Answer: Acceleration of the car at time = 10 sec is 108 [tex]m/s^{2}[/tex] and velocity of the car at time t = 10 sec is 918.34 m/s.
Explanation:
The expression used will be as follows.
[tex]M\frac{dv}{dt} = u\frac{dM}{dt}[/tex]
[tex]\int_{t_{o}}^{t_{f}} \frac{dv}{dt} dt = u\int_{t_{o}}^{t_{f}} \frac{1}{M} \frac{dM}{dt} dt[/tex]
= [tex]u\int_{M_{o}}^{M_{f}} \frac{dM}{M}[/tex]
[tex]v_{f} - v_{o} = u ln \frac{M_{f}}{M_{o}}[/tex]
[tex]v_{o} = 0[/tex]
As, [tex]v_{f} = u ln (\frac{M_{f}}{M_{o}})[/tex]
u = -2900 m/s
[tex]M_{f} = M_{o} - m \times t_{f}[/tex]
= [tex]2500 kg + 1000 kg - 95 kg \times t_{f}s[/tex]
= [tex](3500 - 95t_{f})s[/tex]
[tex]v_{f} = -2900 ln(\frac{3500 - 95 t_{f}}{3500}) m/s[/tex]
Also, we know that
a = [tex]\frac{dv_{f}}{dt_{f}} = \frac{u}{M} \frac{dM}{dt}[/tex]
= [tex]\frac{u}{3500 - 95 t} \times (-95) m/s^{2}[/tex]
= [tex]\frac{95 \times 2900}{3500 - 95t} m/s^{2}[/tex]
At t = 10 sec,
[tex]v_{f}[/tex] = 918.34 m/s
and, a = 108 [tex]m/s^{2}[/tex]
A fox locates rodents under the snow by the slight sounds they make. The fox then leaps straight into the air and burrows its nose into the snow to catch its meal. If a fox jumps up to a height of 85 cm , calculate the speed at which the fox leaves the snow and the amount of time the fox is in the air. Ignore air resistance.
Answer:
v = 4.08m/s₂
Explanation:
A glass flask whose volume is 1000 cm^3 at a temperature of 1.00°C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0°C , a volume of 8.50 cm^3 of mercury overflows the flask.Required:If the coefficient of volume expansion of mercury is βHg = 1.80×10^−4 /K , compute βglass, the coefficient of volume expansion of the glass. Express your answer in inverse kelvins.
Answer:
the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]
Explanation:
Given that:
Initial volume of the glass flask = 1000 cm³ = 10⁻³ m³
temperature of the glass flask and mercury= 1.00° C
After heat is applied ; the final temperature = 52.00° C
Temperature change ΔT = 52.00° C - 1.00° C = 51.00° C
Volume of the mercury overflow = 8.50 cm^3 = 8.50 × 10⁻⁶ m³
the coefficient of volume expansion of mercury is 1.80 × 10⁻⁴ / K
The increase in the volume of the mercury = 10⁻³ m³ × 51.00 × 1.80 × 10⁻⁴
The increase in the volume of the mercury = [tex]9.18*10^{-6} \ m^3[/tex]
Increase in volume of the glass = 10⁻³ × 51.00 × [tex]\beta _{glass}[/tex]
Now; the mercury overflow = Increase in volume of the mercury - increase in the volume of the flask
the mercury overflow = [tex](9.18*10^{-6} - 51.00* \beta_{glass}*10^{-3})\ m^3[/tex]
[tex]8.50*10^{-6} = (9.18*10^{-6} -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]8.50*10^{-6} - 9.18*10^{-6} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]-6.8*10^{-7} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]6.8*10^{-7} = ( 51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]\dfrac{6.8*10^{-7}}{51.00 * 10^{-3}}= ( \beta_{glass} )[/tex]
[tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]
Thus; the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]
A Nearsighted Eye. A certain very nearsighted person cannot focus on anything farther than 36.0 cm from the eye. Consider the simplified model of the eye. In a simplified model of the human eye, the aqueous and vitreous humors and the lens all have a refractive index of 1.40, and all the refraction occurs at the cornea, whose vertex is 2.60 cm from the retina.
Required:
a. If the radius of curvature of the cornea is 0.65 cm when the eye is focusing on an object 36.0 cm from the cornea vertex and the indexes of refraction are as described before, what is the distance from the cornea vertex to the retina?
b. What does this tell you about the shape of the nearsighted eye?
1. This distance is greater than for the normal eye.
2. This distance is shorter than for the normal eye.
Answer:
a) The distance from the cornea vertex to the retina is 2.37 cm
b) This distance is shorter than for the normal eye.
Explanation:
a) Let refractive index of air,
n(air) = x = 1
Let refractive index of lens,
n(lens) = y = 1.4
Object distance, s = 36 cm
Radius of curvature, R = 0.65 cm
The distance from the cornea vertex to the retina is the image distance because image is formed in the retina.
Image distance, s' = ?
(x/s) + (y/s') = (y-x)/R
(1/36) + (1.4/s') = (1.4 - 1)/0.65
1.4/s' = 0.62 - 0.028
1.4/s' = 0.592
s' = 1.4/0.592
s' = 2.37 cm
Distance from the cornea vertex to the retina is 2.37 cm
(b) For a normal eye, the distance between the cornea vertex and the retina is 2.60 cm. Since 2.37 < 2.60, this distance is shorter than for normal eye.
Two guitarists attempt to play the same note of wavelength 6.50 cm at the same time, but one of the instruments is slightly out of tune. Consequently, a 17.0-Hz beat frequency is heard between the two instruments. What were the possible wavelengths of the out-of-tune guitar’s note? Express your answers, separated by commas, in centimeters to three significant figures IN cm.
Answer:
The two value of the wavelength for the out of tune guitar is
[tex]\lambda _2 = (6.48,6.52) \ cm[/tex]
Explanation:
From the question we are told that
The wavelength of the note is [tex]\lambda = 6.50 \ cm = 0.065 \ m[/tex]
The difference in beat frequency is [tex]\Delta f = 17.0 \ Hz[/tex]
Generally the frequency of the note played by the guitar that is in tune is
[tex]f_1 = \frac{v_s}{\lambda}[/tex]
Where [tex]v_s[/tex] is the speed of sound with a constant value [tex]v_s = 343 \ m/s[/tex]
[tex]f_1 = \frac{343}{0.0065}[/tex]
[tex]f_1 = 5276.9 \ Hz[/tex]
The difference in beat is mathematically represented as
[tex]\Delta f = |f_1 - f_2|[/tex]
Where [tex]f_2[/tex] is the frequency of the sound from the out of tune guitar
[tex]f_2 =f_1 \pm \Delta f[/tex]
substituting values
[tex]f_2 =f_1 + \Delta f[/tex]
[tex]f_2 = 5276.9 + 17.0[/tex]
[tex]f_2 = 5293.9 \ Hz[/tex]
The wavelength for this frequency is
[tex]\lambda_2 = \frac{343 }{5293.9}[/tex]
[tex]\lambda_2 = 0.0648 \ m[/tex]
[tex]\lambda_2 = 6.48 \ cm[/tex]
For the second value of the second frequency
[tex]f_2 = f_1 - \Delta f[/tex]
[tex]f_2 = 5276.9 -17[/tex]
[tex]f_2 = 5259.9 Hz[/tex]
The wavelength for this frequency is
[tex]\lambda _2 = \frac{343}{5259.9}[/tex]
[tex]\lambda _2 = 0.0652 \ m[/tex]
[tex]\lambda _2 = 6.52 \ cm[/tex]
This question involves the concepts of beat frequency and wavelength.
The possible wavelengths of the out-of-tune guitar are "6.48 cm" and "6.52 cm".
The beat frequency is given by the following formula:
[tex]f_b=|f_1-f_2|\\\\[/tex]
f₂ = [tex]f_b[/tex] ± f₁
where,
f₂ = frequency of the out-of-tune guitar = ?
[tex]f_b[/tex] = beat frequency = 17 Hz
f₁ = frequency of in-tune guitar = [tex]\frac{speed\ of\ sound\ in\ air}{\lambda_1}=\frac{343\ m/s}{0.065\ m}=5276.9\ Hz[/tex]
Therefore,
f₂ = 5276.9 Hz ± 17 HZ
f₂ = 5293.9 Hz (OR) 5259.9 Hz
Now, calculating the possible wavelengths:
[tex]\lambda_2=\frac{speed\ of\ sound}{f_2}\\\\\lambda_2 = \frac{343\ m/s}{5293.9\ Hz}\ (OR)\ \frac{343\ m/s}{5259.9\ Hz}\\\\[/tex]
λ₂ = 6.48 cm (OR) 6.52 cm
Learn more about beat frequency here:
https://brainly.com/question/10703578?referrer=searchResults
Three masses are located in the x-y plane as follows: a mass of 6 kg is located at (0 m, 0 m), a mass of 4 kg is located at (3 m, 0 m), and a mass of 2 kg is located at (0 m, 3 m). Where is the center of mass of the system?
A. (1 m, 2 m)
B. (2 m, 1 m)
C. (1 m, 1 m)
D. (1 m, 0.5 m)
E. (0.5 m, 1 m)
D. (1m, 0.5m)
Explanation:
The center of mass (or center of gravity) of a system of particles is the point where the weight acts when the individual particles are replaced by a single particle of equivalent mass. For the three masses, the coordinates of the center of mass C(x, y) is given by;
x = (m₁x₁ + m₂x₂ + m₃x₃) / M ----------------(i)
y = (m₁y₁ + m₂y₂ + m₃y₃) / M ----------------(ii)
Where;
M = sum of the masses
m₁ and x₁ = mass and position of first mass in the x direction.
m₂ and x₂ = mass and position of second mass in the x direction.
m₃ and x₃ = mass and position of third mass in the x direction.
y₁ , y₂ and y₃ = positions of the first, second and third masses respectively in the y direction.
From the question;
m₁ = 6kg
m₂ = 4kg
m₃ = 2kg
x₁ = 0m
x₂ = 3m
x₃ = 0m
y₁ = 0m
y₂ = 0m
y₃ = 3m
M = m₁ + m₂ + m₃ = 6 + 4 + 2 = 12kg
Substitute these values into equations (i) and (ii) as follows;
x = ((6x0) + (4x3) + (2x0)) / 12
x = 12 / 12
x = 1 m
y = (6x0) + (4x0) + (2x3)) / 12
y = 6 / 12
y = 0.5m
Therefore, the center of mass of the system is at (1m, 0.5m)
One kind of baseball pitching machine works by rotating a light and stiff rigid rod about a horizontal axis until the ball is moving toward the target. Suppose a 144 g baseball is held 82 cm from the axis of rotation and released at the major league pitching speed of 87 mph.
Required:
a. What is the ball's centripetal acceleration just before it is released?
b. What is the magnitude of the net force that is acting on the ball just before it is released?
Answer:
a. ac = 1844.66 m/s²
b. Fc = 265.63 N
Explanation:
a.
The centripetal acceleration of the ball is given as follows:
ac = v²/r
where,
ac = centripetal acceleration = ?
v = speed of ball = (87 mph)(1 h/ 3600 s)(1609.34 m / 1 mile) = 38.9 m/s
r = radius of path = 82 cm = 0.82 m
Therefore,
ac = (38.9 m/s)²/0.82 m
ac = 1844.66 m/s²
b.
The centripetal force is given as:
Fc = (m)(ac)
Fc = (0.144 kg)(1844.66 m/s²)
Fc = 265.63 N
A charged particle q moves at constant velocity through a crossed electric and magnetic fields (E and B, which are both constant in magnitude and direction). Write the magnitude of the electric force on the particle in terms of the variables given. Do the same for the magnetic force
Answer:
The magnitude of the electric force on the particle in terms of the variables given is, F = qE
The magnitude of the magnetic force on the particle in terms of the variables given is, F = q (v x B)
Explanation:
Given;
a charged particle, q
magnitude of electric field, E
magnitude of magnetic field, B
The magnitude of the electric force on the particle in terms of the variables given;
F = qE
The magnitude of the magnetic force on the particle in terms of the variables given;
F = q (v x B)
where;
v is the constant velocity of the charged particle
Answer:
The magnitude of the electric force acting on a charged particle moving through an electric field = |qE|
The magnitude of the magnetic force of a charged particle moving at a particular velocity through a magnetic field = |qv × B|
Explanation:
The electric force acting on a charged particle, q, moving through an electric field, E, is given as a product of the charge on the particle (a scalar quantity) and the electric field (a vector quantity).
Electric force = qE
The magnitude of the electric force = |qE|
That is, magnitude of the product of the charge and the electric field vector.
The magnetic force acting on a charged particle, q, moving with a velocity, v, through a magnetic field, B is a vector product of qv [a product of the charge of the particle (a scalar quantity) and the velocity of the particle (a vector quantity)] and B (a vector quantity).
It is given mathematically as (qv × B)
The magnitude of the magnetic force is the magnitude of the vector product obtained.
Magnitude of the magnetic force = |qv × B|
Hope this Helps!!!
A brass ring of diameter 10.00 cm at 19.0°C is heated and slipped over an aluminum rod with a diameter of 10.01 cm at 19.0°C. Assuming the average coefficients of linear expansion are constant. What if the aluminum rod were 10.02 cm in diameter?
Answer:
the final temperature is [tex]\mathbf{T_f = -377.2^0 C}[/tex]
Explanation:
The change in length of a bar can be expressed with the relation;
[tex]\Delta L = L_f - L_i[/tex] ---- (1)
Also ; the relative or fractional increase in length is proportional to the change in temperature.
Mathematically;
ΔL/L_i ∝ kΔT
where;
k is replaced with ∝ (the proportionality constant )
[tex]\dfrac{ \Delta L}{L_i}=\alpha \Delta T[/tex] ---- (2)
From (1) ;
[tex]L_f = \Delta L + L_i[/tex] --- (3)
from (2)
[tex]{ \Delta L}=\alpha \Delta T*{L_i}[/tex] ---- (4)
replacing (4) into (3);we have;
[tex]L_f =(\alpha \Delta T*{L_i} ) + L_i[/tex]
On re-arrangement; we have
[tex]L_f = L_i + \alpha L_i (\Delta T )[/tex]
from the given question; we can say that :
[tex](L_f)_{brass}}} = (L_f)_{Al}[/tex]
So;
[tex]L_{brass} + \alpha _{brass} L_{brass}(\Delta T) = L_{Al} + \alpha _{Al} L_{Al}(\Delta T)[/tex]
Making the change in temperature the subject of the formula; we have:
[tex]\Delta T = \dfrac{L_{Al}-L_{brass}}{\alpha _ {brass} L_{brass}-\alpha _{Al}L_{Al}}[/tex]
where;
[tex]L_{Al}[/tex] = 10.02 cm
[tex]L_{brass}[/tex] = 10.00 cm
[tex]\alpha _{brass}[/tex] = 19 × 10⁻⁶ °C ⁻¹
[tex]\alpha_{Al}[/tex] = 24 × 10⁻⁶ °C ⁻¹
[tex]\Delta T = \dfrac{10.02-10.00}{19*10^{-6} \ \ {^0}C^{-1} *10.00 -24*10^{-6} \ \ {^0}C^{-1} *10.02}[/tex]
[tex]\Delta T[/tex] = −396.1965135 ° C
[tex]\Delta T[/tex] ≅ −396.20 °C
Given that the initial temperature [tex]T_i = 19^0 C[/tex]
Then ;
[tex]\Delta T = T_f - T_i[/tex]
[tex]T_f = \Delta T + T_I[/tex]
Thus;
[tex]T_f =(-396.20 + 19.0)^0 C[/tex]
[tex]\mathbf{T_f = -377.2^0 C}[/tex]
Thus; the final temperature is [tex]\mathbf{T_f = -377.2^0 C}[/tex]
A heavy, 6 m long uniform plank has a mass of 30 kg. It is positioned so that 4 m is supported on the deck of a ship and 2 m sticks out over the water. It is held in place only by its own weight. You have a mass of 70 kg and walk the plank past the edge of the ship. How far past the edge do you get before the plank starts to tip, in m
Answer:
about 1 meter
Explanation:
The distance past the edge that the man will get before the plank starts to tip is; 0.4285 m
We are given;
Mass of plank; m = 30 kg
Length of plank; L = 6m
Mass of man; M = 70 kg
Since the plank has 2 supports which are the deck of the ship, then it means that, we can take moments about the right support before the 2m stick out of the plank.
Thus;
Moment of weight of plank about the right support;
τ_p = mg((L/2) - 2)
τ_p = 30 × 9.8((6/2) - 2)
τ_p = 294 N.m
Moment of weight of man about the right support;
τ_m = Mgx
where x is the distance past the edge the man will get before the plank starts to tip.
τ_m = 70 × 9.8x
τ_m = 686x
Now, moment of the board is counterclockwise while that of the man is clockwise. Thus;
τ_m = τ_p
686x = 294
x = 294/686
x = 0.4285 m
Read more at; https://brainly.com/question/22150651
A 4.5 kg ball swings from a string in a vertical circle such that it has constant sum of kinetic and gravitational potential energy. Ignore any friction forces from the air or in the string. What is the difference in the tension between the lowest and highest points on the circle
Answer:
88.29 N
Explanation:
mass of the ball = 4.5 kg
weight of the ball will be = mass x acceleration due to gravity(9.81 m/s^2)
weight W = 4.5 x 9.81 = 44.145 N
centrifugal forces Tc act on the ball as it swings.
At the top point of the vertical swing,
Tension on the rope = Tc - W.
At the bottom point of the vertical swing,
Tension on the rope = Tc + W
therefore,
difference in tension between these two points will be;
Net tension = tension at bottom minus tension at the top
= Tc + W - (Tc - W) = Tc + W -Tc + W
= 2W
imputing the value of the weight W, we have
2W = 2 x 44.145 = 88.29 N
A box on a ramp is connected by a rope to a winch. The winch is turned so that the box moves down the ramp at a constant speed. The box experiences kinetic friction with the ramp. Which forces on the box do zero work as the box moves down the ramp?
a. Weight (gravitational force)
b. Normal force
c. Kinetic friction force
d. Tension force
e. None
Answer:
Option B:
The normal force
Explanation:
The normal force does no work as the box slides down the ramp.
Work can only be done when the force succeeds in moving the object in the direction of the force.
All the other forces involved have a component that is moving the box in their direction.
However, the normal force does not, as it points downwards into the ramp. Since the normal force is pointing into the ramp, and the box is sliding down the ramp, we can say that no work is being done by the normal force because the box is not moving in its direction (which would have been the box moving into the ramp)
In a device called the ballistic pendulum, a compressed spring is used to launch a steel ball horizontally into a soft target hanging from a string. The ball embeds in the target and the two swing together from the string. Describe the energy transfers and/or transformations that take place during the use of the ballistic pendulum and at what points they occur
Answer:
When the spring in the ballistic pendulum is compressed, energy is stored up in the spring as potential energy. When the steel ball is launched by the spring, the stored up potential energy of the compressed spring is transformed and transferred into the kinetic energy of the steel ball as it flies off to hit its target. On hitting the soft target, some of the kinetic energy of the steel ball is transferred to the soft target (since they stick together), and they both start to swing together. During the process of swinging, the system's energy is transformed between kinetic and potential energy. At the maximum displacement of the ball from its point of rest, all the energy is converted to potential energy of the system. At the lowest point of travel (at the rest point), all the energy of the system is transformed into kinetic energy. In between these two points, energy the energy of the system is a combination of both kinetic and potential energy.
In the end, all the energy will be transformed and lost as heat to the surrounding; due to the air resistance around; bringing the system to a halt.
Potential difference of a battery is 2.2 V when it is connected
across a resistance of 5 ohm, if suddenly the potential difference
falls to 1.8V, its internal resistance will be
Answer:
1.1ohms
Explanation:
According to ohms law E = IR
If potential difference of a battery is 2.2 V when it is connected across a resistance of 5 ohm and if suddenly the voltage Falls to 1.8V then the current in the 5ohms resistor I = V/R = 1.8/5
I = 0.36A (This will be the load current).
Before we can calculate the value of the internal resistance, we need to know the voltage drop across the internal resistance.
Voltage drop = 2.2V - 1.8V = 0.4V
Then we calculate the internal resistance using ohms law.
According to the law, V = Ir
V= voltage drop
I is the load current
r = internal resistance
0.4 = 0.36r
r = 0.4/0.36
r = 1.1 ohms
Two narrow slits, illuminated by light consisting of two distinct wavelengths, produce two overlapping colored interference patterns on a distant screen. The center of the eighth bright fringe in one pattern coincides with the center of the third bright fringe in the other pattern. What is the ratio of the two wavelengths?
Answer:
The ration of the two wavelength is [tex]\frac{\lambda_1}{\lambda_2} = \frac{8}{3}[/tex]
Explanation:
Generally two slit constructive interference can be mathematically represented as
[tex]\frac{y}{L} = \frac{m * \lambda}{d}[/tex]
Where y is the distance between fringe
d is the distance between the two slit
L is the distance between the slit and the wall
m is the order of the fringe
given that y , L , d are constant we have that
[tex]\frac{m }{\lambda } = constant[/tex]
So
[tex]\frac{m_1 }{\lambda_1 } = \frac{m_2 }{\lambda_2 }[/tex]
So [tex]m_1 = 8[/tex]
and [tex]m_2 = 3[/tex]
=> [tex]\frac{m_2}{m_1} = \frac{\lambda_1}{\lambda_2}[/tex]
=> [tex]\frac{8}{3} = \frac{\lambda_1}{\lambda_2}[/tex]
So
[tex]\frac{\lambda_1}{\lambda_2} = \frac{8}{3}[/tex]
A circuit contains two elements, but it is not known if they are L, R, or C. The current in this circuit when connected to a 120-V 60 Hz source is 5.3 A and lags the voltage by 65∘.
Part A. What are the two elements?
Part B. What are their values?
Express your answer using two significant figures
Answer:
the two elements are resistor R and inductor L
answers in two significant figures
R = 9.6Ω
L = 54mH
Explanation:
A man stands on a platform that is rotating (without friction) with an angular speed of 1.2 rev/s; his arms are outstretched and he holds a brick in each hand.The rotational inertia of the system consisting of the man, bricks, and platform about the central vertical axis of the platform is 6.0 k g times m squared. If by moving the bricks the man decreases the rotational inertia of the system to 2.0 k g times m squared, what is the resulting angular speed of the platform in rad/s
Answer:
resulting angular speed = 3.6 rev/s
Explanation:
We are given;
Initial angular speed; ω_i = 1.2 rev/s
Initial moment of inertia;I_i = 6 kg/m²
Final moment of inertia;I_f = 2 kg/m²
From conservation of angular momentum;
Initial angular momentum = Final angular momentum
Thus;
I_i × ω_i = I_f × ω_f
Making ω_f the subject, we have;
ω_f = (I_i × ω_i)/I_f
Plugging in the relevant values;
ω_f = (6 × 1.2)/2
ω_f = 3.6 rev/s
A solenoidal coil with 23 turns of wire is wound tightly around another coil with 310 turns. The inner solenoid is 20.0 cm long and has a diameter of 2.20 cm. At a certain time, the current in the inner solenoid is 0.130 A and is increasing at a rate of 1800 A/s. For this time, calculate:
(a) the average magnetic flux through each turn of the inner solenoid;
(b) the mutual inductance of the two solenoids;
(c) the emf induced in the outer solenoid by the changing current in the inner solenoid.
Answer:
Explanation:
From the given information:
(a)
the average magnetic flux through each turn of the inner solenoid can be calculated by the formula:
[tex]\phi _ 1 = B_1 A[/tex]
[tex]\phi _ 1 = ( \mu_o \dfrac{N_i}{l} i_1)(\pi ( \dfrac{d}{2})^2)[/tex]
[tex]\phi _ 1 = ( 4 \pi *10^{-7} \ T. m/A ) ( \dfrac{310}{20*10^{-2} \ m }) (0.130 \ A) ( \pi ( \dfrac{2.20*10^{-2} \ m }{2})^ 2[/tex]
[tex]\phi_1 = 9.625 * 10^{-8} \ Wb[/tex]
(b)
The mutual inductance of the two solenoids is calculated by the formula:
[tex]M = 23 *\dfrac{9.625*10^{-8} \ Wb}{0.130 \ A}[/tex]
M = [tex]1.703 *10^{-5}[/tex] H
(c)
the emf induced in the outer solenoid by the changing current in the inner solenoid can be calculate by using the formula:
[tex]\varepsilon = -N_o \dfrac{d \phi_1}{dt}[/tex]
[tex]\varepsilon = -M \dfrac{d i_1}{dt}[/tex]
[tex]\varepsilon = -(1.703*10^{-5} \ H) * (1800 \ A/s)[/tex]
[tex]\varepsilon = -0.030654 \ V[/tex]
[tex]\varepsilon = -30.65 \ V[/tex]
In 1949, an automobile manufacturing company introduced a sports car (the "Model A") which could accelerate from 0 to speed v in a time interval of Δt. In order to boost sales, a year later they introduced a more powerful engine (the "Model B") which could accelerate the car from 0 to speed 2.92v in the same time interval. Introducing the new engine did not change the mass of the car. Compare the power of the two cars, if we assume all the energy coming from the engine appears as kinetic energy of the car.
Answer: [tex]\frac{P_B}{P_A}[/tex] = 8.5264
Explanation: Power is the rate of energy transferred per unit of time: P = [tex]\frac{E}{t}[/tex]
The energy from the engine is converted into kinetic energy, which is calculated as: [tex]KE = \frac{1}{2}.m.v^{2}[/tex]
To compare the power of the two cars, first find the Kinetic Energy each one has:
K.E. for Model A
[tex]KE_A = \frac{1}{2}.m.v^{2}[/tex]
K.E. for model B
[tex]KE_B = \frac{1}{2}.m.(2.92v)^{2}[/tex]
[tex]KE_B = \frac{1}{2}.m.8.5264v^{2}[/tex]
Now, determine Power for each model:
Power for model A
[tex]P_{A}[/tex] = [tex]\frac{m.v^{2} }{2.t}[/tex]
Power for model B
[tex]P_B = \frac{m.8.5264.v^{2} }{2.t}[/tex]
Comparing power of model B to power of model A:
[tex]\frac{P_B}{P_A} = \frac{m.8.5264.v^{2} }{2.t}.\frac{2.t}{m.v^{2} }[/tex]
[tex]\frac{P_B}{P_A} =[/tex] 8.5264
Comparing power for each model, power for model B is 8.5264 better than model A.
A swimmer of mass 64.38 kg is initially standing still at one end of a log of mass 237 kg which is floating at rest in water. He runs toward the other end of the log and dives off with a horizontal speed of 3.472 m/s relative to the water. What is the speed of the log relative to water after the swimmer jumps off
Answer:
0.9432 m/s
Explanation:
We are given;
Mass of swimmer;m_s = 64.38 kg
Mass of log; m_l = 237 kg
Velocity of swimmer; v_s = 3.472 m/s
Now, if we consider the first log and the swimmer as our system, then the force between the swimmer and the log and the log and the swimmer are internal forces. Thus, there are no external forces and therefore momentum must be conserved.
So;
Initial momentum = final momentum
m_l × v_l = m_s × v_s
Where v_l is speed of the log relative to water
Making v_l the subject, we have;
v_l = (m_s × v_s)/m_l
Plugging in the relevant values, we have;
v_l = (64.38 × 3.472)/237
v_l = 0.9432 m/s
High voltage power is often carried in wire bundles made up of individual strands. In your initial post to the discussion, discuss the forces on the strands of wire due to the current flowing through them. What would happen if the force acted opposite of the known behavior
Answer:
More current will be loss through the metal wire strands if the force on them was repulsive, and more stress will be induced on the wire strands due to internal and external flexing.
Explanation:
A wire bundle is made up of wire strands bunched together to increase flexibility that is not always possible in a single solid metal wire conductor. In the strands of wire carrying a high voltage power, each strand carries a certain amount of current, and the current through the strands all travel in the same direction. It is know that for two conductors or wire, separated by a certain distance, that carries current flowing through them in the same direction, an attractive force is produced on these wires, one on the other. This effect is due to the magnetic induction of a current carrying conductor. The forces between these strands of the high voltage wire bundle, pulls the wire strands closer, creating more bond between these wire strands and reducing internal flex induced stresses.
If the case was the opposite, and the wires opposed themselves, the effect would be that a lot of cost will be expended in holding these wire strands together. Also, stress within the strands due to the repulsion, will couple with external stress from the flexing of the wire, resulting in the weakening of the material.
The biggest problem will be that more current will be lost in the wire due to increased surface area caused by the repulsive forces opening spaces between the strand. This loss is a s a result of the 'skin effect' in wire transmission, in which current tends to flow close to the surface of the metal wire. The skin effect generates power loss as heat through the exposed surface area.
The barricade at the end of a subway line has a large spring designed to compress 2.00 m when stopping a 1.10 ✕ 105 kg train moving at 0.350 m/s. (a) What is the force constant (in N/m) of the spring? N/m (b) What speed (in m/s) would the train be going if it only compressed the spring 0.600 m? m/s (c) What force (in N) does the spring exert when compressed 0.600 m? 2020 N (in the direction opposite to the train's motion)
Answer:
(a) k = 1684.38 N/m = 1.684 KN/m
(b) Vi = 0.105 m/s
(c) F = 1010.62 N = 1.01 KN
Explanation:
(a)
First, we find the deceleration of the car. For that purpose we use 3rd equation of motion:
2as = Vf² - Vi²
a = (Vf² - Vi²)/2s
where,
a = deceleration = ?
Vf = final velocity = 0 m/s (since, train finally stops)
Vi = Initial Velocity = 0.35 m/s
s = distance covered by train before stopping = 2 m
Therefore,
a = [(0 m/s)² - (0.35 m/s)²]/(2)(2 m)
a = 0.0306 m/s²
Now, we calculate the force applied on spring by train:
F = ma
F = (1.1 x 10⁵ kg)(0.0306 m/s²)
F = 3368.75 N
Now, for force constant, we use Hooke's Law:
F = kΔx
where,
k = Force Constant = ?
Δx = Compression = 2 m
Therefore.
3368.75 N = k(2 m)
k = (3368.75 N)/(2 m)
k = 1684.38 N/m = 1.684 KN/m
(c)
Applying Hooke's Law with:
Δx = 0.6 m
F = (1684.38 N/m)(0.6 m)
F = 1010.62 N = 1.01 KN
(b)
Now, the acceleration required for this force is:
F = ma
1010.62 N = (1.1 kg)a
a = 1010.62 N/1.1 x 10⁵ kg
a = 0.0092 m/s²
Now, we find initial velocity of train by using 3rd equation of motion:
2as = Vf² - Vi²
a = (Vf² - Vi²)/2s
where,
a = deceleration = -0.0092 m/s² (negative sign due to deceleration)
Vf = final velocity = 0 m/s (since, train finally stops)
Vi = Initial Velocity = ?
s = distance covered by train before stopping = 0.6 m
Therefore,
-0.0092 m/s² = [(0 m/s)² - Vi²]/(2)(0.6 m)
Vi = √(0.0092 m/s²)(1.2 m)
Vi = 0.105 m/s
A block slides down a ramp with friction. The friction experienced by the block is 21 N. The mass of the block is 8 kg. The ramp is 6 meters long (meaning, the block slides across 6 meters of ramp with friction). The block is originally 2 meters vertically above the ground (the bottom of the ramp). What is the change in energy of the block due to friction, expressed in Joules
Complete Question
The complete question is shown on the first uploaded image
Answer:
the change in energy of the block due to friction is [tex]E = -126 \ J[/tex]
Explanation:
From the question we are told that
The frictional force is [tex]F_f = 21 \ N[/tex]
The mass of the block is [tex]m_b = 8 \ kg[/tex]
The length of the ramp is [tex]l = 6 \ m[/tex]
The height of the block is [tex]h = 2 \ m[/tex]
The change in energy of the block due to friction is mathematically represented as
[tex]\Delta E = - F_s * l[/tex]
The negative sign is to show that the frictional force is acting against the direction of the block movement
Now substituting values
[tex]\Delta E = -(21)* 6[/tex]
[tex]\Delta E = -126 \ J[/tex]
Two metal spheres are hanging from nylon threads. When you bring the spheres close to each other, they tend to attract. Based on this information alone, discuss all the possible ways that the spheres could be charged. Is it possible that after the spheres touch, they will cling together? Explain.
Explanation:
In the given question, the two metal spheres were hanged with the nylon thread.
When these two spheres were brought close together, they attracted each other. The attraction between these spheres is the result of the opposite charges between them.
The possible ways by which these two metal spheres can be charged are by induction that is touching the metal or by rubbing them.
During induction, the same charges are transferred to each sphere. In this case, either both the spheres will be negatively charged or positively charged.
It is not possible that after the sphere touch each other they will cling together because the same charge repels each other and during touching, if one sphere is neutral, then the charged one will transfer the same charge. And as we know that same charge repel each other therefore they will repel each other.
13. Under what condition (if any) does a moving body experience no energy even though there
is a net force acting on it?
(2 marks)
Answer:
When the Net Forces are equal to 0
Explanation:
Momentum of a body can be defined as product of mass and velocity. It is in the same direction as in velocity. When the momentum of a body doesn't change, it is said to be conserved. If the momentum of a body is constant, the the net forces acting on a body becomes zero. When net forces acting on a body is zero, it means that no kinetic energy is being lost or gained, hence the kinetic energy is also conserved. If no energy is being gained or lost, it means that the body will experience no energy.
The robot HooRU is lost in space, floating around aimlessly, and radiates heat into the depths of the cosmos at the rate of 13.1 W. HooRU's surface area is 1.55 m2 and the emissivity of its surface is 0.287. Ignoring the radiation that HooRU absorbs from the cold universe, what is HooRU's temperature T?
Answer:
The temperature is [tex]T = 168.44 \ K[/tex]
Explanation:
From the question ewe are told that
The rate of heat transferred is [tex]P = 13.1 \ W[/tex]
The surface area is [tex]A = 1.55 \ m^2[/tex]
The emissivity of its surface is [tex]e = 0.287[/tex]
Generally, the rate of heat transfer is mathematically represented as
[tex]H = A e \sigma T^{4}[/tex]
=> [tex]T = \sqrt[4]{\frac{P}{e* \sigma } }[/tex]
where [tex]\sigma[/tex] is the Boltzmann constant with value [tex]\sigma = 5.67*10^{-8} \ W\cdot m^{-2} \cdot K^{-4}.[/tex]
substituting value
[tex]T = \sqrt[4]{\frac{13.1}{ 0.287* 5.67 *10^{-8} } }[/tex]
[tex]T = 168.44 \ K[/tex]
The Sun's energy comes from which nuclear reaction?
A. Nuclear fission
B. Gamma decay
C. Positron emission
D. Nuclear fusion
SUBMIT
Sun's energy comes from the nuclear fusion taking place inside. In nuclear fusion two light nuclei fuses together to form a heavy nuclei with the release of greater amount of energy.
What is nuclear fusion :Nuclear fusion is the process of combining two light nuclei to form a heavy nuclei. In this nuclear process, tremendous energy is released. This is the source of heat and light in stars.
On the other hand, nuclear fission is the process of breaking of a heavy nuclei into two lighter nuclei. Fission also produces massive energy. But in comparison, more energy is produced by nuclear fusion.
Nuclear fission is used in nuclear power generators. The light energy and heat energy comes form the nuclear fusion of hydrogens to form helium nuclei. Hence, option D is correct.
Find more on nuclear fusion:
https://brainly.com/question/12701636
#SPJ2
a wall, a 55.6 kg painter is standing on a 3.15 m long homogeneous board that is resting on two saw horses. The board’s mass is 14.5 kg. The saw horse on the right is 1.00 m from the right. How far away can the painter walk from the saw horse on the right until the board begins to tip?
Answer:
0.15 m
Explanation:
First calculating the center of mass from the saw horse
[tex]\frac{3.15}{2} -1=0.575 m[/tex]
from the free body diagram we can write
Taking moment about the saw horse
55.9×9.81×y=14.5×0.575×9.81
y= 0.15 m
So, the painter walk from the saw horse on the right until the board begins to tip is 0.15 m far.
Underline your answer for each situation: If you advance the movie one frame, the knot at point A would be a) in the same place b) higher c) lower d) to the right e) to the left If the person generates a new pulse like the first but more quickly, the pulse would be a) same size b) wider c) narrower If the person generates another pulse like the first but he moves his hand further, the pulse would be a) same size b) taller c) shorter If the person generates another pulse like the first but the rope is tightened, the pulse will move a) at the same rate b) faster c) slower Now the person moves his hand back and forth several times to produce several waves. You freeze the movie and get this snapshot. Underline your answer for each situation: If you advance the movie one frame, the knot at point A would be a) in the same place b) higher c) lower d) to the right e) to the left If you advance the movie one frame, the pattern of the waves will be _________relative to the hand. a) in the same place b) shifted right c) shifted left d) shifted up e) shifted down If the person starts over and moves his hand more quickly, the peaks of the waves will be a) the same distance apart b) further apart c) closer together If you lower the frequency of a wave on a string you will lower its speed. b) increase its wavelength. c). lower its amplitude. d) shorten its period.
Answer:
a) correct answer is b higher , b) correct answer is b higher , c) correct answer is b faster , d) traveling wave , e)
Explanation:
A traveling wave is described by the expression
y = A sin (kx - wt)
where k is the wave vector and w is the angular velocity
let's examine every situation presented
a) a new faster pulse is generated
A faster pulse should have a higher angular velocity
equal speed is related to the period and frequency
w = 2π f = 2π / T
therefore in this case the period must decrease so that the angular velocity increases
the correct answer is c narrower
b) Generate a pulse, but move your hand more.
Moving the hand increases the amplitude (A) of the pulse
the correct answer is b higher
c) generates a pulse but the force is tightened
Set means that more tension force is applied to the string, so the velicate changes
v = √ (T /μ)
the correct answer is b faster
d) move your hand back and forth
in this case you would see a pulse series whose sum corresponds to a traveling wave
e) Advance a frame the movie
in this case the wave will be displaced a whole period to the right
the correct answer is b
f) move your hand faster
the waves will have a maximum fast, so they are closer
answer C
g) decrease wave frequency
Since the speed of the wave is a constant m ak, decreasing the frequency must increase the wavelength to keep the velocity constant.
the correct answer is b increases its wavelength
Two small pith balls, each of mass m = 14.2 g, are suspended from the ceiling of the physics lab by 0.5 m long fine strings and are not moving. If the angle which each string makes with the vertical is θθ = 29.1°, and the charges on the two balls are equal, what is the magnitude of that charge
Answer:
1.424 μC
Explanation:
I'm assuming here, that the charged ball is suspended by the string. If the string also is deflected by the angle α, then the forces acting on it would be: mg (acting downwards),
tension T (acting along the string - to the pivot point), and
F (electric force – acting along the line connecting the charges).
We then have something like this
x: T•sin α = F,
y: T•cosα = mg.
Dividing the first one by the second one we have
T•sin α/ T•cosα = F/mg, ultimately,
tan α = F/mg.
Since we already know that
q1=q2=q, and
r=2•L•sinα,
k=9•10^9 N•m²/C²
Remember,
F =k•q1•q2/r², if we substitute for r, we have
F = k•q²/(2•L•sinα)².
tan α = F/mg =
= k•q²/(2•L•sinα)² •mg.
q = (2•L•sinα) • √(m•g•tanα/k)=
=(2•0.5•0.486) • √(0.0142•9.8•0.557/9•10^9) =
q = 0.486 • √(8.61•10^-12)
q = 0.486 • 2.93•10^-6
q = 1.424•10^-6 C
q = 1.424 μC.
When mapping the equipotentials on the plates with different electrode configurations you may find that some have significant areas with uniform distribution of the equipotential lines. If the distance between such lines is 0.5 cm, what is the electric field there (in units SI)
Answer:
E = V/5 x10⁻³
Explanation:
if the potential difference is V
then electric field E is given by
E = V/d
d = 0.5cm = 5 x 10⁻³m
E = V/5 x10⁻³