A sample is analyzed five times by the same method to give the following results: 4.54, 4.89, 5.23, 5.12, 4.70. What is the relative standard deviation (RSD) of the measurements? a. 17.1 Ob.0.286 OC 0.058 O d. 0.017

Answers

Answer 1

The relative standard deviation (RSD) of the measurements is 0.058.

Here are the steps on how to calculate the relative standard deviation (RSD) of the measurements:

Calculate the mean of the measurements.

mean = (4.54 + 4.89 + 5.23 + 5.12 + 4.70) / 5 = 4.93

Calculate the standard deviation of the measurements.

standard_deviation = sqrt(sum([(x - mean)**2 for x in measurements]) / len(measurements))

standard_deviation = sqrt((4.54 - 4.93)**2 + (4.89 - 4.93)**2 + (5.23 - 4.93)**2 + (5.12 - 4.93)**2 + (4.70 - 4.93)**2) / 5

standard_deviation = 0.286

Calculate the relative standard deviation (RSD) of the measurements.

RSD = standard_deviation / mean

RSD = 0.286 / 4.93 = 0.058

Therefore, the relative standard deviation (RSD) of the measurements is 0.058.

To learn more about standard deviation :

https://brainly.com/question/475676

#SPJ11


Related Questions

draw the three possible regioisomeric mononitrated products. which regioisomer is preferred?

Answers

Regioisomers are compounds with the same molecular formula but differ in the arrangement of atoms within the molecule. The preferred regioisomer in a nitration reaction depends on factors such as electronic effects, steric hindrance, and resonance stabilization, which vary based on the specific compound being nitrated.

What are regioisomers, and what determines the preferred regioisomer in the nitration reaction?

The question asks for the drawing of three possible regioisomeric mononitrated products. Regioisomers are compounds that have the same molecular formula but differ in the arrangement of atoms within the molecule. In this case, we are considering the nitration of a compound.

To draw the three possible regioisomeric mononitrated products, we need to consider different positions where the nitro group (-NO2) can be attached to the compound. The preferred regioisomer would be the one that is thermodynamically more stable or has a lower activation energy for formation.

The specific compound or molecule for nitration is not provided in the question, so it is not possible to determine the exact regioisomers without additional information. The preference for a regioisomer depends on factors such as electronic effects, steric hindrance, and resonance stabilization. Without knowing the specific compound and its structure, it is not possible to determine the preferred regioisomer.

Learn more about Regioisomers

brainly.com/question/31434808

#SPJ11

predict the chemical formula for the ionic compound formed by au³⁺ and hso₃⁻

Answers

Answer:

To determine the chemical formula for the ionic compound formed by Au³⁺ and HSO₃⁻, we need to balance the charges of the ions.

The charge of the gold ion, Au³⁺, indicates that it has a positive charge of 3+. The charge of the sulfite ion, HSO₃⁻, indicates that it has a negative charge of 1-.

To balance the charges, we need three sulfite ions for every gold ion. This is because the least common multiple of 3 and 1 is 3, so we need to multiply the sulfite ion by 3 to achieve an overall neutral compound.

Therefore, the chemical formula for the ionic compound formed by Au³⁺ and HSO₃⁻ is Au₂(HSO₃)₃.

Learn more about the chemical formula: https://brainly.com/question/1833971

#SPJ11

Add coefficients to the reaction summary to show the net results of glycolysis. glucose +aADP+bPi​+cNAD+⟶x pyruvate +yATP+zNADH You do not need to add the water and hydrogen ions necessary to balance the overall reaction. a= b= c= x= y= z= Draw the structure of pyruvate at pH7.4.

Answers

At pH 7.4, pyruvate exists in its anionic form, known as pyruvate anion or pyruvate ion structure is (CH3COCOO-).

The net reaction of glycolysis, including coefficients, can be summarized as follows:

Glucose + 2 ADP + 2 Pi + 2 NAD+ ⟶ 2 Pyruvate + 2 ATP + 2 NADH

Here are the values for the coefficients:

a = 2 (since 2 ADP molecules are consumed)

b = 2 (since 2 Pi molecules are consumed)

c = 2 (since 2 NAD+ molecules are consumed)

x = 2 (since 2 pyruvate molecules are produced)

y = 2 (since 2 ATP molecules are produced)

z = 2 (since 2 NADH molecules are produced)

To draw the structure of pyruvate at pH 7.4.

Pyruvate is a three-carbon molecule with the chemical formula C3H4O3.

At pH 7.4, pyruvate exists in its anionic form, known as pyruvate anion or pyruvate ion (CH3COCOO-).

Here is a simplified structural representation of pyruvate at pH 7.4:

In the structure, the carbon skeleton consists of three carbon atoms, with a carbonyl group (C=O) attached to one carbon and a carboxylate group (-COO-) attached to another carbon.

The remaining carbon is bonded to a hydrogen atom.

The negative charge (represented by the "-") is present on the oxygen atom, indicating the anionic form of pyruvate.

Learn more about pyruvate from the given link:

https://brainly.com/question/16346028

#SPJ11

50.00 mL of a solution containing 0.15 M CH2 (CO2 H)2 and 0.020 M MnSO4
1. Calculate the mass of malonic acid required.
2. Calculate the mass of manganous sulfate monohydrate required (manganese sulfate is available only in the monohydrate form, MnSO4·H2O, which means that within every MnSO4 unit cell, there is one water molecule present; the mass of the water must therefore be included in the calculation).

Answers

The mass of malonic acid required is 57.0375g.

To calculate the mass of malonic acid required, we need to use the given concentration and volume information.

Calculation for the mass of malonic acid required:

Volume of the solution = 50.00 mL = 0.05000 L

Concentration of CH2(CO2H)2 = 0.15 M

To calculate the number of moles of malonic acid (CH2(CO2H)2) in the solution, we can use the formula:

moles = concentration × volume

moles of CH2(CO2H)2 = 0.15 M × 0.05000 L

Next, to calculate the mass of malonic acid, we need to multiply the number of moles by its molar mass. The molar mass of CH2(CO2H)2 is calculated as follows:

Molar mass of C = 12.01 g/mol

Molar mass of H = 1.01 g/mol

Molar mass of O = 16.00 g/mol

Molar mass of CH2(CO2H)2 = 2 × (12.01 g/mol) + 4 × (1.01 g/mol) + 2 × (16.00 g/mol)

Now we can calculate the mass of malonic acid:

Mass of CH2(CO2H)2 = moles of CH2(CO2H)2 × molar mass of CH2(CO2H)2

Mass of CH2(CO2H)2 = 57.0375g

Calculation for the mass of manganous sulfate monohydrate required:

Concentration of MnSO4 = 0.020 M

Molar mass of MnSO4·H2O = molar mass of MnSO4 + molar mass of H2O

To calculate the number of moles of MnSO4 in the solution, we can use the same formula:

moles = concentration × volume

moles of MnSO4 = 0.020 M × 0.05000 L

Now we can calculate the mass of manganous sulfate monohydrate:

Mass of MnSO4·H2O = moles of MnSO4 × molar mass of MnSO4·H2O

By performing these calculations, we can determine the mass of malonic acid and manganous sulfate monohydrate required.

Learn more about malonic acid:

https://brainly.com/question/28334199

#SPJ11

Which of the following compounds cannot form a pyranose? Select all that apply.
Select all that apply from the following:
D-allose
D-altrose
D-­arabinose
D-erythrose
D-erythrulose
D-fructose
D-­galactose
D-­glucose
D-­glyceraldehyde
D-­gulose
D-idose
D­‐lyxose
D-­mannose
D‐psicose
D-ribose
D-ribulose
D-­sorbose
D-tagatose
D-talose
D-­threose
D‐xylose
D-­xylulose
None of the above

Answers

D-erythrose, D-erythrulose, D-­glyceraldehyde, D-­threose, D‐xylulose, and None of the above cannot form a pyranose.

Pyranose refers to a six-membered ring structure that is formed when a sugar molecule undergoes intramolecular hemiacetal or hemiketal formation. To determine if a compound can form a pyranose, we need to consider the number and arrangement of carbon atoms in the molecule.

The basic requirement for a sugar molecule to form a pyranose is to have at least five carbon atoms. However, compounds such as D-erythrose, D-erythrulose, D-­glyceraldehyde, D-­threose, and D‐xylulose have fewer than five carbon atoms, so they cannot form a pyranose.

On the other hand, all the other compounds listed, including D-allose, D-altrose, D-­arabinose, D-fructose, D-­galactose, D-­glucose, D-idose, D-­lyxose, D-­mannose, D‐psicose, D-ribose, D-ribulose, D-­sorbose, D-tagatose, D-talose, and D-­xylose, can potentially form pyranose structures.

D-erythrose, D-erythrulose, D-­glyceraldehyde, D-­threose, D‐xylulose, and None of the above cannot form a pyranose. This determination is based on the number and arrangement of carbon atoms in the compounds, with pyranose formation requiring at least five carbon atoms.

To know more about D-threose visit,

https://brainly.com/question/32771270

#SPJ11

What is the major organic product obtained from the following reaction? 1. nano2 hcl 2. hbr cubr

Answers

The major organic product obtained from the given reaction sequence is 2-bromo-1-chlorobenzene.

In the first step of the reaction sequence, NaN02 (sodium nitrite) and HCl (hydrochloric acid) are used to convert an amine group (-NH2) to a diazonium salt (-N2+). This step is known as diazotization. The specific compound involved in the reaction is not mentioned in the question, so we'll assume it is an aromatic amine.

In the second step, HBr (hydrobromic acid) and CuBr (copper(I) bromide) are added. The diazonium salt reacts with HBr to form a bromoarene compound. The CuBr serves as a catalyst for the reaction.

The product obtained from the reaction sequence is 2-bromo-1-chlorobenzene. The amine group (-NH2) in the starting compound is replaced by a bromine atom (-Br) through the diazotization and bromination reactions.

It's important to note that without specific details about the starting compound, the exact product cannot be determined. However, based on the given reaction sequence, 2-bromo-1-chlorobenzene is the expected major organic product.

Learn more about 2-bromo-1-chlorobenzene from the given link https://brainly.com/question/14469260

#SPJ11.

what is the next yield of atp from one molecules of palmitic acid

Answers

The net yield of ATP from one molecule of palmitic acid is 129 ATP.

Palmitic acid is a fatty acid with 16 carbon atoms. It is broken down into acetyl-CoA molecules through a process called beta-oxidation. Each acetyl-CoA molecule enters the Krebs cycle and produces 12 ATP. In addition, each NADH molecule produced during beta-oxidation produces 3 ATP, and each FADH2 molecule produces 2 ATP.

The total number of ATP produced from the oxidation of one molecule of palmitic acid is:

(8 acetyl-CoA molecules) * 12 ATP/acetyl-CoA = 96 ATP

(7 NADH molecules) * 3 ATP/NADH = 21 ATP

(7 FADH2 molecules) * 2 ATP/FADH2 = 14 ATP

However, two ATP molecules are used to activate the fatty acid at the beginning of beta-oxidation.

Therefore, the net yield of ATP is:

96 ATP + 21 ATP + 14 ATP - 2 ATP = 129 ATP

It is important to note that the yield of ATP can vary depending on the organism and the conditions. For example, some organisms may be able to produce more ATP from NADH and FADH2 through the process of oxidative phosphorylation.

Thus, the net yield of ATP from one molecule of palmitic acid is 129 ATP.

To learn more about ATP :

https://brainly.com/question/897553

#SPJ11

it is often necessary to do calculations using scientific notation when working chemistry problems. for practice, perform each of the following calculations.

Answers

Perform the calculations using scientific notation as necessary.

In chemistry, scientific notation is often used to express very large or very small numbers in a more compact and manageable form. It consists of a number between 1 and 10 multiplied by a power of 10. This notation allows for easier manipulation of values and facilitates calculations involving significant figures and units.

When performing calculations with scientific notation, it is important to follow the rules of significant figures and maintain proper units throughout the process. Addition and subtraction of numbers in scientific notation involve aligning the exponents and then adding or subtracting the coefficients. Multiplication and division of numbers in scientific notation require multiplying or dividing the coefficients and adding or subtracting the exponents.

By using scientific notation, we can avoid errors due to excessive zeros or the omission of significant figures. It allows for better accuracy and precision in calculations involving very large or very small numbers, such as molar masses, Avogadro's number, or reaction rates.

Learn more about scientific notation

brainly.com/question/19625319

#SPJ11

Question 2 i) When a person exercises, ventilation increases. After exercise, ventilation does not return to basal levels until the O 2

debt has been repaid. Explain what " O 2

debt" is, including how it comes about and how long it takes to repay, and what the stimulus for the continued high ventilation is. ii) With exercise, expiration becomes active. Explain how this forced expiration allows for more CO 2

to be expelled from the lungs?

Answers

O2 debt is the oxygen uptake over and above what would have been the resting value, at the onset of an exercise, where the aerobic metabolic system is not yet meeting the energy demands of the body.

i) O2 debt arises due to the insufficient supply of oxygen to the body's muscles at the start of the exercise as anaerobic respiration starts, which increases oxygen consumption and carbon dioxide production. The anaerobic respiration produces lactic acid that requires oxygen to oxidize and clear away. It takes 30-60 minutes of rest to repay the O2 debt after exercise.
After exercise, ventilation does not return to basal levels until the O2 debt has been repaid. Ventilation remains high after exercise due to the stimulation of the central and peripheral chemoreceptors that sense the elevated levels of CO2 and decreased levels of O2.

ii) During forced expiration, the contraction of the internal intercostal muscles and abdominal muscles causes a decrease in thoracic volume. The decrease in volume of the thorax increases the pressure inside the chest, which pushes the air out of the lungs, enabling more CO2 to be expelled from the lungs. Therefore, during exercise, forced expiration helps the body get rid of carbon dioxide more effectively, making way for fresh oxygen to be taken in.

To know more about lactic acid  , visit;

https://brainly.com/question/490148

#SPJ11

1. How do the Arrhenius Theory of Acids and Bases and Bronsted Lowry Theory of Acids and Bases define acids and bases?
2. Explain in detail what are conjugate acid and base pairs.
3. Explain in chemistry terms, how ATP is used as energy.
4. Briefly explain the 4 structures of proteins.
5. How is a peptide bond formed? What type of reaction lead to the formation of peptide bond?
6. Explain how bicarbonate maintains plasma pH in case when the plasma pH is made acidic and basic.
7.Explain the function of the following organelles:
a. Rough endoplasmic reticulum
b. Smooth endoplasmic reticulum
c. Mitochondria

Answers

The Arrhenius Theory of Acids and Bases defines acids as substances that release hydrogen ions (H+) when dissolved in water, and bases as substances that release hydroxide ions (OH-) when dissolved in water.

According to this theory, acid-base reactions involve the transfer of hydrogen ions from acids to bases.

On the other hand, the Bronsted-Lowry Theory of Acids and Bases defines acids as substances that can donate protons (H+ ions), and bases as substances that can accept protons. In this theory, acid-base reactions involve the transfer of protons from acids to bases.

Conjugate acid-base pairs are two species that are related to each other by the transfer of a proton (H+ ion). When an acid donates a proton, it forms its conjugate base, and when a base accepts a proton, it forms its conjugate acid. The conjugate acid-base pairs have similar chemical structures but differ by the presence or absence of a single proton.

For example, in the reaction:

Acid1 + Base2 ⇌ Conjugate Base1 + Conjugate Acid2

Acid1 and Base2 form a conjugate acid-base pair, as do Conjugate Base1 and Conjugate Acid2.

ATP (adenosine triphosphate) is a molecule commonly referred to as the "energy currency" of cells. In chemistry terms, ATP is used as energy through a process called ATP hydrolysis.

The released energy can be used by cells to perform various energy-requiring processes, such as muscle contraction, active transport of ions across cell membranes, and synthesis of macromolecules.

The four structures of proteins are:

a. Primary Structure: The primary structure of a protein refers to the specific sequence of amino acids in its polypeptide chain. It is determined by the order of amino acids encoded by the DNA sequence. The primary structure plays a crucial role in determining the protein's overall structure and function.

b. Secondary Structure: The secondary structure refers to the local folding patterns in the protein chain. The two common types of secondary structures are alpha-helices and beta-sheets. These structures are stabilized by hydrogen bonding between amino acid residues.

c. Tertiary Structure: The tertiary structure refers to the three-dimensional arrangement of the entire polypeptide chain. It is primarily stabilized by various interactions, including hydrogen bonding, disulfide bonds, hydrophobic interactions, and electrostatic interactions. The tertiary structure determines the overall shape and function of the protein.

d. Quaternary Structure: Some proteins are composed of multiple polypeptide chains, which come together to form the quaternary structure. The quaternary structure describes the arrangement and interactions between these individual polypeptide chains.

A peptide bond is formed through a condensation reaction, also known as a dehydration synthesis reaction. It occurs between the carboxyl group (-COOH) of one amino acid and the amino group (-NH2) of another amino acid.

During the reaction, a water molecule is eliminated, and the carboxyl group of one amino acid reacts with the amino group of another amino acid. This results in the formation of a peptide bond and the release of a water molecule.

Bicarbonate (HCO3-) helps maintain plasma pH in both acidic and basic conditions through a buffering system called the bicarbonate buffer system. In an acidic environment, bicarbonate acts as a weak base and accepts excess hydrogen ions (H+), reducing the acidity.

The functions of the following organelles are:

a. Rough endoplasmic reticulum (RER): The RER is involved in protein synthesis and modification. It has ribosomes attached to its surface, giving it a "rough" appearance.

b. Smooth endoplasmic reticulum (SER): The SER is involved in lipid metabolism and detoxification. It lacks ribosomes on its surface, giving it a "smooth" appearance.

c. Mitochondria: Mitochondria are often referred to as the "powerhouses" of the cell. They are involved in cellular respiration, the process through which cells generate energy in the form of ATP.

To learn more about Arrhenius Theory visit;

https://brainly.com/question/3920636

#SPJ11

determine which compound would be soluble in ethanol.

Answers

Compounds such as alcohols, organic acids, and some organic salts are commonly soluble in ethanol.

Ethanol is a polar solvent with the ability to form hydrogen bonds. Therefore, compounds that can participate in similar interactions or have similar polarity are likely to be soluble in ethanol. For example, alcohols, which have a similar structure to ethanol, are generally soluble in it. This includes compounds such as methanol, isopropanol, and butanol.

Organic acids, such as acetic acid or benzoic acid, also tend to be soluble in ethanol due to the ability to form hydrogen bonds with the ethanol molecules. The acidic hydrogen in these compounds can form hydrogen bonds with the oxygen atom in ethanol.

Furthermore, some organic salts, particularly those with small and highly polar ions, can also dissolve in ethanol. Examples include sodium acetate and potassium iodide.

In contrast, nonpolar compounds or those with very limited polarity are typically insoluble in ethanol. These include hydrocarbons, oils, and most nonpolar gases.

Overall, the solubility of a compound in ethanol depends on its molecular structure, polarity, and the strength of intermolecular interactions it can form with ethanol molecules.


To learn more about polar solvent click here: brainly.com/question/14129775

#SPJ11

how many total photons with the wavelength of 254 nm produce this reddening of the 1.0 cm2 of the skin?

Answers

Approximately 1.28 x 10^18 photons with a wavelength of 254 nm would produce the reddening on 1.0 cm² of skin.

To determine the total number of photons with a wavelength of 254 nm that produce reddening on 1.0 cm² of skin, we need to follow these steps:

Step 1:

Calculate the energy of a single photon using the formula: E = hc/λ, where E represents the energy of a photon, h is Planck's constant (6.626 x 10^-34 J·s), c is the speed of light (3.0 x 10^8 m/s), and λ is the wavelength in meters.

Let's convert the wavelength from nanometers (nm) to meters (m):

254 nm = 254 x 10^-9 m = 2.54 x 10^-7 m

Now we can calculate the energy of a single photon:

E = (6.626 x 10^-34 J·s)(3.0 x 10^8 m/s) / (2.54 x 10^-7 m) = 7.84 x 10^-19 J

Step 2:

Determine the energy required for reddening on 1.0 cm² of skin. This information is not provided in the question, so we'll need to make an assumption or refer to relevant literature. Let's assume that 1.0 J of energy is required for reddening on 1.0 cm² of skin.

Step 3:

Calculate the total number of photons needed by dividing the total energy required by the energy of a single photon:

Total number of photons = Total energy required / Energy of a single photon

Total number of photons = 1.0 J / 7.84 x 10^-19 J ≈ 1.28 x 10^18 photons

Therefore, approximately 1.28 x 10^18 photons with a wavelength of 254 nm would produce the reddening on 1.0 cm² of skin.

Learn more about Photons on the link:

https://brainly.com/question/30820906

#SPJ11

59.31 ml of a solution of the acid hno3 is titrated, and 75.90 ml of 0.4600-m naoh is required to reach the equivalence point. calculate the original concentration of the acid solution.

Answers

The original concentration of the acid solution is 0.181 M

The titration reaction between acid HNO₃ and base NaOH can be represented as follows:

HNO₃ + NaOH → NaNO₃ + H₂O

Thus, the number of moles of NaOH used to neutralize HNO₃ can be determined as follows:

Number of moles of NaOH used = Molarity × Volume (in litres)

                                                      = 0.4600 mol/L × (75.90 ml/1000 ml)

                                                      = 0.03496 molesHNO₃

And NaOH reacts in a 1:1 stoichiometric ratio from the balanced equation.

Thus, the number of moles of HNO₃ present in the solution can be determined as follows:

0.03496 moles of NaOH used = 0.03496 moles of HNO₃ present

Number of moles of HNO₃ present in 59.31 ml = (0.03496 mol/75.90 ml) × 59.31 ml

                                                                             = 0.02716 mol

The original concentration of the acid solution can be determined by using the formula for molarity, as follows:

Molarity = Number of moles/Volume (in litres)

             = 0.02716 mol/(150 ml/1000 ml) = 0.181 M

Therefore, the original concentration of the acid solution is 0.181 M.

Learn more about Molarity from the given link:

https://brainly.com/question/30986294

#SPJ11

identify the spectator ions in the reaction ca(no3)2 2nacl(aq) → cacl2(aq) 2nano3(aq)

Answers

The spectator ions in the reaction Ca(NO3)2 + 2NaCl(aq) → CaCl2(aq) + 2NaNO3(aq) are Na+ and NO3-.

In a chemical reaction, spectator ions are the ions that appear on both sides of the equation and do not participate in the overall reaction. They are present in the reaction mixture but do not undergo any change in their chemical composition.

In the given reaction, Ca(NO3)2 + 2NaCl(aq) → CaCl2(aq) + 2NaNO3(aq), we can observe that the sodium (Na+) and nitrate (NO3-) ions appear on both sides of the equation. The sodium ions are present in both the reactants and the products, while the nitrate ions are also present on both sides. Therefore, these ions are spectator ions.

Spectator ions do not contribute to the net ionic equation, which represents the actual chemical change occurring in the reaction. To determine the net ionic equation, we eliminate the spectator ions from the overall equation. In this case, the net ionic equation would be:

Ca2+(aq) + 2Cl-(aq) → CaCl2(aq)

In the net ionic equation, only the ions involved directly in the reaction are shown, which in this case are the calcium ion (Ca2+) and the chloride ion (Cl-). These ions combine to form calcium chloride (CaCl2), which is the primary product of the reaction.

Learn more about: spectator ions

brainly.com/question/14050476

#SPJ11

why is it important to run a blank solution to set the zero %T for both Parts 1 and 11 in this experiment? How would your results be affected if you did not run a blank? 2. A student neglected to run the blank solution to set the zero %T in Part l and obtained the Beer's Law plot shown below. a. If the student used the plot as shown, how would their calculated values of Ke be affected b. How could the student modify their plot to improve their results? 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10 20 30 40 concentration (M × 10°)

Answers

Running a blank solution is crucial in spectrophotometry experiments to establish the zero %T and account for background absorbance. Without running a blank, the results can be affected by systematic errors.

It is important to run a blank solution to set the zero %T in both Parts 1 and 2 of the experiment because it helps to account for any background absorbance or interference from the solvent or other components in the sample. Running a blank solution allows us to establish a baseline measurement of the solvent or the solution without the analyte, which helps in accurately measuring the absorbance caused by the analyte of interest.

If a blank solution is not run, the results can be affected in several ways:

Systematic Error: The absence of a blank solution can introduce a systematic error, causing a constant offset in the measured absorbance values. This offset can lead to incorrect calculations and interpretations.

Overestimation or Underestimation: Without running a blank, the measured absorbance may include contributions from the solvent or other interfering substances. This can lead to overestimation or underestimation of the analyte concentration, affecting the accuracy of the results.

Distorted Beer's Law Plot: In the absence of a blank, the plot obtained may not accurately represent the linear relationship between concentration and absorbance according to Beer's Law. This can lead to incorrect calculations of the slope (molar absorptivity) and affect the accuracy of future concentration determinations.

In spectrophotometry, the blank solution serves as a reference for setting the zero %T (transmittance) or absorbance value. By measuring the blank, we can account for any absorbance caused by the solvent, impurities, or other components in the sample. The blank solution typically contains all the components except the analyte of interest. It is measured under the same conditions as the sample solutions.

The blank measurement allows us to subtract any background absorbance from the sample measurements, providing a more accurate representation of the absorbance caused solely by the analyte. This helps in obtaining reliable and precise measurements for concentration determination using Beer's Law.

Running a blank solution is crucial in spectrophotometry experiments to establish the zero %T and account for background absorbance. Without running a blank, the results can be affected by systematic errors, inaccurate concentration determinations, and distorted Beer's Law plots. It is important to always include a blank solution to ensure accurate and reliable measurements.

To know more about spectrophotometry , visit:

https://brainly.com/question/24864511

#SPJ11

Calculate the concentration of nitrate ion when dissolving 25.0 g of cobalt(II) nitrate Co(NO3)2 in 0.50 L aqueous solution. [MM CO(NO3)2 = 182.95 g/mol]

Answers

Answer:

To calculate the concentration of nitrate ion (NO3-) when dissolving cobalt(II) nitrate (Co(NO3)2) in a 0.50 L aqueous solution, we need to determine the number of moles of cobalt(II) nitrate and the ratio of nitrate ions to cobalt(II) nitrate.

First, we calculate the number of moles of cobalt(II) nitrate using the given mass and molar mass:

Number of moles = Mass / Molar mass

= 25.0 g / 182.95 g/mol

≈ 0.1363 mol

Next, we determine the ratio of nitrate ions to cobalt(II) nitrate from the chemical formula Co(NO3)2. Each cobalt(II) nitrate molecule contains two nitrate ions.

Therefore, the number of moles of nitrate ions = 2 * 0.1363 mol = 0.2726 mol

Finally, we calculate the concentration of nitrate ions in the aqueous solution by dividing the number of moles by the volume:

Concentration = Number of moles / Volume

= 0.2726 mol / 0.50 L

= 0.5452 mol/L

Thus, the concentration of nitrate ions (NO3-) in the solution is approximately 0.5452 mol/L.

Learn more about the mole concept: https://brainly.com/question/9758790

#SPJ11

Calculate+how+many+grams+of+zinc+chloride+are+to+be+used+to+prepare+5+l+of+a+mouthwash+containing+0.1%+of+zncls

Answers

To prepare 5 L of a mouthwash containing 0.1% of ZnCl2,you would need approximately 0.014 grams (or 14.5 mg) of zinc chloride.

The percentage concentration of ZnCl2 in the mouthwash is given as 0.1%. This means that for every 100 parts of the mouthwash, 0.1 parts are ZnCl2.

To calculate the amount of ZnCl2 needed to prepare 5 L of mouthwash, we can use the following formula:

Amount of ZnCl2 = (Percentage concentration/100) × Volume of mouthwash

Plugging in the values, we have:

Amount of ZnCl2 = (0.1/100) × 5 L = 0.005 L

Since the density of ZnCl2 is approximately 2.907 g/mL, we can convert the volume to grams:

Amount of ZnCl2 = 0.005 L × 2.907 g/mL = 0.014535 g

Rounding off to the appropriate number of significant figures, the amount of ZnCl2 needed is approximately 0.0145 g, which can be rounded to 0.014 g.

To prepare 5 L of a mouthwash containing 0.1% of ZnCl2, you would need approximately 0.014 grams (or 14.5 mg) of zinc chloride.

To know more about zinc chloride, visit:

https://brainly.com/question/14587410

#SPJ11

for a compound to be aromatic, it must have a planar cyclic conjugated π system along with a(n) _________ number of electron pairs/π-bonds.

Answers

For a compound to be aromatic, it must have a planar cyclic conjugated π system along with an odd number of electron pairs/π-bonds.

Aromaticity is a property of certain organic compounds that exhibit unique stability due to the presence of a conjugated π system. In order for a compound to be aromatic, it must meet specific criteria. One of the key requirements is that the molecule must have a planar cyclic structure. This means that the atoms involved in the aromatic system lie in the same plane.

Additionally, aromatic compounds must possess a conjugated π system, which refers to a system of alternating single and double bonds or resonance forms. The π electrons in the conjugated system form a delocalized electron cloud above and below the plane of the molecule, contributing to its stability.

To fulfill the aromaticity criteria, the compound must also have a specific number of electron pairs or π-bonds. Aromatic compounds require an odd number of electron pairs or π-bonds to maintain a fully conjugated system. This odd number ensures that the compound can exhibit a closed-shell electronic configuration, resulting in increased stability.

For a compound to be aromatic, it must have a planar cyclic conjugated π system along with an odd number of electron pairs/π-bonds. This combination of features is crucial for the compound to exhibit the unique stability associated with aromaticity.

To know more about aromatic visit:

https://brainly.com/question/30624539

#SPJ11

Why the presence of an acid is necessary for mn4- to function as an oxidising agent

Answers

The presence of an acid is necessary for Mn4- to function as an oxidizing agent.

The presence of an acid is necessary for Mn4- to function as an oxidizing agent. Mn4- is a manganese ion in its highest oxidation state (+7), and it can accept electrons from other substances during a redox reaction. In order for Mn4- to act as an oxidizing agent, it needs to undergo reduction itself by gaining electrons. The acid provides the necessary protons (H+) to balance the charge and enable the reduction of Mn4- to occur. This acidic environment ensures that Mn4- remains stable and allows it to effectively oxidize other substances. Without the presence of an acid, Mn4- would not be able to function as an oxidizing agent.

To know more about oxidizing agent visit:

https://brainly.com/question/29137128

#SPJ11

quicklime, cao, can be prepared by roasting lime-stone, cac03, according to the following reaction. cac03(s) cao(s) c02(g). when 2.00 x 103 g cac03 are heated, the actual yield of cao is 1.05 x 103 g. what is the percentage yield?

Answers

The percentage yield of CaO is approximately 93.61%.

To calculate the percentage yield, we need to compare the actual yield with the theoretical yield. The theoretical yield is the amount of product that would be obtained if the reaction proceeded with 100% efficiency.

First, we need to determine the theoretical yield of CaO.

The balanced chemical equation shows that 1 mole of CaCO3 produces 1 mole of CaO. Since the molar mass of CaCO3 is 100.09 g/mol, we can calculate the moles of CaCO3:

Moles of CaCO3 = mass of CaCO3 / molar mass of CaCO3

= 2.00 x 10^3 g / 100.09 g/mol

= 19.988 mol (approximately 20.0 mol)

Since the mole ratio between CaCO3 and CaO is 1:1, the theoretical yield of CaO is also 20.0 mol.

Now, we can calculate the percentage yield:

Percentage Yield = (Actual Yield / Theoretical Yield) x 100

= (1.05 x 10^3 g / (20.0 mol x molar mass of CaO)) x 100

The molar mass of CaO is 56.08 g/mol, so:

Percentage Yield = (1.05 x 10^3 g / (20.0 mol x 56.08 g/mol)) x 100

= (1.05 x 10^3 g / 1121.6 g) x 100

= 93.61%

Therefore, the percentage yield of CaO is approximately 93.61%.

learn more about CaO here

https://brainly.com/question/32611094

#SPJ11

the salt level in the lake has been increasing recently due to decreased water levels? group of answer choices true false

Answers

The given statement “the salt level in the lake has been increasing recently due to decreased water levels” is True.

Salinity in water bodies increases when the rate of water evaporation exceeds the rate of water replacement through precipitation, river flow, or groundwater recharge. The decrease in water level due to less rainfall, climate change, excessive use of surface water or groundwater, irrigation, and other human activities in nearby regions are responsible for the increase in salinity.

Salinity can have significant impacts on aquatic life, and it can alter the chemical properties of water, making it difficult to use for irrigation, drinking, or industrial purposes. It can lead to the formation of algal blooms, which can deplete oxygen levels in the water, leading to the death of fish and other aquatic organisms. In conclusion, the statement is true and is supported by scientific evidence.

learn more about Salinity here

https://brainly.com/question/20283396

#SPJ11

how many liters of o2 at 298 k and 1.00 bar are produced in 2.75 hr in an electrolytic cell operating at a current of 0.0300 a? l

Answers

The approximate amount 0.768 liters of O₂ would be produced in 2.75 hours in an electrolytic-cell operating at a current of 0.0300 A. using Faraday's-law of electrolysis.

Faraday's law states that the amount of substance produced (n) is directly proportional to the quantity of electricity passed through the cell. The formula to calculate the amount of substance produced is:

n = (Q * M) / (z * F)

Where:

n = amount of substance produced (in moles)

Q = quantity of electricity passed through the cell (in Coulombs)

M = molar mass of O2 (32.00 g/mol)

z = number of electrons transferred per O2 molecule (4)

F = Faraday's constant (96,485 C/mol)

First, we need to calculate the quantity of electricity passed through the cell (Q). We can use the formula:

Q = I * t

Where:

I = current (in Amperes)

t = time (in seconds)

Given:

Current (I) = 0.0300 A

Time (t) = 2.75 hours = 2.75 * 60 * 60 seconds

Q = 0.0300 A * (2.75 * 60 * 60 s) = 297 C

Now, we can calculate the amount of substance produced (n):

n = (297 C * 32.00 g/mol) / (4 * 96,485 C/mol) ≈ 0.0310 moles

Next, we need to convert moles to liters using the ideal gas law equation:

V = (n * R * T) / P

Where:

V = volume (in liters)

n = amount of substance (in moles)

R = ideal gas constant (0.0821 L·atm/(mol·K))

T = temperature (in Kelvin)

P = pressure (in atm)

Given:

n = 0.0310 moles

R = 0.0821 L·atm/(mol·K)

T = 298 K

P = 1.00 atm

V = (0.0310 mol * 0.0821 L·atm/(mol·K) * 298 K) / 1.00 atm ≈ 0.768 L

Therefore, approximately 0.768 liters of O₂ would be produced in 2.75 hours in an electrolytic cell operating at a current of 0.0300 A.

To know more about Faraday's-law, visit:

https://brainly.com/question/28185352

#SPJ11

A typical person has an average heart rate of 75. 0 beat in minutes calculate the given question how many beats does she have in 6. 0 years how many beats in 6. 00 years and finally how many beats in 6. 000 years

Answers

A typical person has an average heart rate of 75.0 beats per minute. In all three cases (6.0 years, 6.00 years, and 6.000 years), the number of beats would be 236,520,000 beats.

To calculate the number of beats in a given time period, we need to know the number of minutes in that time period.
First, let's calculate the number of beats in 6.0 years. We know that a typical person has an average heart rate of 75.0 beats per minute.
So, to find the number of beats in 6.0 years, we multiply the number of minutes in 6.0 years by the average heart rate:
6.0 years = 6.0 * 365 * 24 * 60

= 3,153,600 minutes
Number of beats in 6.0 years = 3,153,600 minutes * 75.0 beats/minute

= 236,520,000 beats
Next, let's calculate the number of beats in 6.00 years.
6.00 years = 6.00 * 365 * 24 * 60

= 3,153,600 minutes
Number of beats in 6.00 years = 3,153,600 minutes * 75.0 beats/minute

= 236,520,000 beats
Finally, let's calculate the number of beats in 6.000 years.
6.000 years = 6.000 * 365 * 24 * 60

= 3,153,600 minutes
Number of beats in 6.000 years = 3,153,600 minutes * 75.0 beats/minute

= 236,520,000 beats
Therefore, in all three cases (6.0 years, 6.00 years, and 6.000 years), the number of beats would be 236,520,000 beats.

To know more about number of beats visit:

https://brainly.com/question/30810421

#SPJ11

would the methylene chloride layer be above or below the aqueous layer in today's experiment?

Answers

In today's experiment, the methylene chloride layer would be below the aqueous layer. This arrangement is due to the lower density of methylene chloride compared to water. Understanding the densities of the substances involved allows us to predict their relative positions in a mixture.

The positioning of different layers in a mixture depends on the relative densities of the substances involved. Methylene chloride (also known as dichloromethane) and water have different densities, which determine their respective positions when mixed.

Methylene chloride has a lower density than water, which means it is less dense and will tend to float above the denser water layer. Hence, the methylene chloride layer will be located above the aqueous layer.

In today's experiment, the methylene chloride layer would be below the aqueous layer. This arrangement is due to the lower density of methylene chloride compared to water. Understanding the densities of the substances involved allows us to predict their relative positions in a mixture.

To know more about methylene chloride ,visit:

https://brainly.com/question/32634302

#SPJ11

Calculate selectivity a between Peak 1 and Peak 2 for the following chromatogram. 25 Peak 1 (6.0 min) Peak 2 (6.8 mir 20 15 GO Signal Hold up peak (1.8 min) 10 5 0 0 2 2 4 6 8 time (minutes)

Answers

Answer:Therefore, the selectivity factor (α) between Peak 1 and Peak 2 is 0.1967.

Selectivity factor (α) is the ability of one compound to be separated from another compound in chromatography. It is also referred to as separation factor. Selectivity is calculated by measuring the distance between the center of two adjacent peaks.

In the given chromatogram, the distance between the two peaks is given as follows:

Peak 1 (6.0 min)Peak 2 (6.8 min)Distance (d) = 6.8 - 6.0

= 0.8 min

The selectivity factor (α) between Peak 1 and Peak 2 can be calculated as follows:

α = (d - 1) / 4.6

= (0.8 - 1) / 4.6

= - 0.1967

Selectivity factor should be a positive value.

Therefore, we take the absolute value of - 0.1967.α = 0.1967

To know more about Peak visit;

brainly.com/question/30480594

#SPJ11

In chemistry, the particles of matter that we encounter are quite small. The size of atoms were once given in a unit called the angstrom unit (AO). One angstrom is defined as 1 x 10^-10 meters. The angstrom is not an Sl unit. The radius of a chlorine atom is 0.99 A°. What is the radius of the chlorine atom expressed in a) nanometers and b) picometers?

Answers

Given that the radius of a chlorine atom is 0.99 Å, we need to find its radius in nanometers and picometers.

The definition of Angstrom is 1 x 10^-10 meters.The SI unit of length is the meter.

1 Å = 1 x 10^-10 m or 1 Å = 0.1 nm (1 nanometer)1 nm = 10 Å (1 Angstrom)

Thus, the radius of the chlorine atom in nanometers (nm) = 0.99 Å × (1 nm / 10 Å) = 0.099 nm

And the radius of the chlorine atom in picometers (pm) = 0.99 Å × (1 nm / 10 Å) × (10 pm / 1 nm) = 9.9 pm

Therefore, the radius of the chlorine atom expressed in nanometers is 0.099 nm, and its radius in picometers is 9.9 pm.

Learn more about angstrom:

https://brainly.com/question/30217614

#SPJ11

Which of the following does NOT take place in the basic fusion reaction of the universe? A) 2 '1H → ºle + 2H B) ‘1H +21H 32He C) 2 32He → 42He +2'1H D) '1H + 32He → 42He +º-1e E) '1H + 3zHe → 42 He + ºze

Answers

The reaction which does not take place in the basic fusion reaction ofthe universe is option D) '1H + 32He → 42He + º-1e.

The basic fusion reaction of the universe is the fusion of two hydrogen nuclei to form a helium nucleus.

'1H + 32He → 42He +2'1H

This reaction is not possible because it would require two helium nuclei to fuse together. Helium nuclei are positively charged, and like charges repel each other. In order for two helium nuclei to fuse, they would need to be brought very close together, which would require a great deal of energy.

The sun is able to do this because of its enormous gravitational field, which provides the necessary energy to bring the helium nuclei close enough together to fuse.

However, in the absence of a strong gravitational field, such as in the case of the universe as a whole, two helium nuclei cannot fuse together.

The other reactions are correct because they involve the fusion of two hydrogen nuclei to form a helium nucleus. This reaction is possible because hydrogen nuclei are only weakly positively charged, and they can be brought close enough together to fuse by the thermal energy of the universe.

Thus, the reaction which does not take place in the basic fusion reaction ofthe universe is option D) '1H + 32He → 42He + º-1e.

To learn more about fusion reactions :

https://brainly.com/question/1983482

#SPJ11

write the names for the following compounds. (a) li20(k) pbs (b) aid3(i) sn02 (c) mgs (m) na2s (d) cao (n) mg3p2 (e) kb

Answers

The names of the compounds are as follows: (a) Li2O - Lithium oxide (b) H3AI(IO3)3 - Aidalite (iodate) (c) MgS - Magnesium sulfide (d) CaO - Calcium oxide (e) KB - Potassium bromide (n) Mg3P2 - Magnesium phosphide

Let's go through the compounds and determine their names:

(a) Li2O - Lithium oxide

Li2O is composed of lithium (Li) and oxygen (O). When naming this compound, we use the name of the metal (Li) followed by the name of the non-metal (O) with the suffix "-ide." Therefore, the name of Li2O is lithium oxide.

(b) H3AI(IO3)3 - Aidalite (iodate)

H3AI(IO3)3 is a compound consisting of hydrogen (H), aluminum (AI), iodine (I), and oxygen (O). The systematic naming for this compound would be hydrogen tris(aluminate) triiodate. However, the common name for this compound is Aidalite (iodate).

(c) MgS - Magnesium sulfide

MgS is composed of magnesium (Mg) and sulfur (S). Following the naming conventions, we name this compound as magnesium sulfide.

(d) CaO - Calcium oxide

CaO consists of calcium (Ca) and oxygen (O). Using the naming rules, we name this compound as calcium oxide.

(e) KB - Potassium bromide

KB contains potassium (K) and bromine (B). The compound is named as potassium bromide.

(n) Mg3P2 - Magnesium phosphide

Mg3P2 is composed of magnesium (Mg) and phosphorus (P). Following the naming rules, we name this compound as magnesium phosphide.

By applying the naming conventions and considering the elements present in each compound, we can determine the names of the given compounds as mentioned above.

To learn more about names of the compounds click here: brainly.com/question/32748830

#SPJ11

What is the correct way to handle dirty mop water

Answers

The correct way to handle dirty mop water involves proper disposal and minimizing environmental impact.

It is important to avoid pouring dirty mop water down sinks or drains, as it can contaminate water sources. Instead, the water should be disposed of in designated areas or through appropriate waste management systems.

Dirty mop water can contain dirt, debris, chemicals, and potentially harmful microorganisms. To handle it correctly, several steps can be taken. First, any solid debris should be removed from the water using a sieve or filter. This helps prevent clogging of drains or contaminating the water further.

Next, the dirty mop water should be disposed of in designated areas such as floor drains, designated disposal sinks, or mop water disposal systems. It is important to follow local regulations and guidelines for waste disposal. Additionally, efforts should be made to minimize the environmental impact by using eco-friendly cleaning products and reducing the amount of water used during mopping.

To learn more about water, click here:

brainly.com/question/30322659

#SPJ11

Calculate the half-life (in s) of a first-order reaction if the concentration of the reactant is 0.0899 m 17.6 s after the reaction starts and is 0.0301 m 49.6 s after the reaction starts.

Answers

The half-life of a first-order reaction can be determined using the formula t1/2 = (0.693/k), where k is the rate constant. By using the concentrations of the reactant at two different times and applying the equation ln(C1/C2) = kt, the rate constant can be calculated. For a specific reaction with a rate constant of approximately 0.0927 s^(-1), the half-life is approximately 7.48 seconds.

The half-life of a first-order reaction can be calculated using the formula t1/2 = (0.693/k), where t1/2 is the half-life and k is the rate constant. In this case, we can determine the rate constant by using the concentrations of the reactant at two different times and applying the equation ln(C1/C2) = kt, where C1 and C2 are the concentrations at the given times, and t is the time interval.

Given that the concentration of the reactant is 0.0899 m at 17.6 s and 0.0301 m at 49.6 s, we can calculate the rate constant. Using the equation ln(C1/C2) = kt and substituting the values, we have ln(0.0899/0.0301) = k * (49.6 - 17.6). Solving this equation, we find that k ≈ 0.0927 s^(-1).

Now, we can calculate the half-life using the formula t1/2 = (0.693/k). Substituting the value of k, we have t1/2 = (0.693/0.0927), which gives us a half-life of approximately 7.48 seconds.

In summary, the half-life of the first-order reaction is approximately 7.48 seconds. This is determined by calculating the rate constant using the concentrations of the reactant at two different times and applying the equation ln(C1/C2) = kt. The rate constant obtained is then used in the formula t1/2 = (0.693/k) to calculate the half-life.

Learn more about concentrations here:

brainly.com/question/30862855?

#SPJ11

Other Questions
calculate the number of moles of hi that are at equilibrium with 1.25 mol of h2 and 1.25 mol of i2 in a 5.00l flask at 448 c. h2 i2 2hi kc = 50.2 at 448 c \( f(x)=-x+3 \)Find the inverse of each function. Then graph the function and its inverse and draw the line of symmetry. if a wavelength is 3.2 x 102 meters, what is the frequency? please show all the steps and all of your work when you upload your final answer. let r be a relation on a={a,b,c,d}, and r={(a,a),(a,b),(b,c),(c,b),(c,d),(d,a),(d,b)}. draw the directed graph for r. (submit your digraph to canvas.) Write an essay that compares and contrasts how medium or historical and cultural context affects the plot, characterization, and theme of two stories from different cultures a toy train follows a circular track, completing ten laps around the track in 5.1 minutes. the train traveled a total distance of 131.9 meters. find the radius of the track. Let f(x)=2x(x5). Then f (3)= And after simplifying f (x)= Hint: You may want to expand and simplify the expression for f(x) first. Not yet answered Marked out of 1.00 P Flag question Which of the following statements regarding the standards is correct? Select one: a. At low concentrations of the solute, the graph of absorbance versus concentration is essentially linear. b. At low concentrations of the solute, the graph of absorbance versus concentration departs markedly from linearity. c. At high concentrations of the solute, the graph of absorbance versus concentration is essentially linear. d. As the concentration of the solute decreases, the colour becomes more intense and the absorbance rises. 10 3 points Why is it important to collect a family history of a client? How does collecting family history or understanding genetics and environment help enrolled nursing practice in primary health care? Give an example an emergency room nurse believes the number of upper respiratory infections is on the rise. the emergency room nurse would like to test the claim that the average number of cases of upper respiratory infections per day at the hospital is over 21 cases. using the computed test statistic of 2.50 and the critical value of 2.33, is there enough evidence for the emergency room nurse to reject the null hypothesis? One of your friends says that the data below fall within three standard deviations from the mean. Your otherfriend disagrees, saying that the data fall within six standard deviations from the mean. With whom do you agree? Explain. unethical companies cannot use h-1b visas to exploit the average salary requirements for h-1b workers.TRUE/FALSE This is a VHDL program.Please Explain the logic for this VHDL code (Explain the syntax and functionality of the whole code) in 2 paragraph.============================================================================================library IEEE;use IEEE.STD_LOGIC_1164.ALL;use IEEE.STD_LOGIC_UNSIGNED.ALL;use ieee.NUMERIC_STD.all;--------------------------------------------------------- ALU 8-bit VHDL --------------------------------------------------------------------entity ALU isgeneric ( constant N: natural := 1);Port (A, B : in STD_LOGIC_VECTOR(7 downto 0); -- 2 inputs 8-bitALU_Sel : in STD_LOGIC_VECTOR(3 downto 0); -- 1 input 4-bit for selecting functionALU_Out : out STD_LOGIC_VECTOR(7 downto 0); -- 1 output 8-bit Carryout : out std_logic -- Carryout flag);end ALU; architecture Behavioral of ALU issignal ALU_Result : std_logic_vector (7 downto 0);signal tmp: std_logic_vector (8 downto 0);beginprocess(A,B,ALU_Sel)begincase(ALU_Sel) iswhen "0000" => -- AdditionALU_Result -- SubtractionALU_Result -- MultiplicationALU_Result -- DivisionALU_Result -- Logical shift leftALU_Result -- Logical shift rightALU_Result -- Rotate leftALU_Result -- Rotate rightALU_Result -- Logical and ALU_Result -- Logical orALU_Result -- Logical xor ALU_Result -- Logical norALU_Result -- Logical nand ALU_Result -- Logical xnorALU_Result -- Greater comparisonif(A>B) thenALU_Result Update the __validateIcmpReplyPacketWithOriginalPingData() function: Confirm the following items received are the same as what was sent: sequence number packet identifier raw data 1) help tom to explain to the shareholders of the company the meaning of "free cash flow", its usage and how to use its value to assess a companys performance. With regards to the development of the respiratory system, explain why a puppy born at 50 days' gestation (preterm) is having trouble breathing.[12 marks] Write an inequality that represents each sentence.Rachel's hair is at least as long as Julia's. What is a bluish green color? jackson will receive $2,496 from his grandparents 14 years from now. if the discount rate is 27% compounded annually, how much is jackson's money worth today? the general idea that one or more states' power is being used to counter that of another state or group of states is called a. bandwagoning b. containment c. balance of power d. security dilemma e. compellence