A rod originally has a length of 2{~m} . Upon experiencing a tensile force, its length was longer by 0.038{~m} . Calculate the strain developed in the rod.

Answers

Answer 1

The strain developed in the rod is 0.019, which means that it underwent a deformation of 1.9% of its original length.

When a material experiences a tensile force, it undergoes deformation and its length increases. The strain developed in the material is a measure of the amount of deformation it undergoes. It is defined as the change in length (ΔL) divided by the original length (L). Mathematically, it can be expressed as:

strain = ΔL / L

In this case, the rod originally had a length of 2 meters, and after experiencing a tensile force, its length increased by 0.038 meters. Therefore, the change in length (ΔL) is 0.038 meters, and the original length (L) is 2 meters. Substituting these values in the above equation, we get:

strain = 0.038 meters / 2 meters

= 0.019

So the strain developed in the rod is 0.019, which means that it underwent a deformation of 1.9% of its original length. This is an important parameter in material science and engineering, as it is used to quantify the mechanical behavior of materials under external loads.

Learn more about " strain " : https://brainly.com/question/17046234

#SPJ11


Related Questions

A firm faces inverse demand function p(q)=120−4q, where q is the firm's output. Its cost function is c(q)=c∗q. a. Write the profit function. b. Find profit-maximizing level of profit as a function of unit cost c. c. Find the comparative statics derivative dq/dc. Is it positive or negative?

Answers

The profit function is π(q) = 120q - 4q² - cq. The profit-maximizing level of profit is π* = 120((120 - c)/8) - 4((120 - c)/8)² - c((120 - c)/8)c.

a. The profit function can be expressed in terms of output, q as follows:

π(q)= pq − c(q)

Given that the inverse demand function of the firm is p(q) = 120 - 4q and the cost function is c(q) = cq, the profit function,

π(q) = (120 - 4q)q - cq = 120q - 4q² - cq

b. The profit-maximizing level of profit as a function of unit cost c, can be obtained by calculating the derivative of the profit function and setting it equal to zero.

π(q) = 120q - 4q² - cq π'(q) = 120 - 8q - c = 0 q = (120 - c)/8

The profit-maximizing level of output, q is (120 - c)/8.

The profit-maximizing level of profit, denoted by π* can be obtained by substituting the value of q in the profit function:π* = 120((120 - c)/8) - 4((120 - c)/8)² - c((120 - c)/8)c.

The comparative statics derivative, dq/dc can be found by taking the derivative of q with respect to c.dq/dc = d/dq((120 - c)/8) * d/dq(cq) dq/dc = -1/8 * q + c * 1 d/dq(cq) = cdq/dc = c - (120 - c)/8

The comparative statics derivative is given by dq/dc = c - (120 - c)/8 = (9c - 120)/8

The derivative is positive if 9c - 120 > 0, which is true when c > 13.33.

Hence, the comparative statics derivative is positive when c > 13.33.

Let us know more about profit function : https://brainly.com/question/33580162.

#SPJ11

(20 pts) Using the definition of the asymptotic notations, show that a) 6n 2
+n=Θ(n 2
) b) 6n 2

=O(2n)

Answers

a) The function 6n² + n is proven to be in the Θ(n²) notation by establishing both upper and lower bounds of n² for the function.

b) The function 6n² is shown to not be in the O(2ⁿ) notation through a proof by contradiction.

a) To show that 6n² + n = Θ(n²), we need to prove that n² is an asymptotic upper and lower bound of the function 6n² + n. For the lower bound, we can say that:

6n² ≤ 6n² + n ≤ 6n² + n² (since n is positive)

n² ≤ 6n² + n² ≤ 7n²

Thus, we can say that there exist constants c₁ and c₂ such that c₁n² ≤ 6n² + n ≤ c₂n² for all n ≥ 1. Hence, we can conclude that 6n² + n = Θ(n²).

b) To show that 6n² ≠ O(2ⁿ), we can use a proof by contradiction. Assume that there exist constants c and n0 such that 6n² ≤ c₂ⁿ for all n ≥ n0. Then, taking the logarithm of both sides gives:

2log 6n² ≤ log c + n log 2log 6 + 2 log n ≤ log c + n log 2

This implies that 2 log n ≤ log c + n log 2 for all n ≥ n0, which is a contradiction. Therefore, 6n² ≠ O(2ⁿ).

To know more about proof by contradiction, refer to the link below:

https://brainly.com/question/30459584#

#SPJ11

Complete Question:

Identify verbal interpretation of the statement
2 ( x + 1 ) = 8

Answers

The verbal interpretation of the statement "2(x + 1) = 8" is "Twice the quantity of x plus one is equal to eight."

The statement "2(x + 1) = 8" is an algebraic equation that involves the variable x, as well as constants and operations. In order to interpret this equation verbally, we need to understand what each part of the equation represents.

Starting with the left-hand side of the equation, the expression "2(x + 1)" can be broken down into two parts: the quantity inside the parentheses (x+1), and the coefficient outside the parentheses (2).

The quantity (x+1) can be interpreted as "the sum of x and one", or "one more than x". The parentheses are used to group these two terms together so that they are treated as a single unit in the equation.

The coefficient 2 is a constant multiplier that tells us to take twice the value of the quantity inside the parentheses. So, "2(x+1)" can be interpreted as "twice the sum of x and one", or "two times one more than x".

Moving on to the right-hand side of the equation, the number 8 is simply a constant value that we are comparing to the expression on the left-hand side. In other words, the equation is saying that the value of "2(x+1)" is equal to 8.

Putting it all together, the verbal interpretation of the statement "2(x + 1) = 8" is "Twice the quantity of x plus one is equal to eight."

Learn more about   statement  from

https://brainly.com/question/27839142

#SPJ11

Every four years in march, the population of a certain town is recorded. In 1995, the town had a population of 4700 people. From 1995 to 1999, the population increased by 20%. What was the towns population in 2005?

Answers

Answer:

7414 people

Step-by-step explanation:

Assuming that the population does increase by 20% for every four years since the last data collection of the population, the population can be modeled by using [tex]T = P(1+R)^t[/tex]

T = Total Population (Unknown)

P = Initial Population

R = Rate of Increase (20% every four years)

t = Time interval (every four year)

Thus, T = 4700(1 + 0.2)^2.5 = 7413.9725 =~ 7414 people.

Note: The 2.5 is the number of four years that occur since 1995. 2005-1995 = 10 years apart.

Since you have 10 years apart and know that the population increases by 20% every four years, 10/4 = 2.5 times.

Hope this helps!

Tatiana and Arjun have spent all day finding the volume of a sphere and are now hungry. They decide to fry an egg. Their pan is an infinite plane. They crack the egg into the pan, and the egg forms a shape which is given by rotating y = f(x) from 0 to a around the y-axis, where a is the first positive x-value for which f(x) = 0. Here, f(x) is the function defined on [0, [infinity]) by: f(x) = (8/5 + √(4 − x^2) 0 ≤ x ≤ 2 f(x) = 2(10−x)/[(x^2−x)(x^2+1)] 2 < x < [infinity]. (Perhaps use Desmos to see what this function looks like.) What is the volume of the egg? Here, x and f(x) are measured in centimeters. You can write your answers in terms of the functions ln and arctan.

Answers

The integrals can be solved using integration techniques such as substitution or partial fractions. Once the integrals are evaluated, the volume V can be expressed in terms of the functions ln and arctan, as specified in the problem.

To find the volume of the egg formed by rotating the function y = f(x) around the y-axis, we can use the method of cylindrical shells.

The volume V of the egg can be calculated as the integral of the shell volumes over the interval [0, a], where a is the first positive x-value for which f(x) = 0.

Let's break down the calculation of the volume into two parts based on the given definition of the function f(x):

For 0 ≤ x ≤ 2:

The formula for the shell volume in this interval is:

V₁ = 2πx[f(x)]dx

Substituting f(x) = (8/5 + √(4 - x^2)), we have:

V₁ = ∫[0,2] 2πx[(8/5 + √(4 - x^2))]dx

For 2 < x < ∞:

The formula for the shell volume in this interval is:

V₂ = 2πx[f(x)]dx

Substituting f(x) = 2(10 - x)/[(x^2 - x)(x^2 + 1)], we have:

V₂ = ∫[2,∞] 2πx[2(10 - x)/[(x^2 - x)(x^2 + 1)]]dx

To find the volume of the egg, we need to evaluate the above integrals and add the results:

V = V₁ + V₂

The integrals can be solved using integration techniques such as substitution or partial fractions. Once the integrals are evaluated, the volume V can be expressed in terms of the functions ln and arctan, as specified in the problem.

Please note that due to the complexity of the integrals involved, the exact form of the volume expression may be quite involved.

Learn more about  volume from

https://brainly.com/question/27710307

#SPJ11

Find the equation that results from completing the square in the following equation. x^(2)-12x-28=0

Answers

The equation resulting from completing the square is (x - 6)² = 64.

To find the equation that results from completing the square in the equation x² - 12x - 28 = 0, we can follow these steps:

1. Move the constant term to the other side of the equation:

x² - 12x = 28

2. Take half of the coefficient of x, square it, and add it to both sides of the equation:

x² - 12x + (-12/2)²

= 28 + (-12/2)²

x² - 12x + 36

= 28 + 36

3. Simplify the equation:

x² - 12x + 36 = 64

4. Rewrite the left side as a perfect square:

(x - 6)² = 64

Now, the equation resulting from completing the square is (x - 6)² = 64.

To know more about constant term visit:

https://brainly.com/question/28714992

#SPJ11

Solve the given initial value problem. y ′′−4y ′ +4y=0;y(0)=−5,y ′(0)=− 439The solution is y(t)=

Answers

the particular solution is:

y(t) = (-5 - 439t)e^(2t)

To solve the given initial value problem, we can assume the solution has the form y(t) = e^(rt), where r is a constant to be determined.

First, we find the derivatives of y(t):

y'(t) = re^(rt)

y''(t) = r^2e^(rt)

Now we substitute these derivatives into the differential equation:

r^2e^(rt) - 4re^(rt) + 4e^(rt) = 0

Next, we factor out the common term e^(rt):

e^(rt)(r^2 - 4r + 4) = 0

For this equation to hold, either e^(rt) = 0 (which is not possible) or (r^2 - 4r + 4) = 0.

Solving the quadratic equation (r^2 - 4r + 4) = 0, we find that it has a repeated root of r = 2.

Since we have a repeated root, the general solution is given by:

y(t) = (C1 + C2t)e^(2t)

To find the particular solution that satisfies the initial conditions, we substitute the values into the general solution:

y(0) = (C1 + C2(0))e^(2(0)) = C1 = -5

y'(0) = C2e^(2(0)) = C2 = -439

Learn more about Derivatives here

https://brainly.com/question/25324584

#SPJ11

The notation ... stands for
A) the mean of any row.
B) the mean of any column.
C) the mean of any cell.
D) the grand mean.

Answers

It is commonly used in the analysis of variance (ANOVA) method to determine if the means of two or more groups are equivalent or significantly different. The grand mean for these groups would be:Grand Mean = [(10+12+15) / (n1+n2+n3)] = 37 / (n1+n2+n3) .The notation M stands for the grand mean.

In statistics, the notation "M" stands for D) the grand mean.What is the Grand Mean?The grand mean is an arithmetic mean of the means of several sets of data, which may have different sizes, distributions, or other characteristics. It is commonly used in the analysis of variance (ANOVA) method to determine if the means of two or more groups are equivalent or significantly different.

The grand mean is calculated by summing all the observations in each group, then dividing the total by the number of observations in the groups combined. For instance, suppose you have three groups with the following means: Group 1 = 10, Group 2 = 12, and Group 3 = 15.

The grand mean for these groups would be:Grand Mean = [(10+12+15) / (n1+n2+n3)] = 37 / (n1+n2+n3) .The notation M stands for the grand mean.

To know more about analysis of variance Visit:

https://brainly.com/question/31491539

#SPJ11

Watch help video The Pythagorean Theorem, given by the formula a^(2)+b^(2)=c^(2), relates the three sides of a right triangle. Solve the formula for the positive value of b in terms of a and c.

Answers

The formula for the positive value of b in terms of a and c is:

                          b = √(c^2 - a^2)

The Pythagorean Theorem is given by the formula a^2 + b^2 = c^2. It relates the three sides of a right triangle. To solve the formula for the positive value of b in terms of a and c, we will first need to isolate b by itself on one side of the equation:

Begin by subtracting a^2 from both sides of the equation:

                  a^2 + b^2 = c^2

                            b^2 = c^2 - a^2

Then, take the square root of both sides to get rid of the exponent on b:

                           b^2 = c^2 - a^2

                               b = ±√(c^2 - a^2)

However, we want to solve for the positive value of b, so we can disregard the negative solution and get:    b = √(c^2 - a^2)

Therefore, the formula for the positive value of b in terms of a and c is b = √(c^2 - a^2)

To know more about Pythagorean Theorem here:

https://brainly.com/question/343682

#SPJ11

Which sign goes in the circle to make the number sentence true?
4/5+5/8 ○ 1
A) >
B) <
C) Greater than or equal to
D) Less than or equal to​

Answers

The sign that goes in the circle to make the sentence true is >• 4/5+5/8= >1

Explanation

Let us compare 4/5 and 5/8.

To compare the numbers, we have to get the lowest common multiple (LCM). We can derive the LCM by multiplying the denominators which are 5 and 8. 5×8 = 40

LCM = 40.

Converting 4/5 and 5/8 to fractions with a denominator of 40:

4/5 = 32/40

5/8 = 25/40

= 32/40 + 25/40

= 57/40

= 1.42.

4/5+5/8 = >1

1.42>1

Learn more about lowest common multiple here

https://brainly.com/question/16054958

#SPJ1

highly selective quiz show wants their participants to have an average score greater than 90. They want to be able to assert with 95% confidence that this is true in their advertising, and they routinely test to see if the score has dropped below 90. Select the correct symbols to use in the alternate hypothesis for this hypothesis test. Ha:

Answers

The correct symbols to use in the alternate hypothesis for this hypothesis test are as follows:Ha: µ > 90 where µ is the population mean of the quiz show participants' scores.

Hypothesis testing is a statistical process that involves comparing two hypotheses, the null hypothesis, and the alternative hypothesis. The null hypothesis is a statement about a population parameter that assumes that there is no relationship or no significant difference between variables. The alternate hypothesis, on the other hand, is a statement that contradicts the null hypothesis and states that there is a relationship or a significant difference between variables.

In this question, the null hypothesis states that the average score of the quiz show participants is less than or equal to 90, while the alternative hypothesis states that the average score is greater than 90.

The correct symbols to use in the alternate hypothesis for this hypothesis test are as follows:

Ha: µ > 90 where µ is the population mean of the quiz show participants' scores.

To be able to assert with 95% confidence that the average score is greater than 90, the quiz show needs to conduct a one-tailed test with a critical value of 1.645.

If the calculated test statistic is greater than the critical value, the null hypothesis is rejected, and the alternative hypothesis is accepted.

On the other hand, if the calculated test statistic is less than the critical value, the null hypothesis is not rejected.

The one-tailed test should be used because the quiz show wants to determine if the average score is greater than 90 and not if it is different from 90.

To know more about hypothesis test visit:

brainly.com/question/32874475

#SPJ11

Finally, construct a DFA, A, that recognizes the following language over the alphabet Σ={a,b}. L(A)={w∈Σ ∗
∣w has an even number of a 's, an odd number of b 's, and does not contain substrings aa or bb \} Your solution should have at most 10 states (Hint. The exclusion conditions impose very special structure on L(A)).

Answers

We will define the transition function, δ(q, a) and δ(q, b), for each state q.

To construct a DFA, A, that recognizes the language L(A) = {w ∈ Σ* | w has an even number of a's, an odd number of b's, and does not contain substrings aa or bb}, we can follow these steps:

Identify the states:

We need to keep track of the parity (even/odd) of the number of a's and b's seen so far, as well as the last symbol encountered to check for substrings aa and bb. This leads to a total of 8 possible combinations (states).

Define the alphabet:

Σ = {a, b}

Determine the start state and accept states:

Start state: q0 (initially even a's, odd b's, and no last symbol)

Accept states: q0 (since the number of a's should be even) and q3 (odd number of b's, and no last symbol)

Define the transition function:

We will define the transition function, δ(q, a) and δ(q, b), for each state q.

To know more about DFA, visit:

https://brainly.com/question/14608663

#SPJ11

what is the domain of the function y=3^ root x ?

Answers

Answer:

last one (number four):

1 < x < ∞

Show that for the array \( A=\{10,9,8,7,6,5,4,3\} \), QUICKSORT runs in \( \Theta\left(\mathrm{n}^{2}\right) \) time.

Answers

The QUICKSORT algorithm runs in Θ(n²) time for the given array A = {10, 9, 8, 7, 6, 5, 4, 3}, as demonstrated by the worst-case upper bound of O(n²) and the lower bound of Ω(n²) based on the properties of comparison-based sorting algorithms.

To show that the QUICKSORT algorithm runs in Θ(n²) time for the given array A = {10, 9, 8, 7, 6, 5, 4, 3}, we need to demonstrate both the upper bound (O(n²)) and the lower bound (Ω(n²)).

1. Upper Bound (O(n²)):

In the worst-case scenario, QUICKSORT can exhibit quadratic time complexity. For the given array A, if we choose the pivot element poorly, such as always selecting the first or last element as the pivot, the partitioning step will result in highly imbalanced partitions.

In this case, each partition will contain one element less than the previous partition, resulting in n - 1 comparisons for each partition. Since there are n partitions, the total number of comparisons will be (n - 1) + (n - 2) + ... + 1 = (n² - n) / 2, which is in O(n²).

2. Lower Bound (Ω(n²)):

To show the lower bound, we need to demonstrate that any comparison-based sorting algorithm, including QUICKSORT, requires at least Ω(n²) time to sort the given array A. We can do this by using a decision tree model. For n elements, there are n! possible permutations. Since a comparison-based sorting algorithm needs to distinguish between all these permutations, the height of the decision tree must be at least log₂(n!).

Using Stirling's approximation, log₂(n!) can be lower bounded by Ω(n log n). Since log n ≤ n for all positive n, we have log₂(n!) = Ω(n log n), which implies that the height of the decision tree is Ω(n log n). Since each comparison is represented by a path from the root to a leaf in the decision tree, the number of comparisons needed is at least Ω(n log n). Thus, the time complexity of any comparison-based sorting algorithm, including QUICKSORT, is Ω(n²).

By combining the upper and lower bounds, we can conclude that QUICKSORT runs in Θ(n²) time for the given array A.

To know more about QUICKSORT algorithm, refer to the link below:

https://brainly.com/question/13257594#

#SPJ11

Complete Question:

Round each mixed number to the nearet whole number. Then, etimate the quotient. 24

16

17

÷

4

8

9

=

Answers

The rounded whole numbers are 25 and 4. The estimated quotient is approximately 6.25.

To round the mixed numbers to the nearest whole number, we look at the fractional part and determine whether it is closer to 0 or 1.

For the first mixed number, [tex]24\frac{16}{17}[/tex], the fractional part is 16/17, which is greater than 1/2.

Therefore, rounding to the nearest whole number, we get 25.

For the second mixed number, [tex]4\frac{8}{9}[/tex], the fractional part is 8/9, which is less than 1/2.

Therefore, rounding to the nearest whole number, we get 4.

Now, we can estimate the quotient:

25 ÷ 4 = 6.25

So, the estimated quotient of [tex]24\frac{16}{17}[/tex] ÷  [tex]4\frac{8}{9}[/tex] is approximately 6.25.

To learn more on Fractions click:

https://brainly.com/question/10354322

#SPJ4

Find the 10 th term for an arithmetic sequence with difference =2 and first term =5. 47 23 25 52

Answers

To find the 10th term of an arithmetic sequence with a difference of 2 and a first term of 5, we can use the formula for the nth term of an arithmetic sequence:

aₙ = a₁ + (n - 1)d

where aₙ represents the nth term, a₁ is the first term, n is the position of the term, and d is the common difference.

In this case, the first term (a₁) is 5, the common difference (d) is 2, and we want to find the 10th term (a₁₀).

Plugging the values into the formula, we have:

a₁₀ = 5 + (10 - 1) * 2

= 5 + 9 * 2

= 5 + 18

= 23

Therefore, the 10th term of the arithmetic sequence is 23.

Learn more about arithmetic here

https://brainly.com/question/16415816

#SPJ11

a) Mean and variance helps us to understand the data always before modelling. Keeping this in mind validate the following "When we try to fit a regression model considering Sum of Squared errors as loss function i cost tunction , we ignore the mean. Because of this, model may not be effective:

Answers

The statement is not entirely accurate. While it is true that the Sum of Squared Errors (SSE) is a loss function commonly used in regression models, it does not necessarily mean that the mean is ignored or that the model may not be effective .In regression analysis, the goal is to minimize the SSE, which measures.

the discrepancy between the observed values and the predicted values of the dependent variable. The SSE takes into account the deviation of each individual data point from the predicted values, giving more weight to larger errors through the squaring operation.However, the mean is still relevant in regression modeling. In fact, one common approach in regression is to include an intercept term (constant) in the model, which represents the mean value of the dependent variable when all independent variables are set to zero. By including the intercept term, the model accounts for the mean and ensures that the predictions are centered around the mean value.Ignoring the mean completely in regression modeling can lead to biased predictions and ineffective models. The mean provides important information about the central tendency of the data, and a good regression model should capture this information.Therefore, it is incorrect to say that the mean is ignored when fitting a regression model using the SSE as the loss function. The SSE and the mean both play important roles in regression analysis and should be considered together to develop an effective mode

Learn more about Squared Errors here

https://brainly.com/question/29662026

#SPJ11

An item is purchased in 2004 for $525,000, and in 2019 it is worth $145,500.
Assuming the item is depreciating linearly with time, find the value of the item (in dollars) as a function of time (in years since 2004). Enter your answer in slope-intercept form, using exact numbers.

Answers

To find the value of the item as a function of time, we can use the slope-intercept form of a linear equation: y = mx + b, where y represents the value of the item and x represents the time in years since 2004.

We are given two points on the line: (0, $525,000) and (15, $145,500). These points correspond to the initial value of the item in 2004 and its value in 2019, respectively.

Using the two points, we can calculate the slope (m) of the line:

m = (change in y) / (change in x)

m = ($145,500 - $525,000) / (15 - 0)

m = (-$379,500) / 15

m = -$25,300

Now, we can substitute one of the points (0, $525,000) into the equation to find the y-intercept (b):

$525,000 = (-$25,300) * 0 + b

$525,000 = b

So the equation for the value of the item as a function of time is:

y = -$25,300x + $525,000

Therefore, the value of the item (in dollars) as a function of time (in years since 2004) is given by the equation y = -$25,300x + $525,000.

Learn more about linear equation here:

https://brainly.com/question/29111179


#SPJ11

Ali ran 48 kilometers in a week. That was 11 kilometers more than his teammate. Which equations can be used to determine, k, the number of kilometers Ali's teammate ran in the week?

Answers

Ali's teammate ran 37 kilometers in the week. The equation k + 11 = 48 can be used to determine the number of kilometers Ali's teammate ran.

Let's represent the number of kilometers Ali's teammate ran in the week as "k." We know that Ali ran 11 kilometers more than his teammate, so Ali's total distance can be represented as k + 11. Since Ali ran 48 kilometers in total, we can set up the equation k + 11 = 48 to determine the value of k. By subtracting 11 from both sides of the equation, we get k = 48 - 11, which simplifies to k = 37. Therefore, Ali's teammate ran 37 kilometers in the week. The equation k + 11 = 48 can be used to determine the number of kilometers Ali's teammate ran. Let x be the number of kilometers Ali's teammate ran in the week.Therefore, we can form the equation:x + 11 = 48Solving for x, we subtract 11 from both sides to get:x = 37Therefore, Ali's teammate ran 37 kilometers in the week.

Learn more about equation :

https://brainly.com/question/29657992

#SPJ11

A) Give the line whose slope is m=4m=4 and intercept is 10.The appropriate linear function is y=
B) Give the line whose slope is m=3 and passes through the point (8,−1).The appropriate linear function is y=

Answers

The slope is m = 4 and the y-intercept is 10, so the linear function becomes:y = 4x + 10 and the appropriate linear function is y = 3x - 25.

A) To find the linear function with a slope of m = 4 and y-intercept of 10, we can use the slope-intercept form of a linear equation, y = mx + b, where m is the slope and b is the y-intercept.

In this case, the slope is m = 4 and the y-intercept is 10, so the linear function becomes:

y = 4x + 10

B) To find the linear function with a slope of m = 3 and passing through the point (8, -1), we can use the point-slope form of a linear equation, y - y1 = m(x - x1), where m is the slope and (x1, y1) is a point on the line.

In this case, the slope is m = 3 and the point (x1, y1) = (8, -1), so the linear function becomes:

y - (-1) = 3(x - 8)

y + 1 = 3(x - 8)

y + 1 = 3x - 24

y = 3x - 25

Therefore, the appropriate linear function is y = 3x - 25.

To learn more about slope click here:

brainly.com/question/14876735

#SPJ11

A)  The y-intercept of 10 indicates that the line intersects the y-axis at the point (0, 10), where the value of y is 10 when x is 0.

The line with slope m = 4 and y-intercept of 10 can be represented by the linear function y = 4x + 10.

This means that for any given value of x, the corresponding y-value on the line can be found by multiplying x by 4 and adding 10. The slope of 4 indicates that for every increase of 1 in x, the y-value increases by 4 units.

B) When x is 8, the value of y is -1.

To find the equation of the line with slope m = 3 passing through the point (8, -1), we can use the point-slope form of a linear equation, which is y - y1 = m(x - x1), where (x1, y1) is a point on the line.

Plugging in the values, we have y - (-1) = 3(x - 8), which simplifies to y + 1 = 3x - 24. Rearranging the equation gives y = 3x - 25. Therefore, the appropriate linear function is y = 3x - 25. This means that for any given value of x, the corresponding y-value on the line can be found by multiplying x by 3 and subtracting 25. The slope of 3 indicates that for every increase of 1 in x, the y-value increases by 3 units. The line passes through the point (8, -1), which means that when x is 8, the value of y is -1.

Learn more about y-intercept here:

brainly.com/question/14180189

#SPJ11

Balance the chemical equations using techniques from linear algebra. ( 9 pts.) C 2 H6 +O2 →H 2 O+CO 2 C 8 H18 +O2 →CO2 +H2 O Al2 O3 +C→Al+CO 2

Answers

The balanced chemical equation is: 4Al2O3 + 13C → 8Al + 9CO2 To balance a chemical equation using techniques from linear algebra, we can represent the coefficients of the reactants and products as a system of linear equations.

We then solve this system using matrix algebra to obtain the coefficients that balance the equation.

C2H6 + O2 → H2O + CO2

We represent the coefficients as follows:

C2H6: 2C + 6H

O2: 2O

H2O: 2H + O

CO2: C + 2O

This gives us the following system of linear equations:

2C + 6H + 2O = C + 2O + 2H + O

2C + 6H + 2O = 2H + 2C + 4O

Rearranging this system into matrix form, we get:

[2 -1 -2 0] [C]   [0]

[2  4 -2 -6] [H] = [0]

[O]   [0]

Using row reduction operations, we can solve this system to obtain:

C2H6 + 7/2O2 → 2H2O + CO2

Therefore, the balanced chemical equation is:

2C2H6 + 7O2 → 4H2O + 2CO2

C8H18 + O2 → CO2 + H2O

We represent the coefficients as follows:

C8H18: 8C + 18H

O2: 2O

CO2: C + 2O

H2O: 2H + O

This gives us the following system of linear equations:

8C + 18H + 2O = C + 2O + H + 2O

8C + 18H + 2O = C + 2H + 4O

Rearranging this system into matrix form, we get:

[7 -1 -4 0] [C]   [0]

[8  2 -2 -18] [H] = [0]

[O]   [0]

Using row reduction operations, we can solve this system to obtain:

C8H18 + 25O2 → 16CO2 + 18H2O

Therefore, the balanced chemical equation is:

2C8H18 + 25O2 → 16CO2 + 18H2O

Al2O3 + C → Al + CO2

We represent the coefficients as follows:

Al2O3: 2Al + 3O

C: C

Al: Al

CO2: C + 2O

This gives us the following system of linear equations:

2Al + 3O + C = Al + 2O + C + 2O

2Al + 3O + C = Al + C + 4O

Rearranging this system into matrix form, we get:

[1 -2 -2 0] [Al]   [0]

[1  1 -3 -1] [O] = [0]

[C]   [0]

Using row reduction operations, we can solve this system to obtain:

Al2O3 + 3C → 2Al + 3CO2

Therefore, the balanced chemical equation is:

4Al2O3 + 13C → 8Al + 9CO2

To balance a chemical equation using techniques from linear algebra, we can represent the coefficients of the reactants and products as a system of linear equations. We then solve this system using matrix algebra to obtain the coefficients that balance the equation.

C2H6 + O2 → H2O + CO2

We represent the coefficients as follows:

C2H6: 2C + 6H

O2: 2O

H2O: 2H + O

CO2: C + 2O

This gives us the following system of linear equations:

2C + 6H + 2O = C + 2O + 2H + O

2C + 6H + 2O = 2H + 2C + 4O

Rearranging this system into matrix form, we get:

[2 -1 -2 0] [C]   [0]

[2  4 -2 -6] [H] = [0]

[O]   [0]

Using row reduction operations, we can solve this system to obtain:

C2H6 + 7/2O2 → 2H2O + CO2

Therefore, the balanced chemical equation is:

2C2H6 + 7O2 → 4H2O + 2CO2

C8H18 + O2 → CO2 + H2O

We represent the coefficients as follows:

C8H18: 8C + 18H

O2: 2O

CO2: C + 2O

H2O: 2H + O

This gives us the following system of linear equations:

8C + 18H + 2O = C + 2O + H + 2O

8C + 18H + 2O = C + 2H + 4O

Rearranging this system into matrix form, we get:

[7 -1 -4 0] [C]   [0]

[8  2 -2 -18] [H] = [0]

[O]   [0]

Using row reduction operations, we can solve this system to obtain:

C8H18 + 25O2 → 16CO2 + 18H2O

Therefore, the balanced chemical equation is:

2C8H18 + 25O2 → 16CO2 + 18H2O

Al2O3 + C → Al + CO2

We represent the coefficients as follows:

Al2O3: 2Al + 3O

C: C

Al: Al

CO2: C + 2O

This gives us the following system of linear equations:

2Al + 3O + C = Al + 2O + C + 2O

2Al + 3O + C = Al + C + 4O

Rearranging this system into matrix form, we get:

[1 -2 -2 0] [Al]   [0]

[1  1 -3 -1] [O] = [0]

[C]   [0]

Using row reduction operations, we can solve this system to obtain:

Al2O3 + 3C → 2Al + 3CO2

Therefore, the balanced chemical equation is:

4Al2O3 + 13C → 8Al + 9CO2

learn more about linear algebra here

https://brainly.com/question/1952076

#SPJ11

Find all values of δ>0 such that ∣x−2∣<δ⟹∣4x−8∣<3 Your answer should be in interval notation. Make sure there is no space between numbers and notations. For example, (2,3),[4,5),[3,3.5), etc.. Hint: find one such value first.

Answers

The interval of δ is (0,1/4).

Given that ∣x−2∣<δ, it is required to find all values of δ>0 such that ∣4x−8∣<3.

To solve the given problem, first we need to find one value of δ that satisfies the inequality ∣4x−8∣<3 .

Let δ=1, then∣x−2∣<1

By the definition of absolute value, |x-2| can take on two values:

x-2 < 1 or -(x-2) < 1x-2 < 1

=> x < 3 -(x-2) < 1

=> x > 1

Therefore, if δ=1, then 1 < x < 3.

We need to find the interval of δ, where δ > 0.

For |4x-8|<3, consider the interval (5/4, 7/4) which contains the root of the inequality.

Therefore, the interval of δ is (0, min{3/4, 1/4}) = (0, 1/4).

Therefore, the required solution is (0,1/4).

To know more about interval visit:

https://brainly.com/question/11051767

#SPJ11

(a) 29x^(4)+30y^(4)=46 (b) y=-5x^(3) Symmetry: Symmetry: x-axis y-axis x-axis origin y-axis none of the above origin none of the above

Answers

The symmetry is with respect to the origin. The option D. none of the above is the correct answer.

Given, the following equations;

(a) [tex]29x^{(4)} + 30y^{(4)} = 46 ...(1)[/tex]

(b) [tex]y = -5x^{(3)} ...(2)[/tex]

Symmetry is the feature of having an equivalent or identical arrangement on both sides of a plane or axis. It's a characteristic of all objects with a certain degree of regularity or pattern in shape. Symmetry can occur across the x-axis, y-axis, or origin.

(1) For Equation (1) 29x^(4) + 30y^(4) = 46

Consider, y-axis symmetry that is when (x, y) → (-x, y)29x^(4) + 30y^(4) = 46

==> [tex]29(-x)^(4) + 30y^(4) = 46[/tex]

==> [tex]29x^(4) + 30y^(4) = 46[/tex]

We get the same equation, which is symmetric about the y-axis.

Therefore, the symmetry is with respect to the y-axis.

(2) For Equation (2) y = [tex]-5x^(3)[/tex]

Now, consider origin symmetry that is when (x, y) → (-x, -y) or (x, y) → (y, x) or (x, y) → (-y, -x) [tex]y = -5x^(3)[/tex]

==> [tex]-y = -5(-x)^(3)[/tex]

==> [tex]y = -5x^(3)[/tex]

We get the same equation, which is symmetric about the origin.

To know more about the symmetry, visit:

https://brainly.com/question/24928116

#SPJ11

Find the volumes of the solids generated by revolving the region in the first quadrant bounded by the curve x=y-y3 and the y-axis about the given axes.
a. The x-axis
b. The line y=1

Answers

The volume of the solid is π/3.

The regions bounded by the curve x = y - y^3 in the first quadrant and the y-axis are to be revolved around the x-axis and the line y = 1, respectively.

The solids generated by revolving the region in the first quadrant bounded by the curve x=y-y3 and the y-axis about the x-axis are obtained by using disk method.

Therefore, the volume of the solid is:

V = ∫[a, b] π(R^2 - r^2)dx Where,R = radius of outer curve = yandr = radius of inner curve = 0a = 0andb = 1∫[a, b] π(R^2 - r^2)dx= π∫[0, 1] (y)^2 - (0)^2 dy= π∫[0, 1] y^2 dy= π [y³/3] [0, 1]= π/3

The volume of the solid is π/3.The solids generated by revolving the region in the first quadrant bounded by the curve x=y-y3 and the y-axis about the line y = 1 can be obtained by using the washer method.

Therefore, the volume of the solid is:

V = ∫[a, b] π(R^2 - r^2)dx Where,R = radius of outer curve = y - 1andr = radius of inner curve = 0a = 0andb = 1∫[a, b] π(R^2 - r^2)dx= π∫[0, 1] (y - 1)^2 - (0)^2 dy= π∫[0, 1] y^2 - 2y + 1 dy= π [y³/3 - y² + y] [0, 1]= π/3

The volume of the solid is π/3.

To know more about volume visit:

brainly.com/question/33365330

#SPJ11

Q5... Lids has obtained 23.75% of the
cap market in Ontario. If Lids sold 2600 caps last month, how many
caps were sold in Ontario in total last month? Round up the final
answer. (1 mark)

Answers

The total number of caps sold in Ontario last month is approximately 10948 caps (rounded up).

Given that Lids has obtained 23.75% of the cap market in Ontario and it sold 2600 caps last month. Let us calculate the total caps sold in Ontario last month as follows:

Let the total caps sold in Ontario be x capsLids has obtained 23.75% of the cap market in Ontario which means the percentage of the market Lids has not covered is (100 - 23.75)% = 76.25%.

The 76.25% of the cap market is represented as 76.25/100, hence, the caps sold in the market not covered by Lids is:

76.25/100 × x = 0.7625 x

The total number of caps sold in Ontario is equal to the sum of the number of caps sold by Lids and the number of caps sold in the market not covered by Lids, that is:

x = 2600 + 0.7625 x

Simplifying the equation by subtracting 0.7625x from both sides, we get;0.2375x = 2600

Dividing both sides by 0.2375, we obtain:

x = 2600 / 0.2375x

= 10947.37 ≈ 10948

Therefore, the total number of caps sold in Ontario last month is approximately 10948 caps (rounded up).Answer: 10948

To know more about percentage visit:

https://brainly.com/question/32197511

#SPJ11

Q3.Q4 thanks~
Which of the following is a direction vector for the line x=2 t-1, y=-3 t+2, t \in{R} ? a. \vec{m}=(4,-6) c. \vec{m}=(-2,3) b. \vec{m}=(\frac{2}{3},-1) d. al

Answers

The direction vector of the line r(t) = <2t - 1, -3t + 2> is given by dr/dt = <2, -3>. Option (a) \vec{m}=(4,-6) is a direction vector for the given line.

In this question, we need to find a direction vector for the line x=2t-1, y=-3t+2, t ∈R. It is given that the line is represented in vector form as r(t) = <2t - 1, -3t + 2>.Direction vector of a line is a vector that tells the direction of the line. If a line passes through two points A and B then the direction vector of the line is given by vector AB or vector BA which is represented as /overrightarrow {AB}or /overrightarrow {BA}.If a line is represented in vector form as r(t), then its direction vector is given by the derivative of r(t) with respect to t.

Therefore, the direction vector of the line r(t) = <2t - 1, -3t + 2> is given by dr/dt = <2, -3>. Hence, option (a) \vec{m}=(4,-6) is a direction vector for the given line.Note: The direction vector of the line does not depend on the point through which the line passes. So, we can take any two points on the line and the direction vector will be the same.

To know more about vector visit :

https://brainly.com/question/1603293

#SPJ11

Suppose p is prime and Mp is a Mersenne prime
(a) Find all the positive divisors of 2^(p-¹)Mp. (b) Show that 2^(p-¹)Mp, is a perfect integer. Unlike problem 10, I am not looking for a formal direct proof, just verify that 2^(p-¹)Mp satifies the definition. You may need to recall the formula for a geometric progression.

Answers

The sum of the positive divisors of \((2^p + 1)(2^p - 1)\) equals \((2^p + 1)(2^p - 1)\), verifying that \(2^{p-1}M_p\) is a perfect integer.

To find the positive divisors of \(2^{p-1}M_p\), we need to consider the prime factorization of \(2^{p-1}M_p\). Since \(M_p\) is a Mersenne prime, we know that it can be expressed as \(M_p = 2^p - 1\). Substituting this into the expression, we have:

\(2^{p-1}M_p = 2^{p-1}(2^p - 1) = 2^{p-1+p} - 2^{p-1} = 2^{2p-1} - 2^{p-1}\).

Now, let's consider the prime factorization of \(2^{2p-1} - 2^{p-1}\). Using the formula for the difference of two powers, we have:

\(2^{2p-1} - 2^{p-1} = (2^p)^2 - 2^p = (2^p + 1)(2^p - 1)\).

Therefore, the positive divisors of \(2^{p-1}M_p\) are the positive divisors of \((2^p + 1)(2^p - 1)\).

To show that \(2^{p-1}M_p\) is a perfect integer, we need to demonstrate that the sum of its positive divisors (excluding itself) equals the number itself. Since we know that the positive divisors of \(2^{p-1}M_p\) are the positive divisors of \((2^p + 1)(2^p - 1)\), we can show that the sum of the positive divisors of \((2^p + 1)(2^p - 1)\) equals \((2^p + 1)(2^p - 1)\).

This can be proven using the formula for the sum of a geometric series:

\(1 + a + a^2 + \ldots + a^n = \frac{{a^{n+1} - 1}}{{a - 1}}\).

In our case, \(a = 2^p\) and \(n = 1\). Substituting these values into the formula, we get:

\(1 + 2^p = \frac{{(2^p)^2 - 1}}{{2^p - 1}} = \frac{{(2^p + 1)(2^p - 1)}}{{2^p - 1}} = 2^p + 1\).

Learn more about divisors here :-

https://brainly.com/question/26086130

#SPJ11

"find the solution of the initial value problems by using laplace
y′′−5y′ +4y=0,y(0)=1,y′ (0)=0

Answers

The solution to the initial value problem y'' - 5y' + 4y = 0, y(0) = 1, y'(0) = 0 is: y(t) = (1/3)e^(4t) - (1/3)e^t

To solve this initial value problem using Laplace transforms, we first take the Laplace transform of both sides of the differential equation:

L{y''} - 5L{y'} + 4L{y} = 0

Using the properties of Laplace transforms, we can simplify this to:

s^2 Y(s) - s y(0) - y'(0) - 5 (s Y(s) - y(0)) + 4 Y(s) = 0

Substituting the initial conditions, we get:

s^2 Y(s) - s - 5sY(s) + 5 + 4Y(s) = 0

Simplifying and solving for Y(s), we get:

Y(s) = 1 / (s^2 - 5s + 4)

We can factor the denominator as (s-4)(s-1), so we can rewrite Y(s) as:

Y(s) = 1 / ((s-4)(s-1))

Using partial fraction decomposition, we can write this as:

Y(s) = A/(s-4) + B/(s-1)

Multiplying both sides by the denominator, we get:

1 = A(s-1) + B(s-4)

Setting s=1, we get:

1 = A(1-1) + B(1-4)

1 = -3B

B = -1/3

Setting s=4, we get:

1 = A(4-1) + B(4-4)

1 = 3A

A = 1/3

Therefore, we have:

Y(s) = 1/(3(s-4)) - 1/(3(s-1))

Taking the inverse Laplace transform of each term using a Laplace transform table, we get:

y(t) = (1/3)e^(4t) - (1/3)e^t

Therefore, the solution to the initial value problem y'' - 5y' + 4y = 0, y(0) = 1, y'(0) = 0 is:

y(t) = (1/3)e^(4t) - (1/3)e^t

learn more about initial value here

https://brainly.com/question/17613893

#SPJ11

Customers arrive at a cafe according to a Poisson process with a rate of 2 customers per hour. What is the probability that exactly 2 customers will arrive within the next one hour? Please select the closest answer value.
a. 0.18
b. 0.09
c. 0.22
d. 0.27

Answers

Therefore, the probability that exactly 2 customers will arrive within the next one hour is approximately 0.27.

The probability of exactly 2 customers arriving within the next one hour can be calculated using the Poisson distribution.

In this case, the rate parameter (λ) is given as 2 customers per hour. We can use the formula for the Poisson distribution:

P(X = k) = (e^(-λ) * λ^k) / k!

where X is the random variable representing the number of customers arriving, and k is the desired number of customers (in this case, 2).

Let's calculate the probability:

P(X = 2) = (e^(-2) * 2^2) / 2! ≈ 0.2707

The closest answer value from the given options is d. 0.27.

Learn more about probability  here

https://brainly.com/question/32117953

#SPJ11

Find the area under the standard normal distribution curve to the right of z=0.77. Use 0 The Standard Normal Distribution Table and enter the answer to 4 decimal places. The aree to the right of the z value is Find the area under the standard normal distribution curve between z=−1.31 and z=−2.73. Use (B) The Standard Normal Distribution Table and enter the answer to 4 decimal places. The area between the two z values is Find the area under the standard normal distribution curve to the right of z=−2.22, Use 3 The 5tandard Normal Distribution Table and enter the answer to 4 decimal places. The area to the right of the z value is

Answers

Area under the standard normal distribution curve is as follows:

to the right of z = 0.77 = 0.2206

Between z = −1.31 and z = −2.73 = 0.0921

to the right of z = −2.22 = 0.9861

The area under the standard normal distribution curve: To the right of z = 0.77, using the standard normal distribution table: According to the standard normal distribution table, the area to the left of z = 0.77 is 0.7794.

The total area under the curve is 1. Therefore, the area to the right of z = 0.77 can be found by subtracting 0.7794 from 1, which equals 0.2206.

Therefore, the area under the standard normal distribution curve to the right of z = 0.77 is 0.2206.

To the right of z = −2.22, using the standard normal distribution table:

According to the standard normal distribution table, the area to the left of z = −2.22 is 0.0139.

The total area under the curve is 1.

Therefore, the area to the right of z = −2.22 can be found by subtracting 0.0139 from 1, which equals 0.9861.

Therefore, the area under the standard normal distribution curve to the right of z = −2.22 is 0.9861.

Between z = −1.31 and z = −2.73, using the standard normal distribution table:

According to the standard normal distribution table, the area to the left of z = −1.31 is 0.0951, and the area to the left of z = −2.73 is 0.0030.

The area between these two z values can be found by subtracting the smaller area from the larger area, which equals 0.0921.

Therefore, the area under the standard normal distribution curve between z = −1.31 and z = −2.73 is 0.0921.

Area under the standard normal distribution curve:

To the right of z = 0.77 = 0.2206

Between z = −1.31 and z = −2.73 = 0.0921

To the right of z = −2.22 = 0.9861

To know more about standard normal distribution visit:

brainly.com/question/15103234

#SPJ11

Other Questions
term structure of interest rates consider an economy with a single consumer. there is one good in the economy, which arrives in the form of an exogenous endowment obeying Select the drug agent that is used to treat allergic rhinitis from the following list of corticosteroids that are administered by oral inhalation or by nasal spray.A. AerobidB. PulmicortC. AzmacortD. Flonase Eight guests are invited for dinner. How many ways can they be seated at a dinner table if the table is straight with seats only on one side?A) 1B) 40,320C) 5040D) 362,880 A nominal level of measurement implies order to the data. True False What is an advantage of role-based access control ( FBAC)? Provisioning of permissions is unique based on each individual. Provisioning of permissions is based on MAC levels. Provisioning of permissions is based on security clearance. Provisioning of permissions is much faster for management. You are ready to travel long distance by road for holidays to visit your family. Assume that an array called distances[] already has the distance to each gas station along the way in sorted order. For convenience, index 0 has the starting position, even though it is not a gas station. We also know the range of the car, that is, the max distance the car can travel with a full-tank of gas (ignore "reserve"). You are starting the trip with a full tank as well. Now, your goal is to minimize the total gas cost. There is another parallel array prices[] that contains the gas price per gallon for each gas station, to help you! Since index 0 is not a gas station, we will indicate very high price for gas so that it won't be accidentally considered as gas station. BTW, it is OK to reach your final destination with minimal gas, but do not run out of gas along the way! Program needs to output # of gas stops to achieve the minimum total gas cost (If you are too excited, you can compute the actual cost, assuming certain mileage for the vehicle. Share your solution with the professor through MSteams!) double distances [], prices []; double range; int numStations; //# of gas stations - index goes from 1 to numstations in distance //find # of gas stops you need to make to go from distances[currentindex] to destDi static int gasstops(int currentIndex, double destDistance) Let us look at an example. Let us say you need to travel 450 miles \& the range of the car is 210 miles. distances []={0,100,200,300,400,500};1/5 gas stations prices []={100,2.10,2.20,2.30,2.40,2.50};//100 is dummy entry for the initic Without doing any calculations, match the following thermodynamic properties with their appropriate numerical sign for the following endothermic reactions:N2(g)+2O2(g)2NO2(g)H2(g)+C2H4(g)C2H6(g)A. HrxnB. SrxnC. GrxnD. SuniverseOptions: > 0; < 0; = 0; > 0 low T, < 0 high T; < 0 low T, > 0 high T Determine whether the following are data mining tasks. Provide explanations in favor of your answers. i) Computing the distance between two given data points ii) Predicting the future price of the stock of a company using historical records iii) Extracting the frequencies of a sound wave iv) Examining the heart rate of a patient to check abnormalities The height of a triangle is 8ft less than the base x. The area is 120ft2. Part: 0/3 Part 1 of 3 (a) Write an equation in tes of x that represents the given relationship. The equation is x and y are unknowns and a,b,c,d,e and f are the coefficients for the simultaneous equations given below: ax+by=cdx+ey=f Write a program which accepts a,b,c,d, e and f coefficients from the user, then finds and displays the solutions x and y. 15) is a really high rate of inflation. ( \( 50 \% \) monthly rate or higher) : A learning approach that combines short, fast-paced, interactive computer-based lessons and teleconferencing with traditional classroom instruction and simulation is called associative learning blended learning cross-training job shadowing Which of the following statements is true of concurrent validity? Concurrent validity is disadvantageous in that it increases the time needed to complete a validation study. Concurrent validity is difficult to assess because employees are not always readily available and cannot take the predictor test immediately. Concurrent validity is measured when an employer tests current employees and correlates the scores with their performance ratings on appraisals. Concurrent validity is measured when applicants' test results are compared with subsequent job performance. Which of the following performance criteria is a qualitative measure of a recruitment process outsourcing firm? Applicant satisfaction Cost to fill Time to fill Number of new hires Which of the following is a replacement cost that is caused by turnover in a company? Accrued vacation expenditures Unemployment expenses Employee referral fees Cost of training materials What is a knot in a tie called? T/F joints and faults are examples deformation; the difference is that faults demonstrate displacement. a(n) citation is an alphabetical list of all books, magazines, websites, movies, and other works that you refer to in your research paper. Identify the correct name for each compound. Please use the periodic table that has been provided for your use. Naoh: caso4: nh4cn: al2(so4)3:. The following set of jobs must be processed serially through a two-step system. The times at each process are in hours. If Johnson's Rule is used to sequence the jobs then Job A would complete processing on operation 2 at Job Process 1 Process 2 A 12 9 B 8 11 C 7 6 D 10 14 E 5 8Select one: A. hour 35. B. hour 47. C. hour 38. D. hour 21. Intercultural competence is concerned with specific relationships and situations USE EXCEL Pls show all work(cell formulas turned on) or download the file link 00000000000000000000000000000000000000000 Make a iteration chart to find the root using generalized-fixed.point-iteration way f(x)=x 4-thirty-one x 3+ three hundred five x 2-one thousand twenty five x+ seven hundred fifty =0 x i=g(x i1)=x i+cf(x i1) Begging with x 1= twenty \& convergence tol =.001 & by error \& trial find c that lets the answer converge to its root THANK YOU the phased-out approach to an antipoverty model encourages wage earners to work more (compared to the guaranteed income model that does not phase out government payments). a) true b) false