A retail store sells two types of shoes, sneakers and sandals. The store owner pays $8 for the sneakers and $14 for the sandals. The sneakers can be sold for $10 and the sandals can be sold for $17. The owner of the store estimates that she won't sell more than 200 shoes each month, and doesn't plan to invest more that $2,000 on inventory of the shoes. Let x= the number of sneakers in stock, and y=the number of sandals in stock. Write an equation to show the profit she will make on sneakers and sandals. P = [answer0]

Answers

Answer 1

Answer:

The equation that shows the profit: P = 2x + 3y

Step-by-step explanation:

The number of sneaker = x

The number of sandals = y

Cost of sneaker = 8 dollars.

Cost of sandals = 14 dollars.

Selling price of sneaker = $10

Selling price of sandals = $17

Total revenue = $10x + $17y

Total cost  = $8x + $14y

Profit (P)  =  Total revenue  - Total cost.

Profit = ($10x + $17y) – ($8x + $14y)

P = 10x +17y – 8x – 14y

P = 2x + 3y


Related Questions

what is the solution for the inequality l2x-6l<4

Answers

Answer:

x < 5 or x > 1

Step-by-step explanation:

2x - 6 < 4

2x < 4 + 6

2x < 10

x < 10/2

x < 5

2x - 6 > - 4

2x > - 4 + 6

2x > 2

x > 2/2

x > 1

An athletics coach states that the distribution of player run times (in seconds) for a 100-meter dash is normally distributed with a mean equal to 13.00 and a standard deviation equal to 0.2 seconds. What percentage of players on the team run the 100-meter dash in 13.36 seconds or faster

Answers

Answer:

96.41% of players on the team run the 100-meter dash in 13.36 seconds or faster

Step-by-step explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question, we have that:

[tex]\mu = 13, \sigma = 0.2[/tex]

What percentage of players on the team run the 100-meter dash in 13.36 seconds or faster

We have to find the pvalue of Z when X = 13.36.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{13.36 - 13}{0.2}[/tex]

[tex]Z = 1.8[/tex]

[tex]Z = 1.8[/tex] has a pvalue of 0.9641

96.41% of players on the team run the 100-meter dash in 13.36 seconds or faster

A courier service company wishes to estimate the proportion of people in various states that will use its services. Suppose the true proportion is 0.050.05. If 212212 are sampled, what is the probability that the sample proportion will differ from the population proportion by less than 0.030.03

Answers

Answer:

95.44% probability that the sample proportion will differ from the population proportion by less than 0.03.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]

In this question:

[tex]p = 0.05, n = 212, \mu = 0.05, s = \sqrt{\frac{0.05*0.95}{212}} = 0.015[/tex]

What is the probability that the sample proportion will differ from the population proportion by less than 0.03?

This is the pvalue of Z when X = 0.03 + 0.05 = 0.08 subtracted by the pvalue of Z when X = 0.05 - 0.03 = 0.02. So

X = 0.08

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{0.08 - 0.05}{0.015}[/tex]

[tex]Z = 2[/tex]

[tex]Z = 2[/tex] has a pvalue of 0.9772

X = 0.02

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{0.02 - 0.05}{0.015}[/tex]

[tex]Z = -2[/tex]

[tex]Z = -2[/tex] has a pvalue of 0.0228

0.9772 - 0.0228 = 0.9544

95.44% probability that the sample proportion will differ from the population proportion by less than 0.03.

Don’t understand this, if anyone can help that would be awesome. :)

Answers

Answer:

look up the basic rules for sin and cos

Step-by-step explanation:

Find the 61st term of the following arithmetic sequence.
15, 24, 33, 42,

Answers

Answer:

The answer is

555

Step-by-step explanation:

For an nth term in an arithmetic sequence

[tex]U(n) = a + (n - 1)d[/tex]

where n is the number of terms

a is the first term

d is the common difference

From the question

a = 15

d = 24 - 15 = 9

n = 61

So the 61st term of the arithmetic sequence is

U(61) = 15 + (61-1)9

= 15 + 9(60)

= 15 + 540

= 555

Hope this helps you.

find the solution set x^2+2x-15=0

Answers

Answer:

x = 3 or x = -5

Step-by-step explanation:

x² + 2x - 15 = 0

Factor left side of equation.

(x - 3)(x + 5) = 0

Set factors equal to 0

x - 3 = 0

x = 3

x + 5 = 0

x = -5

which of the following has a value less than 0?
A.4
B. |4|
C. |-4|
D. -4


Answers

Answer:

D

Step-by-step explanation:

The numbers that are less than 0 are negative. Negative numbers have the "-" sign in front of them so the answer is D.

Answer:

d

Step-by-step explanation:

The other ones will always be positive four

After scoring a touchdown, a football team may elect to attempt a two-point conversion, by running or passing the ball into the end zone. If successful, the team scores two points. For a certain football team, the probability that this play is successful is 0.40.

a.â Let X =1 if successful, X= 0 if not. Find the mean and variance of X.

b.â If the conversion is successful, the team scores 2 points; if not the team scores 0 points. Let Y be the number of points scored. Does Y have a Bernoulli distribution? If so, find the success probability. If not, explain why not.

c.â Find the mean and variance of Y.

Answers

Answer:

a) Mean of X = 0.40

Variance of X = 0.24

b) Y is a Bernoulli's distribution. Check Explanation for reasons.

c) Mean of Y = 0.80 points

Variance of Y = 0.96

Step-by-step explanation:

a) The probability that play is successful is 0.40. Hence, the probability that play isn't successful is then 1 - 0.40 = 0.60.

Random variable X represents when play is successful or not, X = 1 when play is successful and X = 0 when play isn't successful.

The probability mass function of X is then

X | Probability of X

0 | 0.60

1 | 0.40

The mean is given in terms of the expected value, which is expressed as

E(X) = Σ xᵢpᵢ

xᵢ = each variable

pᵢ = probability of each variable

Mean = E(X) = (0 × 0.60) + (1 × 0.40) = 0.40

Variance = Var(X) = Σx²p − μ²

μ = mean = E(X) = 0.40

Σx²p = (0² × 0.60) + (1² × 0.40) = 0.40

Variance = Var(X) = 0.40 - 0.40² = 0.24

b) If the conversion is successful, the team scores 2 points; if not the team scores 0 points. If Y ia the number of points that team scores.Y can take on values of 2 and 0 only.

A Bernoulli distribution is a discrete distribution with only two possible outcomes in which success occurs with probability of p and failure occurs with probability of (1 - p).

Since the probability of a successful conversion and subsequent 2 points is 0.40 and the probability of failure and subsequent 0 point is 0.60, it is evident that Y is a Bernoulli's distribution.

The probability mass function for Y is then

Y | Probability of Y

0 | 0.60

2 | 0.40

c) Mean and Variance of Y

Mean = E(Y)

E(Y) = Σ yᵢpᵢ

yᵢ = each variable

pᵢ = probability of each variable

E(Y) = (0 × 0.60) + (2 × 0.40) = 0.80 points

Variance = Var(Y) = Σy²p − μ²

μ = mean = E(Y) = 0.80

Σy²p = (0² × 0.60) + (2² × 0.40) = 1.60

Variance = Var(Y) = 1.60 - 0.80² = 0.96

Hope this Helps!!!

Rebecca collected data from a random sample of 500 homeowners in her state asking whether or not they use electric heat. Based on the results, she reports that 51% of the homeowners in the nation use electric heat. Why is this statistic misleading?

Answers

Answer:

She makes conclusion about a population that is not well represented by the sample.

Step-by-step explanation:

The conclusion she is making is about a population that is not well represented by her sample: the population is the homeowners in the nation, but the sample is made of homeowners or only her state.

The population about which she can make conclusions with this sample is the homeowners of her state, given that the sampling is done right.

Answer: The sample is biased

About ____% of the area is between z= -2 and z= 2 (or within 2 standard deviations of the mean)

Answers

Answer:

The percentage of area is between Z =-2 and Z=2

P( -2 ≤Z ≤2) = 0.9544 or 95%

Step-by-step explanation:

Explanation:-

Given data Z = -2 and Z =2

The probability that

P( -2 ≤Z ≤2) = P( Z≤2) - P(Z≤-2)

                   = 0.5 + A(2) - ( 0.5 - A(-2))

                  = A (2) + A(-2)

                 = 2 × A(2)     (∵ A(-2) = A(2)

                = 2×0.4772

              = 0.9544

The percentage of area is between Z =-2 and Z=2

P( -2 ≤Z ≤2) = 0.9544 or 95%

Plz help ASAP I’ll give lots of points

Answers

Answer:

8

Step-by-step explanation:

Because it is equal to the 4 side

Given the equation 4x - 3y = 12
1. Write the equation in slope-intercept form.

2. Identify the slope and y-intercept.

3. Graph the line.

4. Identify if it is a positive or negative slope.

Answers

Answer:

see below

Step-by-step explanation:

Slope intercept form is y = mx+b where m is the slope and b is the y intercept

4x - 3y = 12

Solve for y

Subtract 4x from each side

4x-4x - 3y =-4x+ 12

-3y = -4x+12

Divide by -3

-3y/-3 = -4x/-3 + 12/-3

y = 4/3x -4

The slope is 4/3 and the y intercept is -4

The slope is Positive

For the functions f(x)=3x−1 and g(x)=4x−3, find (f∘g)(x) and (g∘f)(x)

Answers

(f°g)(x)=12x-10

(g°f)(x)= 12x-7

Hope this helps

The weight of a chocolate bar is 4.4 ounces, but can vary. Let W be a random variable that represents the weight of a chocolate bar. The probability density function of Wis given below. If the shaded portion of the graph of the continuous probability density function below is 0.42739, what is the probability that a chocolate bar is at least 4 ounces, but no more than 7 ounces?

Answers

Answer:

Ans) 42.7%

Step-by-step explanation:

For a continuous probability distribution, a curve known as probability density function contains information about these probabilities.

in the given range -

The probability that a continuous random variable = equal to the area under the probability density function curve

The probability that the value of a random variable is equal to 'something' is 1.

As per the diagram,

Weight of chocolate bar between 4 ounces and 7 ounces is highlighted in the blue part. That area is said to be 0.42739 and the total area under the curve is 1.

Hence required probability

=0.42739/1=0.42739

Ans) 42.7%

Round to nearest tenth of a percent

The mean height of women in a country (ages 20-29) is 63.5 inches. A random sample of 50 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 inches? Assume the standard deviation equals 2.96.

Answers

Answer:

11.70% probability that the mean height for the sample is greater than 64 inches

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question:

[tex]\mu = 63.5, \sigma = 2.96, n = 50, s = \frac{2.96}{\sqrt{50}} = 0.4186[/tex]

What is the probability that the mean height for the sample is greater than 64 inches?

This is 1 subtracted by the pvalue of Z when X = 64.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{64 - 63.5}{0.4186}[/tex]

[tex]Z = 1.19[/tex]

[tex]Z = 1.19[/tex] has a pvalue of 0.8830

1 - 0.8830 = 0.1170

11.70% probability that the mean height for the sample is greater than 64 inches

Will give brainliest answer

Answers

Answer:

[tex]153.86 \: {units}^{2} [/tex]

Step-by-step explanation:

[tex]area = \pi {r}^{2} \\ = 3.14 \times 7 \times 7 \\ = 3.14 \times 49 \\ = 153.86 \: {units}^{2} [/tex]

Answer:

153.86 [tex]units^{2}[/tex]

Step-by-step explanation:

Areaof a circle = πr^2

[tex]\pi = 3.14[/tex](in this case)

[tex]r^{2} =7[/tex]

A = πr^2

= 49(3.14)

= 153.86

You are interested in purchasing a new car. One of the many points you wish to consider is the resale value of the car after 5 years. Since you are particularly interested in a certain foreign​ sedan, you decide to estimate the resale value of this car with a 95​% confidence interval. You manage to obtain data on 17 recently resold​ 5-year-old foreign sedans of the same model. These 17 cars were resold at an average price of $ 12 comma 100 with a standard deviation of $ 800. What is the 95​% confidence interval for the true mean resale value of a​ 5-year-old car of this​ model?

Answers

Answer:

The 95​% confidence interval for the true mean resale value of a​ 5-year-old car of this​ model

(11,688.68 , 12,511.32)

Step-by-step explanation:

Step(i):-

Given sample size 'n' = 17

mean of the sample x⁻ = 12,100

Standard deviation of the sample (S) = 800

The 95​% confidence interval for the true mean resale value of a​ 5-year-old car of this​ model

[tex](x^{-} - t_{0.05} \frac{S}{\sqrt{n} } , x^{-} + t_{0.05} \frac{S}{\sqrt{n} } )[/tex]

Step(ii):-

Degrees of freedom ν =n-1 = 17-1 =16

[tex]t_{(16 , 0.05)} = 2.1199[/tex]

The 95​% confidence interval for the true mean resale value of a​ 5-year-old car of this​ model

[tex](x^{-} - t_{0.05} \frac{S}{\sqrt{n} } , x^{-} + t_{0.05} \frac{S}{\sqrt{n} } )[/tex]

[tex](12,100 - 2.1199\frac{800}{\sqrt{17} } , 12,100 + 2.1199 \frac{800}{\sqrt{17} } )[/tex]

(12,100 - 411.32 , 12,100 + 411.32)

(11,688.68 , 12,511.32)

Solve the triangles with the given parts: a=103, c=159, m∠C=104º

Answers

Answer:

Sides:

[tex]a= 103[/tex].[tex]b \approx 99[/tex].[tex]c - 159[/tex].

Angles:

[tex]\angle A \approx 39^\circ[/tex].[tex]\angle B \approx 37^\circ[/tex].[tex]\angle C = 104^\circ[/tex].

Step-by-step explanation:

Angle A

Apply the law of sines to find the sine of [tex]\angle A[/tex]:

[tex]\displaystyle \frac{\sin{A}}{\sin{C}} = \frac{a}{c}[/tex].

[tex]\displaystyle\sin A = \frac{a}{c} \cdot \sin{C} = \frac{103}{159} \times \left(\sin{104^{\circ}}\right) \approx 0.628556[/tex].

Therefore:

[tex]\angle A = \displaystyle\arcsin (\sin A) \approx \arcsin(0.628556) \approx 38.9^\circ[/tex].

Angle B

The three internal angles of a triangle should add up to [tex]180^\circ[/tex]. In other words:

[tex]\angle A + \angle B + \angle C = 180^\circ[/tex].

The measures of both [tex]\angle A[/tex] and [tex]\angle C[/tex] are now available. Therefore:

[tex]\angle B = 180^\circ - \angle A - \angle C \approx 37.1^\circ[/tex].

Side b

Apply the law of sines (again) to find the length of side [tex]b[/tex]:

[tex]\displaystyle\frac{b}{c} = \frac{\sin \angle B}{\sin \angle C}[/tex].

[tex]\displaystyle b = c \cdot \left(\frac{\sin \angle B}{\sin \angle C}\right) \approx 159\times \frac{\sin \left(37.1^\circ\right)}{\sin\left(104^\circ\right)} \approx 98.8[/tex].

Question 15 A party rental company has chairs and tables for rent. The total cost to rent 8 chairs and 3 tables is $38 . The total cost to rent 2 chairs and 5 tables is $35 . What is the cost to rent each chair and each table?

Answers

Answer:

Each table is $6 and each chair is $2.50

Step-by-step explanation:

I NEED HELP PLEASE, THANKS! :)

Answers

Consider the standard form of each of the following options given, and note the hyperbola properties through that derivation -

[tex]Standard Form - \frac{\left(x-5\right)^2}{\left(\sqrt{7}\right)^2}-\frac{\left(y-\left(-5\right)\right)^2}{3^2}=1,\\Properties - \left(h,\:k\right)=\left(5,\:-5\right),\:a=\sqrt{7},\:b=3\\[/tex]

Similarly we can note the properties of each of the other hyperbolas. They are all similar to one another, but only option C is correct. Almost all options are present with a conjugate axis of length 6, but only option c is broad enough to include the point ( 1, - 5 ) and ( 9, - 5 ) in a given radius.

Solution = Option C!

What is the equation of the line which passes through (-0.5,-5) and (2,5)

Answers

Answer:

by using distance formula

d=[tex]\sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]

by putting the values of coordinates

[tex]d=\sqrt{(2-(-0.5))^2+(5-(-5))^2}[/tex]

[tex]d=\sqrt{(2+0.5)^2+(5+5)^2}[/tex]

[tex]d=\sqrt{(2.5)^2+(10)^2}[/tex]

[tex]d=\sqrt{6.25+100}[/tex]

[tex]d=\sqrt{106.25}[/tex]

[tex]d=10.3[/tex]

Step-by-step explanation:

i hope this will help you :)

Use the given information to find the P-value. Also, use a 0.05 significance level and state the conclusion about the null hypothesis (reject the null hypothesis or fail to reject the null hypothesis).

The test statistic in a two-tailed test is z = -1.63.

a. 0.1031; fail to reject the null hypothesis
b. 0.0516; reject the null hypothesis
c. 0.9484; fail to reject the null hypothesis
d. 0.0516; fail to reject the null hypothesis

Answers

Answer: a. 0.1031; fail to reject the null hypothesis

Step-by-step explanation:

Given: Significance level : [tex]\alpha=0.05[/tex]

The test statistic in a two-tailed test is z = -1.63.

The P-value for two-tailed test : [tex]2P(Z>|z|)=2P(Z>|-1.63|)=0.1031[/tex] [By p-value table]

Since, 0.1031 > 0.05

i.e. p-value > [tex]\alpha[/tex]

So, we fail to reject the null hypothesis. [When p<[tex]\alpha[/tex] then we reject null hypothesis  ]

So, the correct option is a. 0.1031; fail to reject the null hypothesis.

the required condition for using an anova procedure on data from several populations for mean comparison is that the

Answers

Answer:

The sampled populations have equal variances

Step-by-step explanation:

ANOVA which is fully known as Analysis of variances can be defined as the collection of statistical models as well as their associated estimation procedures which enables easily and effectively analyzis of the differences among various group means in a sample reason been that ANOVA is a total variance in which the observed variance in a specific variable is been separated into components which are attributable to various sources of variation which is why ANOVA help to provides a statistical test to check whether two or more population means are equal.

Therefore the required condition for using an ANOVA procedure on data from several populations for mean comparison is that THE SAMPLED POPULATION HAVE EQUAL VARIANCE.

One of the solutions to x2 − 2x − 15 = 0 is x = −3. What is the other solution?
20 points if you can answer in under 30 minuets

Answers

Answer:

x=5  x=-3

Step-by-step explanation:

x^2 − 2x − 15 =0

Factor

What two numbers multiply to -15 and add to -2

-5*3 = -15

-5+3 =-2

(x-5) (x+3)=0

Using the zero product property

x-5 =0   x+3 =0

x=5  x=-3

Answer:

x^2 - 2x - 15 = 0

(x - 5) (x + 3) = 0

x - 5 = 0

x = 5

x + 3 = 0

x = -3

The smaller of two numbers is one-half the larger, and their sum is 27. Find the
numbers.

Answers

Answer:

  9 and 18

Step-by-step explanation:

The numbers are in the ratio 1 : 2, so the ratio of the smaller to the total is ...

  1 : (1+2) = 1 : 3

1/3 of 27 is 9, the value of the smaller number. The larger number is double this, so is 18.

The numbers are 9 and 18.

Answer:

9 and 18

Step-by-step explanation:

you know the explanation since another guy put it

The length of the rectangle is described by the function y = 3x + 6, where x is the width of the rectangle. Find the domain in this situation.

Answers

Answer:2/3

Step-by-step explanation:

Given that the length of the rectangle is described by the function y = 3x + 6, where x is the width of the rectangle. The domain of the function is (0, ∞).

What is domain of a function?

The domain of a function is the set of all possible inputs for the function. In other words, domain is the set of all possible values of x. In this question, x is the width of the rectangle. Width of a rectangle existing in two dimensional space, cannot be negative or zero. Thus it is the set of all positive real numbers, or we say, (0, ∞).

Learn more about domain of a function here

https://brainly.com/question/13113489

#SPJ2

Please answer this correctly

Answers

Answer:

2/3

Step-by-step explanation:

There are 2 numbers out of 3 that fit the rule, 1 and 3. There is a 2/3 chance picking one of them.

Answer:

2/3

Step-by-step explanation:

This is the answer because one number that is select is one. A number greater than 2 is 3. SO it is 2/3.

A veterinarian is enclosing a rectangular outdoor running area against his building for the dogs he cares for. He needs to maximize the area using 100 feet of fencing. The quadratic function A(x)=x(100−2x) gives the area, A, of the dog run for the length, x, of the building that will border the dog run. Find the length of the building that should border the dog run to give the maximum area, and then find the maximum area of the dog run.

Answers

Answer:

a) The length of the building that should border the dog run to give the maximum area = 25feet

b)    The maximum area of the dog run  = 1250 s q feet²

Step-by-step explanation:

Step(i):-

Given function

                       A(x) = x (100-2x)

                      A (x) = 100x - 2x²...(i)

Differentiating equation (i) with respective to 'x'

             [tex]\frac{dA}{dx} = 100 (1) - 2 (2x)[/tex]

     ⇒    [tex]\frac{dA}{dx} = 100 - 4 x[/tex]      ...(ii)

Equating  zero

         ⇒ 100 - 4x =0

         ⇒  100 = 4x

Dividing '4' on both sides , we get

             x = 25

Step(ii):-

Again differentiating equation (ii) with respective to 'x' , we get

    [tex]\frac{d^{2} A}{dx^{2} } = -4 (1) < 0[/tex]

Therefore The maximum value at x = 25

The length of the building that should border the dog run to give the maximum area = 25

Step(iii)

  Given  A (x) = x ( 100 -2 x)

substitute  'x' = 25 feet

             A(x) = 25 ( 100 - 2(25))

                    = 25(50)

                   = 1250

Conclusion:-

   The maximum area of the dog run  = 12 50  s q feet²

 

                       

A child is 2 -1/2 feet tall. The child’s mother is twice as tall as the child. How tall is the child’s mother

Answers

Answer:

  5 feet

Step-by-step explanation:

"Twice as tall" means "2 times as tall".

  2 × (2 1/2 ft) = (2 × 2 ft) +(2 × (1/2 ft)) = 4 ft + 1 ft = 5 ft

The child's mother is 5 feet tall.

Answer:

The mother is 5ft tall

Step-by-step explanation:

2 1/2 + 2 1/2 = 5ft

2ft+2ft = 4ft

1/2+1/2= 1ft

4ft+1ft = 5ft

WWW
3.
The expression "5 FACTORIAL" equals
3-A
125
3-B
120
3-C
25
3-D
10
* Select Answer Below​

Answers

Answer:

5! = 120

Step-by-step explanation:

5! is basically 5(4)(3)(2)(1).

Other Questions
Nick won $1000 lottery prize He can't decide what he should spend the money con buy a console, a bike ,a watch or a trip . He gives up the bike and the watch but he rally wants the console. In the end he saves it all for the trip. Which item is the opportunity cost of Nick's trip? Finding which number supports the idea that the rational numbers are dense in the real numbers?an integer between 11 and 10a whole number between 1 and 2a terminating decimal between 3.14 and 3.15 PLS HELP, URGENT!! What is the following simplified product? Assume x >/= 0. ( sqrt 6x^2 +4 sqrt 8x^3) (sqrt 9x -x sqrt 5x^5) 13Select the correct answer.A farmer changed certain timings of his farming operations to control pest infestation in his field. Which pest control method did he use?OAgenetic pest controlB. biological pest controlC. cultural pest controlODchemical pest control mechanical pest controlResetNext Which of the following statements is an example of absolute location? A. The Empire State Building is located at N 404454, W 73598. B. Missouri is located east of Kansas. C. Washington, DC, is 38 degrees north of Quito, Ecuador. D. Johnson Memorial Hospital is about 20 blocks from New Yorks Central Park. E. Pennsylvania is south of New York, west of New Jersey, and east of Ohio. ________________ focuses on traits that people consider when they characterize a person as a leader. Determine whether the pair of equations represent parallel lines, perpendicular lines, or neither.12x + 4y = 1624x + 8y = 36 In his pocket, Hamid has $2.95 in dimes and quarters. If there are 16 coins in total, which system represents the number of dimes and quarters that Hamid has? x + y = 16. 0.10 x + 0.25 y = 2.95. x + y = 16. 0.05 x + 0.25 y = 2.95. x + y = 2.95. 0.10 x + 0.25 y = 16. x + y = 16. 0.01 x + 0.25 y = 2.95. There are two boxes containing only black and orange pens. Box A has 4 black pens and 16 orange pens. Box B has 2 black pens and 3 orange pens. A pen is randomly chosen from each box. List these events from least likely to most likely. Event 1: choosing a black pen from Box A. Event 2: choosing a black or orange pen from Box A. Event 3: choosing a white pen from Box B. Event 4: choosing a black pen from Box B. Cape Beale Lighthouse, BC, ison a cliff that is 51 m above sealevel. The lighthouse is thereto warn boats of the danger ofshallow waters and thepossibility of rocks close to theshore. The safe distance forboats from this cliff is 75 m. Ifthe lighthouse keeper is 10 mabove ground and observes aboat at an angle of depressionof 50, is the boat a safedistance from the cliff? Justifyyour conclusion. A fruit company delivers its fruit in two types of boxes: large and small. A delivery of eight large boxes and four small boxes has a total weight of two hundred and one kilograms. A delivery of three large boxes and two small boxes has a total weight of eighty two kilograms. How much does each type of box weigh? Please answer this correctly Find the equation of the line Which word in the choices belowcompletes the analogy?Together : Intact :: Articulate :A. ResilientB. ImpetuousC. EloquentD. Unintelligible A piston-cylinder device contains 0.1 kg of hydrogen gas (PG model: cv=10.18, k = 1.4, R= 4.12 kJ/kg-K) at 1000 kPa and 300 K. The gas undergoes an expansion process and the final conditions are 500 kPa, 270 K. If 10 kJ of heat is transferred into the gas from the surroundings at 300 K, determine (a) the boundary work (Wb), and (b) the entropy generated (Sgen) during the process pretty please help please What is the angle of rotation of the figure? A. 0 B. 90 C. 120 D. 180 write down the value of 5 in 19.54 How deep in the ocean must a current be to be classified a deep current?A. 250 mB. 100 mC. 400 mD. 1000 m Which is not a way that ATP is used for mechanical work?Movement at the cellular level.Muscle contractionsMovement of the flagellumJoining monomers to form a polymer How did many southern states react to the Brown v. Board of Education ruling?0They helped African Americans go to private schools.O They used militias to enforce desegregation.OThey enrolled all students at public schools.0 They continued to resist desegregation.