machine that has a mechanical advantage of 8. This means that the machine amplifies the input force by a factor of 8 to produce the output force.
This concept of mechanical advantage is important in understanding how simple machines work and how they can be used to make work easier.
To know more about input force, visit:
https://brainly.com/question/28919004
#SPJ11
To extract an output force of 500 N from a simple machine that has a mechanical advantage of 8, the input force required is 62.5 N.
Mechanical advantage is defined as the ratio of output force to input force.
The formula for mechanical advantage is:
Mechanical Advantage (MA) = Output Force (OF) / Input Force (IF)
In order to determine the input force required, we can rearrange the formula as follows:
Input Force (IF) = Output Force (OF) / Mechanical Advantage (MA)
Now let's plug in the given values:
Output Force (OF) = 500 N
Mechanical Advantage (MA) = 8
Input Force (IF) = 500 N / 8IF = 62.5 N
Therefore, extract an output force of 500 N from a simple machine that has a mechanical advantage of 8, the input force required is 62.5 N.
To know more about force, visit:
https://brainly.com/question/30526425
#SPJ11
A uniform 6m long and 600N beam rests on two supports. What is the force exerted on the beam by the right support B
Since the beam is uniform, we can assume that its weight acts at its center of mass, which is located at the midpoint of the beam. Therefore, the weight of the beam exerts a downward force of:
F = mg = (600 N)(9.81 m/s^2) = 5886 N
Since the beam is in static equilibrium, the forces acting on it must balance out. Let's first consider the horizontal forces. Since there are no external horizontal forces acting on the beam, the horizontal component of the force exerted by each support must be equal and opposite.
Let F_B be the force exerted by the right support B. Then, the force exerted by the left support A is also F_B, but in the opposite direction. Therefore, the net horizontal force on the beam is zero:
F_B - F_B = 0
Next, let's consider the vertical forces. The upward force exerted by each support must balance out the weight of the beam. Let N_A be the upward force exerted by the left support A and N_B be the upward force exerted by the right support B. Then, we have:
N_A + N_B = F (vertical force equilibrium)
where F is the weight of the beam.
Taking moments about support B, we can write:
N_A(3m) - F_B(6m) = 0 (rotational equilibrium)
since the weight of the beam acts at its center of mass, which is located at the midpoint of the beam. Solving for N_A, we get:
N_A = (F_B/2)
Substituting this into the equation for vertical force equilibrium, we get:
(F_B/2) + N_B = F
Solving for N_B, we get:
N_B = F - (F_B/2)
Substituting the given value for F and solving for F_B, we get:
N_B = N_A = (F/2) = (5886 N/2) = 2943 N
Therefore, the force exerted on the beam by the right support B is 2943 N.
Read more about Force:
brainly.com/question/18158308
#SPJ11
1. In what pattern does electricity flow in an AC circuit? A. dash B. dots C. straight D. wave 2. How does an electron move in a DC? A. negative to positive B. negative to negative C. posititve to negative D. positive to positive 3. In what type of LC circuit does total current be equal to the current of inductor and capacitor? A. series LC circuit B. parallel LC circuit C. series-parallel LC circuit D. all of the above 4. In what type of LC circuit does total voltage is equal to the current of inductor and capacitor? A. series LC circuit B. parallel LC circuit NG PASIC OF PASIG VOISINIO אני אמות KALAKHAN IA CITY MAYNILA 1573 PASIG CITY C. series-parallel LC circuit D. all of the above 5. If the capacitance in the circuit is increased, what will happen to the frequency?? A. increase B. decrease C. equal to zero D. doesn't change
Answer:
1.) D. wave
In an AC circuit, the electric current flows back and forth, creating a wave-like pattern.
2.) A. negative to positive
In a DC circuit, electrons flow from the negative terminal of a battery to the positive terminal.
3.) A. series LC circuit
In a series LC circuit, the current through the inductor and capacitor are equal and in the same direction.
4.) B. parallel LC circuit
In a parallel LC circuit, the voltage across the inductor and capacitor are equal and in the opposite direction.
5.) B. decrease
As the capacitance in a circuit increases, the resonant frequency decreases.
Explanation:
AC circuits: AC circuits are circuits that use alternating current (AC). AC is a type of electrical current that flows back and forth, reversing its direction at regular intervals. The frequency of an AC circuit is the number of times the current reverses direction per second.
DC circuits: DC circuits are circuits that use direct current (DC). DC is a type of electrical current that flows in one direction only.
LC circuits: LC circuits are circuits that contain an inductor and a capacitor. The inductor stores energy in the form of a magnetic field, and the capacitor stores energy in the form of an electric field. When the inductor and capacitor are connected together, they can transfer energy back and forth between each other, creating a resonant frequency.
Resonant frequency: The resonant frequency of a circuit is the frequency at which the circuit's impedance is minimum. The resonant frequency of an LC circuit is determined by the inductance of the inductor and the capacitance of the capacitor.
Learn more about Electricity.
https://brainly.com/question/33261230
#SPJ11
How many electrons does carbon have? how many are valence electrons? what third-row element has the same number of valence electrons as carbon?
Carbon has 6 electrons. To determine the number of valence electrons, we need to look at the electron configuration of carbon, which is 1s² 2s² 2p². The third-row element that has the same number of valence electrons as carbon is silicon (Si).
In the case of carbon, the first shell (1s) is fully filled with 2 electrons, and the second shell (2s and 2p) contains the remaining 4 electrons. The 2s subshell can hold a maximum of 2 electrons, and the 2p subshell can hold a maximum of 6 electrons, but in carbon's case, only 2 of the 2p orbitals are occupied. These 4 electrons in the outermost shell, specifically the 2s² and 2p² orbitals, are called valence electrons. The electron configuration describes the distribution of electrons in the different energy levels or shells of an atom.
Therefore, carbon has 4 valence electrons. Valence electrons are crucial in determining the chemical properties and reactivity of an element, as they are involved in the formation of chemical bonds.
The third-row element that has the same number of valence electrons as carbon is silicon (Si). Silicon also has 4 valence electrons, which can be seen in its electron configuration of 1s² 2s² 2p⁶ 3s² 3p². Carbon and silicon are in the same group (Group 14) of the periodic table and share similar chemical properties due to their comparable valence electron configurations.
To learn more about, valence electrons, click here, https://brainly.com/question/31264554
#SPJ11
Carbon has 6 electrons in total, with 4 of them being valence electrons. Silicon is the third-row element that shares the same number of valence electrons as carbon.
Explanation:Carbon has 6 electrons in total. The electron configuration and orbital diagram for carbon are 1s²2s²2p¹, where the 1s and 2s orbitals are completely filled and the remaining two electrons occupy the 2p subshell. This means that carbon has 4 valence electrons.
The third-row element that has the same number of valence electrons as carbon is silicon (Si). Silicon also has 4 valence electrons.
Learn more about Electrons in Carbon here:https://brainly.com/question/33829891
#SPJ3
As an electromagnetic wave travels through free space, its speed can be increased by: Increasing its energy. Increasing its frequency. Increasing its momentum None of the above will increase its speed
The speed of an electromagnetic wave is determined by the permittivity and permeability of free space, and it is constant. As a result, none of the following can be used to increase its speed.
The speed of an electromagnetic wave is determined by the permittivity and permeability of free space, and it is constant. As a result, none of the following can be used to increase its speed: Increasing its energy. Increasing its frequency. Increasing its momentum. According to electromagnetic wave theory, the speed of an electromagnetic wave is constant and is determined by the permittivity and permeability of free space. As a result, the speed of light in free space is constant and is roughly equal to 3.0 x 10^8 m/s (186,000 miles per second).
The energy of an electromagnetic wave is proportional to its frequency, which is proportional to its momentum. As a result, if the energy or frequency of an electromagnetic wave were to change, so would its momentum, which would have no impact on the speed of the wave. None of the following can be used to increase the speed of an electromagnetic wave: Increasing its energy, increasing its frequency, or increasing its momentum. As a result, it is clear that none of the following can be used to increase the speed of an electromagnetic wave.
To know more about electromagnetic visit
https://brainly.com/question/32967158
#SPJ11
What is the frequency of the most intense radiation emitted by your body? Assume a skin temperature of 95 °F. Express your answer to three significant figures.
The frequency of the most intense radiation emitted by your body is approximately 3.19 × 10^13 Hz.
To determine the frequency of the most intense radiation emitted by your body, we can use Wien's displacement law, which relates the temperature of a black body to the wavelength at which it emits the most intense radiation.
The formula for Wien's displacement law is:
λ_max = (b / T)
Where λ_max is the wavelength of maximum intensity, b is Wien's displacement constant (approximately 2.898 × 10^-3 m·K), and T is the temperature in Kelvin.
First, let's convert the skin temperature of 95 °F to Kelvin:
T = (95 + 459.67) K ≈ 308.15 K
Now, we can calculate the wavelength of maximum intensity using Wien's displacement law:
λ_max = (2.898 × 10^-3 m·K) / 308.15 K
Calculating this expression, we find:
λ_max ≈ 9.41 × 10^-6 m
To find the frequency, we can use the speed of light formula:
c = λ * f
Where c is the speed of light (approximately 3 × 10^8 m/s), λ is the wavelength, and f is the frequency.
Rearranging the formula to solve for frequency:
f = c / λ_max
Substituting the values, we have:
f ≈ (3 × 10^8 m/s) / (9.41 × 10^-6 m)
Calculating this expression, we find:
f ≈ 3.19 × 10^13 Hz
Therefore, the frequency of the most intense radiation emitted by your body is approximately 3.19 × 10^13 Hz.
Learn more about wavelength:
https://brainly.com/question/10750459
#SPJ11
Concept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 7.50 cm. The focal length of the lens is -4.30 cm. Find (a) the image distance and (b) the object distance.
The image distance for an object formed by a diverging lens with a focal length of -4.30 cm is determined to be 7.50 cm, and we need to find the object distance.
To find the object distance, we can use the lens formula, which states:
1/f = 1/v - 1/u
Where:
f is the focal length of the lens,
v is the image distance,
u is the object distance.
f = -4.30 cm (negative sign indicates a diverging lens)
v = 7.50 cm
Let's plug in the values into the lens formula and solve for u:
1/-4.30 = 1/7.50 - 1/u
Multiply through by -4.30 to eliminate the fraction:
-1 = (-4.30 / 7.50) + (-4.30 / u)
-1 = (-4.30u + 7.50 * -4.30) / (7.50 * u)
Multiply both sides by (7.50 * u) to get rid of the denominator:
-7.50u = -4.30u + 7.50 * -4.30
Combine like terms:
-7.50u + 4.30u = -32.25
-3.20u = -32.25
Divide both sides by -3.20 to solve for u:
u = -32.25 / -3.20
u ≈ 10.08 cm
Therefore, the object distance is approximately 10.08 cm.
To learn more about image distance click here:
brainly.com/question/29678788
#SPJ11
2) A gas with initial state variables p,, V, and T, expands isothermally until V2 = 2V 1 a) What is the value for T? b) What about p2? c) Create graphical representations that are consistent with your responses in a) and b).
This is consistent with the answer to part b).
a) The value for T remains constant.
This is because an isothermal process is one in which the temperature is kept constant.
b) The value for p2 decreases.
This is because the volume of the gas increases, which means that the pressure must decrease in order to keep the temperature constant.
c) The following graph shows the relationship between pressure and volume for an isothermal expansion:
The pressure decreases as the volume increases.
This is consistent with the answer to part b).
Learn more about consistent with the given link,
https://brainly.com/question/15654281
#SPJ11
A spherical mirror is to be used to form an image 5.90 times the size of an object on a screen located 4.40 m from the object. (a) Is the mirror required concave or convex? concave convex (b) What is the required radius of curvature of the mirror? m (c) Where should the mirror be positioned relative to the object? m from the object
The mirror required is concave. The radius of curvature of the mirror is -1.1 m. The mirror should be positioned at a distance of 0.7458 m from the object.
Given,
Image height (hᵢ) = 5.9 times the object height (h₀)
Screen distance (s) = 4.40 m
Let us solve each part of the question :
Is the mirror required concave or convex? We know that the magnification (M) for a spherical mirror is given by: Magnification,
M = - (Image height / Object height)
Also, the image is real when the magnification (M) is negative. So, we can write:
M = -5.9
[Given]Since, M is negative, the image is real. Thus, we require a concave mirror to form a real image.
What is the required radius of curvature of the mirror? We know that the focal length (f) for a spherical mirror is related to its radius of curvature (R) as:
Focal length, f = R/2
Also, for an object at a distance of p from the mirror, the mirror formula is given by:
1/p + 1/q = 1/f
Where, q = Image distance So, for the real image:
q = s = 4.4 m
Substituting the values in the mirror formula, we get:
1/p + 1/4.4 = 1/f…(i)
Also, from the magnification formula:
M = -q/p
Substituting the values, we get:
-5.9 = -4.4/p
So, the object distance is: p = 0.7458 m
Substituting this value in equation (i), we get:
1/0.7458 + 1/4.4 = 1/f
Solving further, we get:
f = -0.567 m
Since the focal length is negative, the mirror is a concave mirror.
Therefore, the radius of curvature of the mirror is:
R = 2f
R = 2 x (-0.567) m
R = -1.13 m
R ≈ -1.1 m
Where should the mirror be positioned relative to the object? We know that the object distance (p) is given by:
p = -q/M Substituting the given values, we get:
p = -4.4 / 5.9
p = -0.7458 m
We know that the mirror is to be placed between the object and its focus. So, the mirror should be positioned at a distance of 0.7458 m from the object.
Thus, it can be concluded that the required radius of curvature of the concave mirror is -1.1 m. The concave mirror is to be positioned at a distance of 0.7458 m from the object.
to know more about mirror visit:
brainly.com/question/1160148
#SPJ11
For a certain choice of origin, the third antinode in a standing wave occurs at x3=4.875m while the 10th antinode occurs at x10=10.125 m. The wavelength, in m, is: 1.5 O None of the listed options 0.75 0.375
The third antinode in a standing wave occurs at x3=4.875 m and the 10th antinode occurs at x10=10.125 m hence the wavelength is 0.75.
Formula used:
wavelength (n) = (xn - x3)/(n - 3)where,n = 10 - 3 = 7xn = 10.125m- 4.875m = 5.25 m
wavelength(n) = (5.25)/(7)wavelength(n) = 0.75m
Therefore, the wavelength, in m, is 0.75.
Given, the third antinode in a standing wave occurs at x3=4.875 m and the 10th antinode occurs at x10=10.125 m.
We have to find the wavelength, in m. The wavelength is the distance between two consecutive crests or two consecutive troughs. In a standing wave, the antinodes are points that vibrate with maximum amplitude, which is half a wavelength away from each other.
The third antinode in a standing wave occurs at x3=4.875m. Let us assume that this point corresponds to a crest. Therefore, a trough will occur at a distance of half a wavelength, which is x3 + λ/2. Let us assume that the 10th antinode in a standing wave occurs at x10=10.125m.
Let us assume that this point corresponds to a crest. Therefore, a trough will occur at a distance of half a wavelength, which is x10 + λ/2.
Let us consider the distance between the two troughs:
(x10 + λ/2) - (x3 + λ/2) = x10 - x3λ = (x10 - x3) / (10-3)λ = (10.125 - 4.875) / (10-3)λ = 5.25 / 7λ = 0.75m
Therefore, the wavelength, in m, is 0.75.
To know more about antinode visit
brainly.com/question/3838585
#SPJ11
A closely wound, circular coil with a diameter of 4.10 cmcm has 700 turns and carries a current of 0.460 AA .
What is the magnitude of the magnetic field at a point on the axis of the coil a distance of 6.30 cmcm from its center?
Express your answer in teslas.
The magnitude of the magnetic field at a point on the axis is approximately 8.38 x 10^(-5) T.
To calculate the magnetic field at a point on the axis of the coil, we can use the formula for the magnetic field of a circular coil at its centre: B = μ₀ * (N * I) / (2 * R), where B is the magnetic field, μ₀ is the permeability of free space, N is the number of turns, I is current, and R is the radius of the coil.
In this case, the radius is half the diameter, so R = 2.05 cm. Plugging in the values, we get B = (4π × 10^(-7) T·m/A) * (700 * 0.460 A) / (2 * 2.05 × 10^(-2) m) ≈ 8.38 × 10^(-5) T.
To learn more about current
Click here brainly.com/question/23323183
#SPJ11
C. Density Determination - Measurement (pyrex beaker, ruler or meter stick, wood block) 1) Design an experiment to find out the density of the wood block using only a beaker, water, and a meter stick. Do not use a weighing scale for this part. 2) Design a second, different experiment to measure the density of the wood block. You can use a weighing scale for this part. NOTE: The order in which you do these two experiments will affect how their results agree with one another; hint - the block is porous
1) Experiment to find the density of the wood block without using a weighing scale:
a) Fill the pyrex beaker with a known volume of water.
b) Measure and record the initial water level in the beaker.
c) Carefully lower the wood block into the water, ensuring it is fully submerged.
d) Measure and record the new water level in the beaker.
e) Calculate the volume of the wood block by subtracting the initial water level from the final water level.
f) Divide the mass of the wood block (obtained from the second experiment) by the volume calculated in step e to determine the density of the wood block.
2) Experiment to measure the density of the wood block using a weighing scale:
a) Weigh the wood block using a weighing scale and record its mass.
b) Fill the pyrex beaker with a known volume of water.
c) Measure and record the initial water level in the beaker.
d) Carefully lower the wood block into the water, ensuring it is fully submerged.
e) Measure and record the new water level in the beaker.
f) Calculate the volume of the wood block by subtracting the initial water level from the final water level.
g) Divide the mass of the wood block by the volume calculated in step f to determine the density of the wood block.
Comparing the results from both experiments will provide insights into the porosity of the wood block. If the density calculated in the first experiment is lower than in the second experiment, it suggests that the wood block is porous and some of the water has been absorbed.
For more questions like Density click the link below:
brainly.com/question/17990467
#SPJ11
5) A beaker contains 2 grams of ice at a temperature of -10°C. The mass of the beaker may be ignored. Heat is supplied to the beaker at a constant rate of 2200J/minute. The specific heat of ice is 2100 J/kgk and the heat of fusion for ice is 334 x103 J/kg. How much time passes before the ice starts to melt? (8 pts)
The time it takes for the ice to start melting is approximately 8.22 minutes.
To calculate the time before the ice starts to melt, we need to consider the heat required to raise the temperature of the ice from -10°C to its melting point (0°C) and the heat of fusion required to convert the ice at 0°C to water at the same temperature.
First, we calculate the heat required to raise the temperature of 2 grams of ice from -10°C to 0°C using the specific heat formula Q = m * c * ΔT, where Q is the heat, m is the mass, c is the specific heat, and ΔT is the change in temperature. Substituting the given values, we get Q1 = 2 g * 2100 J/kg°C * (0°C - (-10°C)) = 42000 J.
Next, we calculate the heat of fusion required to convert the ice to water at 0°C using the formula Q = m * Hf, where Q is the heat, m is the mass, and Hf is the heat of fusion. Substituting the given values, we get Q2 = 2 g * 334 x 10³ J/kg = 668000 J.
Now, we sum up the heat required for temperature rise and the heat of fusion: Q_total = Q1 + Q2 = 42000 J + 668000 J = 710000 J.
Finally, we divide the total heat by the heat supplied per minute to obtain the time: t = Q_total / (2200 J/minute) ≈ 322.73 minutes ≈ 8.22 minutes.
Therefore, it takes approximately 8.22 minutes for the ice to start melting when heat is supplied at a constant rate of 2200 J/minute.
learn more about heat of fusion here:
https://brainly.com/question/30403515
#SPJ11
if an eye is farsighted the image defect is:
a) distant objects image is formed in front of the retina
b) near objects image is formed behind the retina
c) lens of the eye cannot focus on distant objects
d) two of the above
If an eye is farsighted the image defect is that distant objects image is formed in front of the retina. Therefore, the answer is a) distant objects image is formed in front of the retina.
An eye that is farsighted, also known as hyperopia, is a visual disorder in which distant objects are visible and clear, but close objects appear blurred. The farsightedness arises when the eyeball is too short or the refractive power of the cornea is too weak. As a result, the light rays converge at a point beyond the retina instead of on it, causing the near object image to be formed behind the retina.
Conversely, the light rays from distant objects focus in front of the retina instead of on it, resulting in a blurry image of distant objects. Thus, if an eye is farsighted the image defect is that distant objects image is formed in front of the retina.
To learn more about retina visit;
https://brainly.com/question/15141911
#SPJ11
A muon with a lifetime of 2 × 10−6 second in its frame of reference is created in the upper atmosphere with a velocity of 0.998 c toward the Earth. What is the lifetime of this muon as mea- sured by an observer on the Earth? 1.T =3×10−5 s 2.T =3×10−6 s 3.T =3×10−4 s 4.T =3×10−3 s 5.T =3×10−2 s
The lifetime of the muon as measured by an observer on Earth is approximately 3 × 10^−6 seconds (Option 2).
When the muon is moving at a velocity of 0.998c towards the Earth, time dilation occurs due to relativistic effects, causing the muon's lifetime to appear longer from the Earth's frame of reference.
Time dilation is a phenomenon predicted by Einstein's theory of relativity, where time appears to slow down for objects moving at high velocities relative to an observer. The formula for time dilation is T' = T / γ, where T' is the measured lifetime of the muon, T is the proper lifetime in its frame of reference, and γ (gamma) is the Lorentz factor.
In this case, the Lorentz factor can be calculated using the formula γ = 1 / sqrt(1 - (v^2 / c^2)), where v is the velocity of the muon (0.998c) and c is the speed of light. Plugging in the values, we find γ ≈ 14.14.
By applying time dilation, T' = T / γ, we get T' = 2 × 10^−6 s / 14.14 ≈ 1.415 × 10^−7 s. However, we need to convert this result to the proper lifetime as measured by the Earth observer. Since the muon is moving towards the Earth, its lifetime appears longer due to time dilation. Therefore, the measured lifetime on Earth is T' = 1.415 × 10^−7 s + 2 × 10^−6 s = 3.1415 × 10^−6 s ≈ 3 × 10^−6 s.
Hence, the lifetime of the muon as measured by an observer on Earth is approximately 3 × 10^−6 seconds (Option 2).
Learn more about muon here:
brainly.com/question/30549179
#SPJ11
A beam of light reflects and refracts at point A on the interface between material 1 (n1 = 1.33) and material 2 (n2 = 1.66). The incident beam makes an angle of 40° with the interface. What is the angle of reflection at point A?
The angle of reflection at point A is 40°, which is equal to the angle of incidence.
When a beam of light encounters an interface between two different materials, it undergoes reflection and refraction. The angle of incidence, which is the angle between the incident beam and the normal to the interface, is equal to the angle of reflection, which is the angle between the reflected beam and the normal to the interface.
In this case, the incident beam makes an angle of 40° with the interface, so the angle of reflection at point A is also 40°. When light travels from one medium to another, it changes its direction due to the change in speed caused by the change in refractive index.
The law of reflection states that the angle of incidence is equal to the angle of reflection. This means that the angle at which the light ray strikes the interface is the same as the angle at which it bounces off the interface.
In this scenario, the incident beam of light strikes the interface between material 1 and material 2 at an angle of 40°. According to the law of reflection, the angle of reflection is equal to the angle of incidence, so the light ray will bounce off the interface at the same 40° angle with respect to the normal.
Learn more about reflection
brainly.com/question/30031394
#SPJ11
The magnetic flux through a coil containing 10 loops changes
from 10Wb to −20W b in 0.02s. Find the induced voltage ε.
the induced voltage ε is 1500 voltsTo find the inducinduceded voltage ε, we can use Faraday's law of electromagnetic induction, which states that the induced voltage is equal to the rate of change of magnetic flux through a loop. Mathematically, this can be expressed as ε = -dΦ/dt, where ε is the induced voltage, Φ is the magnetic flux, and dt is the change in time.
Given that the magnetic flux changes from 10 Wb to -20 Wb in 0.02 s, we can calculate the rate of change of magnetic flux as follows: dΦ/dt = (final flux - initial flux) / change in time = (-20 Wb - 10 Wb) / 0.02 s = -1500 Wb/s.
Substituting this value into the equation for the induced voltage, we have ε = -(-1500 Wb/s) = 1500 V.
Therefore, the induced voltage ε is 1500 volts.
To learn more about flux click here:brainly.com/question/31607470
#SPJ11
6. [-/1 Points] DETAILS SERPSE10 7.4.OP.010. At an archery event, a woman draws the string of her bow back 0.392 m with a force that increases steadily from 0 to 215 N. (a) What is the equivalent spring constant (in N/m) of the bow? N/m (b) How much work (in 3) does the archer do on the string in drawing the bow? 3. Need Help? Read It
The question asks for the equivalent spring constant of a bow and the amount of work done by an archer in drawing the bow. The woman draws the string of the bow back 0.392 m with a steadily increasing force from 0 to 215 N.
To determine the equivalent spring constant of the bow (a), we can use Hooke's Law, which states that the force exerted by a spring is directly proportional to its displacement. In this case, the displacement of the bowstring is given as 0.392 m, and the force increases steadily from 0 to 215 N. Therefore, we can calculate the spring constant using the formula: spring constant = force / displacement. Substituting the values, we have: spring constant = 215 N / 0.392 m = 548.47 N/m.
To calculate the work done by the archer on the string (b), we can use the formula: work = force × displacement. The force applied by the archer steadily increases from 0 to 215 N, and the displacement of the bowstring is given as 0.392 m. Substituting the values, we have: work = 215 N × 0.392 m = 84.28 J (joules). Therefore, the archer does 84.28 joules of work on the string in drawing the bow.
Learn more about Equivalent Spring constant:
https://brainly.com/question/30039564
#SPJ11
A diatomic ideal gas occupies 4.0 L and pressure of 100kPa. It is compressed adiabatically to 1/4th its original volume, then cooled at constant volume back to its original temperature. Finally, it is allowed to isothermally expand back to
its original volume.
A. Draw a PV diagram B. Find the Heat, Work, and Change in Energy for each process (Fill in Table). Do not assume anything about the net values to fill in the
values for a process.
C. What is net heat and work done?
A)Draw a PV diagram
PV diagram is drawn by considering its constituent processes i.e. adiabatic process, isochoric process, and isothermal expansion process.
PV Diagram: From the initial state, the gas is compressed adiabatically to 1/4th its volume. This is a curve process and occurs without heat exchange. It is because the gas container is insulated and no heat can enter or exit the container. The second process is cooling at a constant volume. This means that the volume is constant, but the temperature and pressure are changing. The third process is isothermal expansion, which means that the temperature remains constant. The gas expands from its current state back to its original state at a constant temperature.
B) Find the Heat, Work, and Change in Energy for each process
Heat for Adiabatic Compression, Cooling at constant volume, Isothermal Expansion will be 0, -9600J, 9600J respectively. work will be -7200J, 0J, 7200J respectively. Change in Energy will be -7200J, -9600J, 2400J.
The Heat, Work and Change in Energy are shown in the table below:
Process Heat Work Change in Energy
Adiabatic Compression 0 -7200 J -7200 J
Cooling at constant volume -9600 J 0 -9600 J
Isothermal Expansion 9600 J 7200 J 2400 J
Net Work Done = Work Done in Adiabatic Compression + Work Done in Isothermal Expansion= 7200 J + (-7200 J) = 0
Net Heat = Heat Absorbed during Cooling at Constant Volume + Heat Released during Isothermal Expansion= -9600 J + 9600 J = 0
C) What is net heat and work done?
The net heat and work done are both zero.
Net Work Done = Work Done in Adiabatic Compression + Work Done in Isothermal Expansion = 0
Net Heat = Heat Absorbed during Cooling at Constant Volume + Heat Released during Isothermal Expansion = 0
Therefore, the net heat and work done are both zero.
Learn more about work: https://brainly.in/question/22847362
#SPJ11
[5:26 pm, 13/05/2022] Haris Abbasi: a) The 10-kg collar has a velocity of 5 m/s to the right when it is at A. It then travels along the
smooth guide. Determine its speed when its centre reaches point B and the normal force it
exerts on the rod at this point. The spring has an unstretched length of 100 mm and B is located
just before the end of the curved portion of the rod. The whole system is in a vertical plane. (10
marks)
(b) From the above Figure, if the collar with mass m has a velocity of 1 m/s to the right
when it is at A. It then travels along the smooth guide. It stop at Point B. The spring
with stiffness k has an unstretched length of 100 mm and B is located just before the
end of the curved portion of the rod. The whole system is in a vertical plane. Determine
the relationship between mass of collar (m) and stiffness of the spring (k) to satify the
above condition. (10 marks)
The value is:
(a) To determine the speed of the collar at point B, apply the principle of conservation of mechanical energy.
(b) To satisfy the condition where the collar stops at point B, the relationship between the mass of the collar (m) and the stiffness
(a) To determine the speed of the collar when its center reaches point B, we can apply the principle of conservation of mechanical energy. Since the system is smooth, there is no loss of energy due to friction or other non-conservative forces. Therefore, the initial kinetic energy of the collar at point A is equal to the sum of the potential energy and the final kinetic energy at point B.
The normal force exerted by the collar on the rod at point B can be calculated by considering the forces acting on the collar in the vertical direction and using Newton's second law. The normal force will be equal to the weight of the collar plus the change in the vertical component of the momentum of the collar.
(b) In this scenario, the collar stops at point B. To satisfy this condition, the relationship between the mass of the collar (m) and the stiffness of the spring (k) can be determined using the principle of work and energy. When the collar stops, all its kinetic energy is transferred to the potential energy stored in the spring. This can be expressed as the work done by the spring force, which is equal to the change in potential energy. By equating the expressions for kinetic energy and potential energy, we can derive the relationship between mass and stiffness. The equation will involve the mass of the collar, the stiffness of the spring, and the displacement of the collar from the equilibrium position. Solving this equation will provide the relationship between mass (m) and stiffness (k) that satisfies the given condition.
To know more about mass:
https://brainly.com/question/11954533
#SPJ11
A cockroach of mass m lies on the rim of a uniform disk of mass 7.00 m that can rotate freely about its center like a merry-go-round. Initially the cockroach and disk rotate together with an angular velocity of 0.200 rad. Then the cockroach walks halfway to the
center of the disk.
(a) What then is the angular velocity of the cockroach-disk system?
(b) What is the ratio K/Ko of the new kinetic energy of the system to its initial kinetic energy?
(a) The angular velocity of the cockroach-disk system after the cockroach walks halfway to the centre of the disk is 0.300 rad.
(b) The ratio K/Ko of the new kinetic energy of the system to its initial kinetic energy is 0.700.
When the cockroach walks halfway to the centre of the disk, it decreases its distance from the axis of rotation, effectively reducing the moment of inertia of the system. Since angular momentum is conserved in the absence of external torques, the reduction in moment of inertia leads to an increase in angular velocity. Using the principle of conservation of angular momentum, the final angular velocity can be calculated by considering the initial and final moments of inertia. In this case, the moment of inertia of the system decreases by a factor of 4, resulting in an increase in angular velocity to 0.300 rad.
The kinetic energy of a rotating object is given by the equation K = (1/2)Iω^2, where K is the kinetic energy, I is the moment of inertia, and ω is the angular velocity. Since the moment of inertia decreases by a factor of 4 and the angular velocity increases by a factor of 1.5, the ratio K/Ko of the new kinetic energy to the initial kinetic energy is (1/2)(1/4)(1.5^2) = 0.700. Therefore, the new kinetic energy is 70% of the initial kinetic energy.
To learn more about velocity, click here:
brainly.com/question/30559316
#SPJ11
All work/steps must be shown following the "Problem-Solving Procedure". Part II - Short Problems −4 points 1. Find the ' x ' and ' y ' components of the following vectors. a. F=67.9 N,38∘ b. v=8.76 m/s,−57.3∘ 2. Determine the 'polar coordinate' form of the following vector components. a. Ax=7.87 mAy=−8.43 m b. vx=−67.3 m/svy=−24.9 m/s
In problem 1, the x and y components of the vector F are found to be 50.19 N and 51.95 N, respectively. In problem 2, the polar coordinate form of vector A is determined to be 11.01 m at an angle of -48.92 degrees, while vector v is expressed as 76.46 m/s at an angle of -197.65 degrees.
In problem 1a, the vector force F, is given with a magnitude of 67.9 N and an angle of 38 degrees. To find the x and y components, we use the trigonometric functions cosine (cos) and sine (sin).
The x component is calculated as Fx = F * cos(θ), where θ is the angle, yielding Fx = 67.9 N * cos(38°) = 50.19 N. Similarly, the y component is determined as Fy = F * sin(θ), resulting in Fy = 67.9 N * sin(38°) = 51.95 N.
In problem 1b, the vector v is given with a magnitude of 8.76 m/s and an angle of -57.3 degrees. Using the same trigonometric functions, we can find the x and y components.
The x component is calculated as vx = v * cos(θ), which gives vx = 8.76 m/s * cos(-57.3°) = 4.44 m/s. The y component is determined as vy = v * sin(θ), resulting in vy = 8.76 m/s * sin(-57.3°) = -7.37 m/s.
In problem 2a, the vector components Ax = 7.87 m and Ay = -8.43 m are given. To express this vector in polar coordinate form, we can use the Pythagorean theorem to find the magnitude (r) of the vector, which is r = √(Ax^2 + Ay^2).
Substituting the given values, we obtain r = √((7.87 m)^2 + (-8.43 m)^2) ≈ 11.01 m. The angle (θ) can be determined using the inverse tangent function, tan^(-1)(Ay/Ax), which gives θ = tan^(-1)(-8.43 m/7.87 m) ≈ -48.92 degrees.
Therefore, the polar coordinate form of vector A is approximately 11.01 m at an angle of -48.92 degrees.In problem 2b, the vector components vx = -67.3 m/s and vy = -24.9 m/s are given.
Following a similar procedure as in problem 2a, we find the magnitude of the vector v as r = √(vx^2 + vy^2) = √((-67.3 m/s)^2 + (-24.9 m/s)^2) ≈ 76.46 m/s.
The angle θ can be determined using the inverse tangent function, tan^(-1)(vy/vx), resulting in θ = tan^(-1)(-24.9 m/s/-67.3 m/s) ≈ -197.65 degrees. Hence, the polar coordinate form of vector v is approximately 76.46 m/s at an angle of -197.65 degrees.
Learn more about force here ;
https://brainly.com/question/30507236
#SPJ11
a helicopter drop a package down at a constant speed 5m/s. When the package at 100m away from the helicopter, a stunt person fall out the helicopter. How long he catches the package? How fast is he?
In a planned stunt for a movie, a supply package with a parachute is dropped from a stationary helicopter and falls straight down at a constant speed of 5 m/s. A stuntperson falls out the helicopter when the package is 100 m below the helicopter. (a) Neglecting air resistance on the stuntperson, how long after they leave the helicopter do they catch up to the package? (b) How fast is the stuntperson going when they catch up? 2.) In a planned stunt for a movie, a supply package with a parachute is dropped from a stationary helicopter and falls straight down at a constant speed of 5 m/s. A stuntperson falls out the helicopter when the package is 100 m below the helicopter. (a) Neglecting air resistance on the stuntperson, how long after they leave the helicopter do they catch up to the package? (b) How fast is the stuntperson going when they catch up?
The stuntperson catches up to the package 20 seconds after leaving the helicopter.The stuntperson is traveling at a speed of 25 m/s when they catch up to the package.
To determine the time it takes for the stuntperson to catch up to the package, we can use the fact that the package is falling at a constant speed of 5 m/s. Since the stuntperson falls out of the helicopter when the package is 100 m below, it will take 20 seconds (100 m ÷ 5 m/s) for the stuntperson to reach that point and catch up to the package.
In this scenario, since the stuntperson falls straight down without any horizontal motion, they will have the same vertical velocity as the package. As the package falls at a constant speed of 5 m/s, the stuntperson will also have a downward velocity of 5 m/s.
When the stuntperson catches up to the package after 20 seconds, their velocity will still be 5 m/s, matching the speed of the package. Therefore, the stuntperson is traveling at a speed of 25 m/s (5 m/s downward speed plus the package's 20 m/s downward speed) when they catch up to the package.
Learn more about Speed
brainly.com/question/17661499
#SPJ11
Given
Feed flow rate, F=100 kg/hr
Solvent flow rate, S=120 kg/hr
Mole fraction of acetone in feed, xF=0.35
Mole fraction of acetone in solvent, yS=0
M is the combined mixture of F and S.
M is the combined mixture of F and S.
xM is the mole fraction of acetone in M
xM =(FxF + SyS)/(F+S)
xM =(100*0.35+120*0)/(100+120)
xM =0.1591
Since 99% of acetone is to be removed,
Acetone present in feed = FxF = 100*0.35=35 kg/hr
99% goes into the extract and 1% goes into the raffinate.
Component mass balance:-
Therefore, acetone present in extract=Ey1= 0.99*35=34.65 kg/hr
Acetone present in Raffinate=RxN=0.01*35=0.35 kg/hr
Total mass balance:-
220=R+E
From total mass balance and component mass balance, by hit trial method, R=26.457 kg/hr
Hence, E=220-26.457=193.543 kg/hr
Hence, xN = 0.35/26.457=0.01323
Hence, y1 =34.65/193.543 = 0.179
Equilibrium data for MIK, water, acetone mixture is obtained from "Mass Transfer, Theory and Applications" by K.V.Narayanan.
From the graph, we can observe that 4 lines are required from the Feed to reach Rn passing through the difference point D.
Hence the number of stages required = 4
4 stages are required for the liquid-liquid extraction process to achieve the desired separation.
Liquid-liquid extraction process: Given feed flow rate, solvent flow rate, and mole fractions, calculate the number of stages required for the desired separation?The given problem involves a liquid-liquid extraction process where feed flow rate, solvent flow rate, and mole fractions are provided.
Using the mole fractions and mass balances, the mole fraction of acetone in the combined mixture is calculated. Since 99% of acetone is to be removed, the acetone present in the feed, extract, and raffinate is determined based on the given percentages. Total mass balance equations are used to calculate the flow rates of extract and raffinate.
The mole fractions of acetone in the extract and raffinate are then determined. By referring to equilibrium data, it is determined that 4 stages are required to achieve the desired separation.
Learn more about liquid-liquid extraction
brainly.com/question/31039834
#SPJ11
A student measured the mass of a meter stick to be 150 gm. The student then placed a knife edge on 30-cm mark of the stick. If the student placed a 500-gm weight on 5-cm mark and a 300-gm weight on somewhere on the meter stick, the meter stick then was balanced. Where (cm mark) did the student place the 300- gram weight?
Therefore, the student placed the 300-gram weight at 38.33 cm mark to balance the meter stick.
Given data:A student measured the mass of a meter stick to be 150 gm.
A knife edge was placed on 30-cm mark of the stick.
A 500-gm weight was placed on 5-cm mark and a 300-gm weight was placed somewhere on the meter stick. The meter stick was balanced.
Let's assume that the 300-gm weight is placed at x cm mark.
According to the principle of moments, the moment of the force clockwise about the fulcrum is equal to the moment of force anticlockwise about the fulcrum.
Now, the clockwise moment is given as:
M1 = 500g × 5cm
= 2500g cm
And, the anticlockwise moment is given as:
M2 = 300g × (x - 30) cm
= 300x - 9000 cm (Because the knife edge is placed on the 30-cm mark)
According to the principle of moments:
M1 = M2 ⇒ 2500g cm
= 300x - 9000 cm⇒ 2500
= 300x - 9000⇒ 300x
= 2500 + 9000⇒ 300x
= 11500⇒ x = 11500/300⇒ x
= 38.33 cm
Therefore, the student placed the 300-gram weight at 38.33 cm mark to balance the meter stick.
To know more about student visit;
brainly.com/question/28047438
#SPJ11
Explain in detail why a photon's wavelength must increase when
it scatters from a particle at rest.
When a photon scatters from a particle at rest, its wavelength must increase to conserve energy and momentum. The decrease in the photon's energy results in a longer wavelength as it transfers some of its energy to the particle.
When a photon scatters from a particle at rest, its wavelength must increase due to the conservation of energy and momentum. Consider the scenario where a photon with an initial wavelength (λi) interacts with a stationary particle. The photon transfers some of its energy and momentum to the particle during the scattering process. As a result, the photon's energy decreases while the particle gains energy.
According to the energy conservation principle, the total energy before and after the interaction must remain constant. Since the particle gains energy, the photon must lose energy to satisfy this conservation. Since the energy of a photon is inversely proportional to its wavelength (E = hc/λ, where h is Planck's constant and c is the speed of light), a decrease in energy corresponds to an increase in wavelength.
Learn more about ”wavelength” here:
brainly.com/question/28466888
#SPJ11
If an applied force on an object acts antiparallel to the direction of the object's movement, the work done on by the applied force is: Negative Cannot be determined by the problem. Positive Zero
If an applied force on an object acts antiparallel to the direction of the object's movement, the work done by the applied force is negative.
The transfer of energy from one object to another by applying a force to an object, which makes it move in the direction of the force is known as work. When the applied force acts in the opposite direction to the object's movement, the work done by the force is negative.
The formula for work is given by: Work = force x distance x cosθ where,θ is the angle between the applied force and the direction of movement. If the angle between force and movement is 180° (antiparallel), then cosθ = -1 and work done will be negative. Therefore, if an applied force on an object acts antiparallel to the direction of the object's movement, the work done by the applied force is negative.
Learn more about work done here:
https://brainly.com/question/32263955
#SPJ11
3. (4 points) A dog chewed a smoke detector into pieces and swallowed its Am-241 radioactive source. The source has an activity of 37 kBq primarily composed of alpha particles with an energy of 5.486 MeV per decay. A tissue mass of 0.25 kg of the dog's intestine completely absorbed the alpha particle energy as the source traveled through his digestive tract. The source was then "passed" in the dog's feces after 12 hours. Assume that the RBE for an alpha particle is 10. Calculate: a) the total Absorbed Energy expressed in the correct units b) the Absorbed Dose expressed in the correct units c) the Dose Equivalent expressed in the correct units d) the ratio of the dog's Dose Equivalent to the recommended annual human exposure
a) Total Absorbed Energy:
The absorbed energy is the product of the activity (in decays per second) and the energy per decay (in joules). We need to convert kilobecquerels to becquerels and megaelectronvolts to joules.
Total Absorbed Energy = Activity × Energy per decay
Total Absorbed Energy ≈ 3.04096 × 10^(-6) J
b) Absorbed Dose:
The absorbed dose is the absorbed energy divided by the mass of the tissue.
Absorbed Dose = Total Absorbed Energy / Tissue Mass
Absorbed Dose = 3.04096 × 10^(-6) J / 0.25 kg
Absorbed Dose = 12.16384 μGy (since 1 Gy = 1 J/kg, and 1 μGy = 10^(-6) Gy)
c) Dose Equivalent:
The dose equivalent takes into account the relative biological effectiveness (RBE) of the radiation. We multiply the absorbed dose by the RBE value for alpha particles.
Dose Equivalent = 121.6384 μSv (since 1 Sv = 1 Gy, and 1 μSv = 10^(-6) Sv)
Ratio = Dose Equivalent (Dog) / Recommended Annual Human Exposure
Ratio = 121.6384 μSv / 1 mSv
Ratio = 0.1216384
Therefore, the ratio of the dog's dose equivalent to the recommended annual human exposure is approximately 0.1216384.
Learn more about energy here : brainly.com/question/1932868
#SPJ11