Answer:
The tension in the cord provides by centripetal force
T = Fc
= mv^2/r
= 2kg ( 6)^2/2
=36 N
There is a river in front of you that flows due South at 3.0m/s. You launch a toy boat across the river with the front of the boat pointed due East. When you tested the boat on a still pond, the boat moved at 4.0m/s. Now as it moves to the opposite bank, it travels at some speed relative to you, sitting in your chair. What is this speed
Answer:
5.0 m/sExplanation:
If the river moves towards the south at 3m/s and the both moves towards the east at 4.0m/s, the speed of the boat relative to me will be the resulting displacement of both velocities of the river and that of the boat. This can be gotten using pythagoras theorem.
Let Vr be the relative speed. According to the theorem;
[tex]V_r^2 = V_s^2 + V_e^2\\\\V_r^2 = 3.0^2 + 4.0^2\\\\V_r^2 = 9+16\\\\V_r^2 = \sqrt{25}\\ \\V_r = 5.0m/s[/tex]
Hence this relative speed is 5.0 m/s
Calculate the density of the following material.
1 kg helium with a volume of 5.587 m³
700 kg/m³
5.587 kg/m³
0.179 kg/m³
Answer:
[tex]density \: = \frac{mass}{volume} [/tex]
1 / 5.587 is equal to 0.179 kg/m³
Hope it helps:)
Answer:
The answer is
0.179 kg/m³Explanation:
Density of a substance is given by
[tex]Density \: = \frac{mass}{volume} [/tex]
From the
mass = 1 kg
volume = 5.583 m³
Substitute the values into the above formula
We have
[tex]Density \: = \frac{1 \: kg}{5.583 \: {m}^{3} } [/tex]
We have the final answer as
Density = 0.179 kg/m³Hope this helps you
Positive charge Q is placed on a conducting spherical shell with inner radius R1 and outer radius R2. The electric field at a point r < R1 is:
Answer:
E = 0 r <R₁
Explanation:
If we use Gauss's law
Ф = ∫ E. dA = [tex]q_{int}[/tex] / ε₀
in this case the charge is distributed throughout the spherical shell and as we are asked for the field for a radius smaller than the radius of the spherical shell, therefore, THERE ARE NO CHARGES INSIDE this surface.
Consequently by Gauss's law the electric field is ZERO
E = 0 r <R₁
Determine the value of the current in the solenoid so that the magnetic field at the center of the loop is zero tesla. Justify your answer.
Answer:
I will explain the concept of magnetic field and how it can be calculated.
Explanation:
The formula for magnetic field at the center of a loop is given as
B = μ[tex]_{o}[/tex]I / 2R
where B is the magnetic field
R is the radius of the loop
I is the current
and μ[tex]_{o}[/tex] is the magnetic permeability of free space which is a constant 4π × [tex]10^{-7}[/tex] newtons/ampere²
If the magnetic field at the center of the loop is 0, then μ[tex]_{o}[/tex]I = 0
I = 0 which means there will be no current flow in the loop.
Two wires carry current I1 = 73 A and I2 = 31 A in the opposite directions parallel to the x-axis at y1 = 3 cm and y2 = 13 cm. Where on the y-axis (in cm) is the magnetic field zero?
Answer:
The position on the y-axis where the magnetic field is zero is at y = 10 cm
Explanation:
The magnetic field B due to a long straight wire carrying a current, i at a distance R from the wire is given by
B = μ₀i/2πR
Now, let y be the point where the magnetic fields of both wires are equal.
So, the magnetic field due to wire 1 carrying current i₁ = 73 A is
B₁ = μ₀i₁/2π(y - 3) and
the magnetic field due to wire 2 carrying current i₂ = 31 A is
B₂ = μ₀i₂/2π(13 - y)
At the point where the magnetic field is zero, B₁ = B₂. So,
μ₀i₁/2π(y - 3) = μ₀i₂/2π(13 - y)
cancelling out μ₀ and 2π, we have
i₁/(x - y) = i₂/(13 - y)
cross-multiplying, we have
(13 - y)i₁ = (y - 3)i₂
Substituting the values of i₁ and i₂, we have
(13 - y)73 = (y - 3)31
949 - 73y = 31y - 93
Collecting like terms, we have
949 + 93 = 73y + 31y
1042 = 104y
dividing through by 104, we have
y = 1042/104
y = 10.02 cm
y ≅ 10 cm
So, the position on the y-axis where the magnetic field is zero is at y = 10 cm
Vector has a magnitude of 6.0 m and points 30° north of east. Vector has a magnitude of 4.0 m and points 30° east of north. The resultant vector + is given by
Answer:
The resultant vector is [tex]\vec R = \vec A + \vec B = 7.196\,i + 6.464\,j[/tex].
Explanation:
First, each vector is determined in terms of absolute coordinates:
6-meter vector with direction: 30º north of east.
[tex]\vec A = (6\,m)\cdot (\cos30^{\circ} \,i + \sin 30^{\circ}\,j)[/tex]
[tex]\vec A = 5.196\,i + 3\,j[/tex]
4-meter vector with direction: 30º east of north.
[tex]\vec B = (4\,m)\cdot (\cos 60^{\circ}\,i + \sin 60^{\circ}\,j)[/tex]
[tex]\vec B = 2\,i + 3.464\,j[/tex]
The resultant vector is obtaining by sum of components:
[tex]\vec R = \vec A + \vec B = 7.196\,i + 6.464\,j[/tex]
The resultant vector is [tex]\vec R = \vec A + \vec B = 7.196\,i + 6.464\,j[/tex].
how much is need to lift a load of 100n placed at a distance of 29 cm from fulcrum if effort is applied at 60cm from the fulcrum on opposite side of the load? calculate mechanical advantage and velocity ratio of the lever
Answer:
206.8965517 n
Explanation:
First, we need to see that 60:29 is 2.078965517:1. Then we need to multiply the energy put 29 cm from the fulcrum by 2.078965517, giving us the end result of our answer.
What characteristic makes Biology a science, but not Art History?
Using a process of testing ideas and gathering evidence
o Writing books about the subject
O Having a college degree to study it
Discussing and sharing ideas
Answer:
Using a process of testing ideas and gathering evidence
Explanation:
An elderly sailor is shipwrecked on a desert island but manages to save his eyeglasses. The lens for one eye has a power of 1.28 diopters, and the other lens has a power of 8.50 diopters. What is the magnifying power of the telescope he can construct with these lenses
Suppose a 58-turn coil lies in the plane of the page in a uniform magnetic field that is directed into the page. The coil originally has an area of 0.150 m2. It is stretched to have no area in 0.100 s. What is the magnitude (in V) and direction (as seen from above) of the average induced emf if the uniform magnetic field has a strength of 1.10 T? magnitude V direction ---Select--- †\
Answer:
95.7v
Explanation
Using Faraday's law of electromagnetic induction we know that rate of change in magnetic flux will induce EMF in closed loop
So it is given as
E= Ndစ/dt
E= N BA-0/ deta t
Given that
N = 58turns
B = 1.10T
A = 0.150m^²
Deta t= 0.1s
now we have
E = 58(1.10x0.150)/0.1
= 95.7v
Magnetic flux is decreasing, so the direction of the current will be to aid the decreasing flux $decrease= CLOCKWISE
Explanation:
. Two waves that have the same wavelengths and amplitudes are traveling in opposite directions on a string. If each wave has a speed of 10 m/s and there are moments when the string is not moving, what is the wavelength of the waves if the time between each moment that the string is flat is 0.5 s?
Answer:
10m
Explanation:
Since Given frequency f= 1/t
and velocity ν=10 m/s
We know ν=λf
λ= ν/f
= 10/1/0.5
=5m
Since both the waves are similar but moves in opposite direction its total wavelength of the wave will be 10 m
The force of gravity is an inverse square law. This means that, if you double the distance between two large masses, the gravitational force between them Group of answer choices weakens by a factor of 4. strengthens by a factor of 4. weakens by a factor of 2. also doubles. is unaffected.
Answer:
the force decreases by a factor of 4
Explanation:
The expression for the law of universal gravitation is
F = [tex]G \frac{m_1m_2}{r^2}[/tex]
let's call the force Fo for the distance r
F₀ = [tex]G \frac{m_1m_2}{r^2}[/tex]
They indicate that the distance doubles
r ’= 2 r
we substitute
F = [tex]G \frac{m_1m_2}{(r')^2}[/tex]
F = [tex]G \frac{m_1m_2}{r^2} \ \frac{1}{4}[/tex]
F = ¼ F₀
consequently the correct answer is that the force decreases by a factor of 4
If the distance between two large masses are doubled, the gravitational force between them weakens by a factor of 4.
Let the initial force be F
Let the initial distance apart be r
Thus, we can obtain the final force as follow:
Initial force (F₁) = F
Initial distance apart (r₁) = r
Final distance apart (r₂) = 2r
Final force (F₂) =?F = GM₁M₂ / r²
Fr² = GM₁M₂ (constant)
Thus,
F₁r₁² = F₂r₂²
Fr² = F₂(2r)²
Fr² = F₂4r²
Divide both side by 4r²
F₂ = Fr² /4r²
F₂ = F / 4From the illustration above, we can see that when the distance (r) is doubled, the force (F) is decreased (i.e weakens) by a factor of 4
Learn more: https://brainly.com/question/975812
A charge of uniform density (0.74 nC/m) is distributed along the x axis from the origin to the point x = 10 cm. What is the electric potential (relative to zero at infinity) at a point, x = 23 cm, on the x axis? Hint: Use Calculus to solve this problem.
Answer:
V = - 3.85 V
Explanation:
The electric potential of a continuous charge distribution is
V = k ∫ dq / r
to find charge differential let's use the concept of linear density
λ = dq / dx
dq = λ dx
the distance from a load element to the point of interest
x₀ = 23 cm = 0.23 m
r = √ (x-x₀)² = x - x₀
we substitute
v = k ∫ λ dx / (x-x₀)
we integrate and evaluate between x = 0 and x = l = 0.10 cm
V = k λ [ln (x-x₀) - ln (-x₀)]
V = k λ ln ((x-x₀) / x₀)
let's calculate
V = 9 10⁹ 0.74 10⁻⁹ ln ((0.23 - 0.10) / 0.23)
V = - 3.85 V
Mary had 21 plants when she went on vacation. When she got back , she only had 14 left alive. What is the percent of decrease in the number of plants?
Explanation:
Mary had 21 plants when she went on vacation.
When she got back, she only had 14 left alive.
We need to find the percent decrease in the number of plants.
Decrease in plants = 21 - 14 = 7
Percent decrease is given by :
[tex]\%=\dfrac{7}{21}\times 100\\\\\%=33.33\%[/tex]
So, there is 33% pf decrease in the number of plants.
A bungee cord with a spring constant of 800 StartFraction N over m EndFraction stretches 6 meters at its greatest displacement. How much elastic potential energy does the bungee cord have? The bungee cord has J of elastic potential energy.
Explanation:
EE = ½ kx²
EE = ½ (800 N/m) (6 m)²
EE = 14,400 J
Answer:
14,400 J
Explanation:
Its the answer
Light of wavelength 550 nm is incident on a slit having a width of 0.200 mm. The viewing screen is 1.90 m from the slit. Find the width of the central bright fringe
Answer:
The width of Center bright fringe is 10.2mm
Explanation:
Given that if
Y/ L << 1 then
Sin theta will be approx Y/L
So sin theta approx Y/L = lamda/a
Y= a x lambda/a
By substituting
1.9x 10^ -3m x 550*10^-9/ 0.2 x 10^-3m
= 5.2mm
But
Change in y = 2y = 10.4mm
A solenoid is designed to produce a magnetic field of 3.50×10^−2 T at its center. It has a radius of 1.80 cm and a length of 46.0 cm , and the wire can carry a maximum current of 13.0 A.
Required:
a. What minimum number of turns per unit length must the solenoid have?
b. What total length of wire is required?
Answer:
a. 2143 turns/m
b. 111.5 m
Explanation:
a. The minimum number of turns per unit length (N/L) can be found using the following equation:
[tex] B = \frac{\mu_{0}NI}{L} [/tex]
[tex] \frac{N}{L} = \frac{B}{\mu_{0}I} = \frac{3.50 \cdot 10^{-2} T}{4\pi \cdot 10^{-7} Tm/A*13.0 A} = 2143 turns/m [/tex]
Hence, the minimum number of turns per unit length is 2143 turns/m.
b. The total length of wire is the following:
[tex] N = 2143 turns/m*L = 2143 turns/m*46.0 \cdot 10^{-2} m = 986 turns [/tex]
Since each turn has length 2πr of wire, the total length is:
[tex] L_{T} = N*2\pi r = 986 turn*2*\pi*1.80 \cdot 10^{-2} m = 111.5 m [/tex]
Therefore, the total length of wire required is 111.5 m.
I hope it helps you!
Light passes through a single slit. If the width of the slit is reduced, what happens to the width of the central bright fringe
Explanation:
In Single Slit Experiment:
The width of the central diffraction maximum is inversely proportional to the width of the slit.
Therefore, if we make the slit width smaller, the angle T(representing the angle between the wave ray to a point on the screen and the normal line between the slit and the screen) increases, giving a wider central band.
Vector a has a magnitude of 8 and makes an angle of 45 with positive x axis vector B has also the same magnitude of 8 units and direction along the
Answer:
prove that Sin^6 ϴ-cos^6ϴ=(2Sin^2ϴ-1)(cos^2ϴ+sin^4ϴ)
please sove step by step with language it is opt maths question
A person of 70 kg standing on an un-deformable horizontal surface. She bends her knees and jumps up from rest, achieving a launching speed of 1.7 m/s. The launching process lasts 0.1 second. Calculate the average force exerted by the surface on the person during the launch.
Answer:
1190 N
Explanation:
Force: This can be defined as the product of mass and velocity. The unit of force is Newton(N).
From the question,
F = ma................. Equation 1
Where F = average force, m = mass, a = acceleration.
But,
a = (v-u)/t................ Equation 2
Where v = final velocity, u = initial velocity, t = time.
Substitute equation 2 into equation 1
F = m(v-u)/t.............. Equation 3
Given: m = 70 kg, v = 1.7 m/s, u = 0 m/s (from rest), t = 0.1 s.
Substitute into equation 3
F = 70(1.7-0)/0.1
F = 1190 N.
An electron and a proton both moving at nonrelativistic speeds have the same de Broglie wavelength. Which of the following are also the same for the two particles?
(A) speed
(B) kinetic energy
(C) frequency
(D) momentum
Explanation:
The De-Broglie wavelength is given by :
[tex]\lambda=\dfrac{h}{p}[/tex]
h is Planck's constant
p is momentum
In this case, an electron and a proton both moving at nonrelativistic speeds have the same de Broglie wavelength. Mass of electron and proton is different. It means their velocity and energy are different.
Only momentum is the factor that remains same for both particles i.e. momentum.
A string is stretched and fixed at both ends, 200 cm apart. If the density of the string is 0.015 g/cm, and its tension is 600 N, what is the fundamental frequency
Answer:
f₀ = 158.12 HertzExplanation:
The fundamental frequency of the string f₀ is expressed as f₀ = V/4L where V is the speed experienced by the string.
[tex]V = \sqrt{\frac{T}{\mu} }[/tex] where T is the tension in the string and [tex]\mu[/tex] is the density of the string
Given T = 600N and [tex]\mu[/tex] = 0.015 g/cm = 0.0015kg/m
[tex]V = \sqrt{\frac{600}{0.0015} }\\ \\V = \sqrt{400,000}\\ \\V = 632.46m/s[/tex]
The next is to get the length L of the string. Since the string is stretched and fixed at both ends, 200 cm apart, then the length of the string in metres is 2m.
L = 2m
Substituting the derived values into the formula f₀ = V/2L
f₀ = 632.46/2(2)
f₀ = 632.46/4
f₀ = 158.12 Hertz
Hence the fundamental frequency of the string is 158.12 Hertz
Which columns are mislabeled?
Answer:
first order date and most recent order date
Explanation:
it was switched. column 5 should be most recent order date because it's 2020 while column 6 should be first order date because it was in 2019
In a double‑slit interference experiment, the wavelength is lambda=487 nm , the slit separation is d=0.200 mm , and the screen is D=48.0 cm away from the slits. What is the linear distance Δx between the eighth order maximum and the fourth order maximum on the screen?
Answer:
Δx = 4.68 x 10⁻³ m = 4.68 mm
Explanation:
The distance between the consecutive maxima, in Young's Double Slit Experiment is given bu the following formula:
Δx = λD/d
So, the distance between the eighth order maximum and the fourth order maximum on the screen will be given as:
Δx = 4λD/d
where,
Δx = distance between eighth order maximum and fourth order maximum=?
λ = wavelength = 487 nm = 4.87 x 10⁻⁷ m
d = slit separation = 0.2 mm = 2 x 10⁻⁴ m
D = Distance between slits and screen = 48 cm = 0.48 m
Therefore,
Δx = (4)(4.87 x 10⁻⁷ m)(0.48 m)/(2 x 10⁻⁴ m)
Δx = 4.68 x 10⁻³ m = 4.68 mm
Exercise 2.4.5: Suppose we add possible friction to Exercise 2.4.4. Further, suppose you do not know the spring constant, but you have two reference weights 1 kg and 2 kg to calibrate your setup. You put each in motion on your spring and measure the frequency. For the 1 kg weight you measured 1.1 Hz, for the 2 kg weight you measured 0.8 Hz. a) Find k (spring constant) and c (damping constant). Find a formula for the mass in terms of the frequency in Hz. Note that there may be more than one possible mass for a given frequency. b) For an unknown object you measured 0.2 Hz, what is the mass of the object? Suppose that you know that the mass of the unknown object is more than a kilogram.
Answer:
a) k = 95.54 N / m, c = 19.55 , b) m₃ = 0.9078 kg
Explanation:
In a simple harmonic movement with friction, we can assume that this is provided by the speed
fr = -c v
when solving the system the angular value remains
w² = w₀² + (c / 2m)²
They give two conditions
1) m₁ = 1 kg
f₁ = 1.1 Hz
the angular velocity is related to frequency
w = 2π f₁
Let's find the angular velocity without friction is
w₂ = k / m₁
we substitute
(2π f₁)² = k / m₁ + (c / 2m₁)²
2) m₂ = 2 kg
f₂ = 0.8 Hz
(2π f₂)² = k / m₂ + (c / 2m₂)²
we have a system of two equations with two unknowns, so we can solve it
we solve (c / 2m)² is we equalize the expression
(2π f₁)² - k / m₁ = (2π f₂²) 2 - k / m₁
k (1 / m₂ - 1 / m₁) = 4π² (f₂² - f₁²)
k = 4π² (f₂² -f₁²) / (1 / m₂ - 1 / m₁)
a) Let's calculate
k = 4 π² (0.8² -1.1²) / (½ -1/1)
k = 39.4784 (1.21) / (-0.5)
k = 95.54 N / m
now we can find the constant of friction
(2π f₁) 2 = k / m₁ + (c / 2m₁)²
c2 = ((2π f₁)² - k / m₁) 4m₁²
c2 = (4ππ² f₁² - k / m₁) 4 m₁²
let's calculate
c² = (4π² 1,1² - 95,54 / 1) 4 1²
c² = (47.768885 - 95.54) 8
c² = -382.1689
c = 19.55
b) f₃ = 0.2 Hz
m₃ =?
(2πf₃)² = k / m₃ + (c / 2m₃) 2
we substitute the values
(4π² 0.2²) = 95.54 / m₃ + 382.1689 2/4 m₃²
1.579 = 95.54 / m₃ + 95.542225 / m₃²
let's call
x = 1 / m₃
x² = 1 / m₃²
- 1.579 + 95.54 x + 95.542225 x² = 0
60.5080 x² + 60.5080 x -1 = 0
x² + x - 1.65 10⁻² = 0
x = [1 ±√ (1- 4 (-1.65 10⁻²)] / 2
x = [1 ± 1.03] / 2
x₁ = 1.015 kg
x₂ = -0.015 kg
Since the mass must be positive we eliminate the second results
x₁ = 1 / m₃
m₃ = 1 / x₁
m₃ = 1 / 1.1015
Find the rms current delivered by the power supply when the frequency is very large. Answer in units of A.
Answer:
The rms current is 0.3112 A.
Explanation:
Given that,
Suppose, The capacitance is 170 μF and the inductance is 2.94 mH. The resistance in the top branch is 278 Ohms, and in the bottom branch is 151 Ohms. The potential of the power supply is 47 V .
We know that,
When the frequency is very large then the capacitance can be treated as a short circuit and inductance as open circuit.
So,
We need to calculate the rms current
Using formula of current
[tex]I=\dfrac{V}{R}[/tex]
Where, V = voltage
R = resistance
Put the value into the formula
[tex]I=\dfrac{47}{151}[/tex]
[tex]I= 0.3112 \ A[/tex]
Hence, The rms current is 0.3112 A.
A third wire of the same material has the same length and twice the diameter as the first. How far will it be stretched by the same force
Complete question is;
A force stretches a wire by 0.60 mm. A second wire of the same material has the same cross section and twice the length.
a) How far will it be stretched by the same force?
b) A third wire of the same material has the same length and twice the diameter as the first. How far will it be stretched by the same force?
Answer:
0.15 mm
Explanation:
According to Hooke's Law,
E = Stress(σ)/Strain(ε)
Where E is youngs modulus
Formula for stress is;
Stress(σ) = Force(F)/Area(A)
Formula for strain is;
Strain(ε) = Change in length/original length = (Lf - Li)/Li
We are also told that a second wire of the same material has the same cross section and twice the length.
Thus;
Rearranging Hooke's Law to get the constants on one side, we have;
F/(AE) = ε
Thus from the conditions given;
ε1 = 0.6/Li
ε2 = (Change in length)/(2*Li)
And ε1 = ε2
Thus;
0.6/Li = Change in length/(2*Li)
Li will cancel out and we now have;
Change in length = 2 × 0.6 = 1.2 mm
Finally, we are told A third wire of the same material has the same length and twice the diameter as the first.
Area of a circle;A1 = πd²/4
Now, we are told d is doubled.
Thus, new area of the new circle is;
A2 = π(2d)²/4 = πd²
Rearranging Hooke's Law,we have;
F/A = εE
Since F and E are now constants, we have;
F/E = constant = Aε
Thus;
A1(ε1) = A2(ε2)
A1 = πd²/4
e1 = 0.60/Li
A2 = πd²
e2 = Change in length/Li
Thus;
((πd²/4) × 0.6)/Li = (πd² × Change in length)/ Li
Rearranging, Li and πd² will cancel out to give;
0.6/4 = Change in length
Change in length = 0.15 mm
A charged particle enters a magnetic field with an angle theta If theta equals 90 degrees what bath it will follow - If theta larger than zero and less than 90 degrees what path will it follow?
Given that,
A charged particle enters a magnetic field with an angle theta .
If [tex]\theta=90^{\circ}[/tex]
We know that,
If the angle is 90° then the charged particle enters perpendicular to the B.
B is magnetic field.
The charged particle will be follow of the circular path.
If the angle is greater than 0 and less than 90° then the charged particle will be show the helical path.
Hence, This is required answer.
In the Bohr model of the hydrogen atom, an electron in the 3rd excited state moves at a speed of 2.43 105 m/s in a circular path of radius 4.76 10-10 m. What is the effective current associated with this orbiting electron
Answer:
Current =,charge / time
Charge = e = 1.6E-19 coulombs
t = T time for 1 revolution (period)
v = S / T = distance traveled in 1 revolution / time for 1 revolution
T = S / v = 2 pi * 4.76E-10 / 2.43E5 = 1.23E-14
I = Q / T = 1.6E-19 / 1.23E-14 = 1.30E-5
A plastic balloon that has been rubbed with wool will stick to a wall.
a. Can you conclude that the wall is charged? If not, why not? If so, where does the charge come from?
b. Draw a series of charge diagrams showing how the balloon is held to the wall.
Answer:
Explanation:
When plastic balloon is rubbed with wool , charges are created on both balloon and silk in equal amount . Rubber balloon will acquire negative charge and silk will acquire positive charge .
Now when balloon is brought near a wall , there is induction of charge on the wall due to charge on the balloon . On the near surface of wall positive charge is produced and on the surface deep inside the wall negative charge is produced . The charge deep inside goes inside the earth but the positive charge near the surface of wall can not escape . It remains trapped by negative charge on the balloon .
hence there is mutual attraction between balloon and surface of wall is just like attraction between opposite charges . But once the ballon due to mutual attraction comes in contact with the wall , the charge on balloon and on wall neutralises each other and hence after some time the balloon falls off from the wall on the ground . It does not remain attracted to wall for ever . It happens due to neutralisation of charges on balloon and wall .