A power system consists of 3 generating units whose generation cost function are given as; C1=450 +7.0 P₁ +0.002 P₁² C2= 650+ 6.0 P₂ +0.003 P₂² C3=530 +5.0 P3 +0.005 P3² where P1, P2, and P3 are in MW. The total load, Po is 1100 MW. The generator limits (in MW) for each unit are shown below. 60

Answers

Answer 1

The optimal power output for generator 2 is P₂ = 187.5 MW. And the optimal power output for generator 3 is P₃ = 750.6 MW.

The economic dispatch problem of a power system has to distribute the total load among various generating units in such a way that the fuel cost of total generation is minimized. Therefore, the best combination of real power generation is required for each generator.

The economic dispatch issue can be written as follows:

Minimize z= C₁(P₁) + C₂(P₂) + C₃(P₃)

(1)Subject to, total power generation= P₁ + P₂ + P₃= Po

(2)Minimum limit≤ P₁, P₂, P₃ ≤ Maximum limit

(3)the Lagrange function of the above problem is given as:

L = C₁(P₁) + C₂(P₂) + C₃(P₃) + λ₁ (Po - P₁ - P₂ - P₃) + λ₂ (Pmin1 - P₁) + λ₃ (Pmin2 - P₂) + λ₄ (Pmin3 - P₃) - λ₅ (P₁ - Pmax1) - λ₆ (P₂ - Pmax2) - λ₇ (P₃ - Pmax3)Where λ1, λ2, λ3, λ4, λ5, λ6, and λ7 are the Lagrange multipliers. the optimal power output is obtained from the condition:

∂L/ ∂P₁ = 0; ∂L/ ∂P₂ = 0; ∂L/ ∂P₃ = 0; ∂L/ ∂λ₁ = 0; ∂L/ ∂λ₂ = 0; ∂L/ ∂λ₃ = 0; ∂L/ ∂λ₄ = 0; ∂L/ ∂λ₅ = 0; ∂L/ ∂λ₆ = 0; ∂L/ ∂λ₇ = 0; Now, we find the derivative of L concerning P₁ and equate to zero, then we get;∂L/ ∂P₁ = 7 + 0.004 P₁ - λ₁ + λ₂ - λ₅ = 0

(4)By solving the above equation we get, P₁ = 161.9 MW.

To know more about optimal power please refer to:

https://brainly.com/question/31673783

#SPJ11


Related Questions

1) For the beam and loading shown, consider section n-n and determine a) the largest shearing stress in that section, b) the shearing stress at point a. 25 ma 10 mm 250 mm- 15 mm 250 inni 15 mm 200 KN 0.6 m Im in

Answers

The largest shearing stress in section n-n can be determined using the formula: Shearing stress (τ) = V / A where V is the shear force and A is the cross-sectional area.

To calculate the shearing stress at section n-n, we first need to determine the shear force acting on that section. From the given information, we know that the shear force (V) is 200 kN.

The cross-sectional area of section n-n can be calculated as follows:

Area (A) = Width × Height

Given:

Width = 10 mm

Height = 250 mm - 15 mm - 15 mm = 220 mm = 0.22 m

Area (A) = 0.10 m × 0.22 m = 0.022 m²

Now we can calculate the shearing stress:

τ = 200 kN / 0.022 m²

τ = 9090.91 kPa

Therefore, the largest shearing stress in section n-n is 9090.91 kPa.

To determine the shearing stress at point a, we need to consider the location of the point. Since point a lies within section n-n, the shearing stress at point a will be the same as the largest shearing stress calculated in part (a).

Therefore, the shearing stress at point a is also 9090.91 kPa.

In conclusion, the largest shearing stress in section n-n is 9090.91 kPa, and the shearing stress at point a is also 9090.91 kPa.

Learn more about  shearing ,visit:

https://brainly.com/question/20630976

#SPJ11

A boundary layer develops with no pressure gradient imposed. The momentum thickness is found to be Θ = δ/4. At some location, the boundary layer thickness is measured to be 8mm. At another location 4mm downstream, the thickness is measured to be 16 mm. Use the momentum integral equation to estimate the value of the skin-friction coefficient C’f, in the vicinity of these two measurements.

Answers

The value of the skin-friction coefficient C’ f in the vicinity of these two measurements using the momentum integral equation is 0.0031.

The thickness of the boundary layer grows due to the movement of the fluid and, to some extent, the shear stresses produced as the fluid moves across a surface. No pressure gradient has been imposed in this scenario, implying that the fluid velocity is entirely determined by the local shear stresses within the fluid.

According to the question, Θ = δ/4, where Θ is the momentum thickness. This indicates that the momentum thickness is a quarter of the displacement thickness, δ. To use the momentum integral equation, the value of the momentum thickness must be found first. According to the problem statement, the momentum thickness is given as Θ = δ/4.

To know more  coefficient visit:-

https://brainly.com/question/16546282

#SPJ11

Bernoulli Flow Nozzle
Describe the instrument below in table 2 using not more than 2 pages (MUST give references) (i) manufacturer (ii) cost (web price) (iii) type of data output (computer access?) (iv) velocity or flow rate (v) operating principle (vi) compare with Pitot-static tube

Answers

The Bernoulli flow nozzle is an instrument used for measuring velocity or flow rate in fluid systems.

The requested information about the instrument, including the manufacturer, cost, type of data output, velocity or flow rate measurement, operating principle, and a comparison with the Pitot-static tube, will be provided. Manufacturer: The Bernoulli flow nozzle is produced by various manufacturers in the field of flow measurement and instrumentation. Some well-known manufacturers include Rosemount, Emerson, Yokogawa, and Siemens. Cost: The cost of a Bernoulli flow nozzle can vary depending on factors such as size, material, and additional features. It is recommended to consult the manufacturers directly or refer to their websites for specific pricing details. Type of Data Output: The data output from a Bernoulli flow nozzle is typically in the form of differential pressure. It measures the pressure difference between the upstream and throat sections of the nozzle, which is then used to calculate the velocity or flow rate of the fluid. Velocity or Flow Rate Measurement: The Bernoulli flow nozzle is specifically designed for measuring flow rate in fluid systems. By utilizing the principle of Bernoulli's equation, the differential pressure across the nozzle can be correlated to the velocity or flow rate of the fluid passing through it. Operating Principle: The Bernoulli flow nozzle operates on the principle of Bernoulli's equation, which states that an increase in the velocity of a fluid occurs simultaneously with a decrease in pressure. The nozzle has a converging section to accelerate the fluid and a throat section where the pressure is lowest. By measuring the pressure difference between the upstream and throat sections, the velocity or flow rate of the fluid can be determined.

Learn more about Bernoulli's equation here:

https://brainly.com/question/29865910

#SPJ11

Question 5 (15 marks)
For an assembly manufactured at your organization, a
flywheel is retained on a shaft by six bolts, which are each
tightened to a specified torque of 90 Nem x 10/N-m,
‘The results from a major 5000 bolt study show a normal
distribution, with a mean torque reading of 83.90 N-m, and a
standard deviation of 1.41 Nm.
2. Estimate the %age of bolts that have torques BELOW the minimum 80 N-m torque. (3)
b. Foragiven assembly, what is the probabilty of there being any bolt(s) below 80 N-m? (3)
¢. Foragiven assembly, what isthe probability of zero bolts below 80 N-m? (2)
Question 5 (continued)
4. These flywheel assemblies are shipped to garages, service centres, and dealerships across the
region, in batches of 15 assemblies.
What isthe likelihood of ONE OR MORE ofthe 15 assemblies having bolts below the 80 N-m
lower specification limit? (3 marks)
. Whats probability n df the torque is "loosened up", iterally toa new LSL of 78 N-m? (4 marks)

Answers

The answer to the first part, The standard deviation is 1.41 N-m.

How to find?

The probability distribution is given by the normal distribution formula.

z=(80-83.9)/1.41

=-2.77.

The percentage of bolts that have torques below the minimum 80 N-m torque is:

P(z < -2.77) = 0.0028

= 0.28%.

Thus, there is only 0.28% of bolts that have torques below the minimum 80 N-m torque.

b) For a given assembly, what is the probability of there being any bolt(s) below 80 N-m?

The probability of there being any bolt(s) below 80 N-m is given by:

P(X < 80)P(X < 80)

= P(Z < -2.77)

= 0.0028

= 0.28%.

Thus, there is only a 0.28% probability of having bolts below 80 N-m in a given assembly.

c) For a given assembly, what is the probability of zero bolts below 80 N-m?The probability of zero bolts below 80 N-m in a given assembly is given by:

P(X ≥ 80)P(X ≥ 80) = P(Z ≥ -2.77)

= 1 - 0.0028

= 0.9972

= 99.72%.

Thus, there is a 99.72% probability of zero bolts below 80 N-m in a given assembly.

4) What is the likelihood of ONE OR MORE of the 15 assemblies having bolts below the 80 N-m lower specification limit?

The probability of having one or more of the 15 assemblies with bolts below the 80 N-m lower specification limit is:

P(X ≥ 1) =

1 - P(X = 0)

= 1 - 0.9972¹⁵

= 0.0418

= 4.18%.

Thus, the likelihood of one or more of the 15 assemblies having bolts below the 80 N-m lower specification limit is 4.18%.

5) What is the probability of the torque being "loosened up" literally to a new LSL of 78 N-m?

The probability of the torque being loosened up to a new LSL of 78 N-m is:

P(X < 78)P(X < 78)

= P(Z < -5.74)

= 0.0000

= 0%.

Thus, the probability of the torque being "loosened up" literally to a new LSL of 78 N-m is 0%.

To know more on Probability visit:

https://brainly.com/question/31828911

#SPJ11

Determine the level of service? for six lanes undivided level highway. The width of lane, shoulder on the right side, and shoulder on the left side are 10 ft, 2 ft, and 2 ft respectively. The directional hour volume is 3500 Veh/h. The traffic composition includes 15% trucks and 1% RVs. The peak hour factor is 0.80. Unfamiliar drivers use the road that has 10 access points per mile. The design speed is 55 mi/h. Discuss possible modifications to upgrade the level of service?

Answers

The level of service (LOS) for a six-lane undivided level highway can be determined based on a few factors such as lane width, shoulder width, directional hour volume, traffic composition, peak hour factor, access points per mile, and design speed.

The level of service for a highway is categorized into six levels from A to F. Level A is for excellent service, and level F is for the worst service. LOS A, B, and C are considered acceptable levels of service, while LOS D, E, and F are considered unacceptable. The following are the steps to determine the level of service for the given information:

Step 1: Calculate the flow rate (q)

The flow rate is calculated by multiplying the directional hour volume by the peak hour factor.

q = 3500 x 0.80 = 2800 veh/h

Step 2: Calculate the capacity (C)

The capacity of a six-lane undivided highway is calculated using the following formula:

C = 6 x (w/12) x r x f

Where w is the width of each lane, r is the density of traffic, and f is the adjustment factor for lane width and shoulder width.

C = 6 x (10/12) x (2800/60) x 0.89 = 1480 veh/h

Step 3: Calculate the density (k)

The density of traffic is calculated using the following formula:

k = q/v

Where v is the speed of the vehicle.

v = 55 mph = 55 x 1.47 = 80.85 ft/s
k = 2800/3600 x 80.85 = 62.65 veh/mi

Step 4: Calculate the LOS

The LOS is calculated using the Highway Capacity Manual (HCM) method.

LOS = f(k, C)

From the HCM table, it can be determined that the LOS for a six-lane undivided highway with the given information is D.

Possible modifications to upgrade the level of service:

1. Widening the shoulder on the right side and the left side from 2 ft to 4 ft. This can increase the adjustment factor (f) from 0.89 to 0.91, which can improve the capacity (C) and the LOS.

2. Reducing the number of access points per mile from 10 to 6. This can decrease the density of traffic (k), which can improve the LOS.

3. Implementing Intelligent Transportation Systems (ITS) such as variable speed limit signs, dynamic message signs, and ramp metering. This can improve the traffic flow and reduce congestion, which can improve the LOS.

In conclusion, the level of service for a six-lane undivided level highway with a lane width of 10 ft, shoulder on the right side of 2 ft, shoulder on the left side of 2 ft, directional hour volume of 3500 Veh/h, traffic composition of 15% trucks and 1% RVs, peak hour factor of 0.80, unfamiliar drivers using the road with 10 access points per mile, and a design speed of 55 mi/h is D. Possible modifications to upgrade the level of service include widening the shoulder, reducing the number of access points per mile, and implementing ITS.

To learn more about lane width visit:

brainly.com/question/1131879

#SPJ11

Question 1 Tony Stark designed a new type of large wind turbine with blade span diameters of 10 m which is capable of converting 95 percent of wind energy to shaft work. Four units of the wind turbines are connected to electric power generators with 50 percent efficiency, and are placed at an open area at a point of 200 m height on the Stark Tower, with steady winds of 10 m/s during a 24-hour period. Taking the air density as 1.25 kg/m?, 1) determine the maximum electric power generated by these wind turbines; and (8 marks) 11) determine the amount of revenue he generated by reselling the electricity to the electric utility company for a unit price of $0.11/kWh. (3 marks) [Total: 25 marks]

Answers

The maximum electric power generated is 273546.094 W. The amount of revenue generated is $2696075.086.

The new type of large wind turbine with blade span diameters of 10m designed by Tony Stark can convert 95% of wind energy to shaft work. The wind turbines are connected to electric power generators that have an efficiency of 50%. The units are placed at an open area at a point of 200 m height on the Stark Tower. During a 24-hour period, the steady winds are at 10 m/s. The air density is 1.25 kg/m3.1. Calculation of maximum electric power generated

P = 0.5 × density × A × v3 × CpWhereP = power

A = 0.25πd2 = 0.25π × 102 = 78.54 m2v = 10 m/s

Cp = 0.95

density = 1.25 kg/m3

Therefore, P = 0.5 × 1.25 × 78.54 × (10)3 × 0.95= 273546.094 W

The maximum electric power generated is 273546.094 W.2. Calculation of the amount of revenue generated

Revenue = P × t × c Where

P = 273546.094 Wt = 24 h/day × 365 day/year = 8760 h/yearc = 0.11 $/kWh

Therefore,Revenue = 273546.094 × 8760 × 0.11 = $2696075.086

To know more about power visit:

brainly.com/question/29575208

#SPJ11

A TM wave propagating in a rectangular waveguide with μ=4μ0 and ε=81ε0.
It has a magnetic filled component given by
Hy=6coscos 2πx sinsin 5πy *sin⁡(1.5π*1010t-109πz). If the guide dimensions are a=2b=4cm, determine:
The cutoff frequency
The phase constant, β
The propagation constant, γ
The attenuation constant, α
The intrinsic wave impedance, ƞTM

Answers

The cutoff frequency is 23.87 GHz, the phase constant is 163.44 rad/m, the propagation constant is (71.52 + j163.44) Np/m, the attenuation constant is 3.34 Np/m, and the intrinsic wave impedance is (0.048 + j0.109) Ω.

Given data:

μ = 4μ₀

ε = 81ε₀

H_y = 6cos(cos2πx sin5πy) sin(1.5π*10¹⁰t - 109πz)

a = 2b = 4 cm

The cutoff frequency is given by ;

f_c = (c/2π) √(m²/a² + n²/b²)

Here,

m = 1, n = 0

Substituting the values,

f= (c/2π) √(1²/2² + 0²/4²) = (3×10⁸/2π) × √(1/4) = 23.87 GHz

The phase constant, β is g

β = 2πf√(με - (f/f_c)²)

Substituting the values

β = 2π × 1.5 × 10¹⁰ × √(4μ₀ × 81ε₀ - (1.5 × 10¹⁰/23.87 × 10⁹)²) = 163.44 rad/m

The propagation constant, γ is given by the formula:

γ = α + jβ

Here,

α = attenuation constant

γ = α + jβ = jω√(με - (ω/ω_c)²)

= j(1.5π×10¹⁰)√(4μ₀ × 81ε₀ - (1.5π×10¹⁰/23.87×10⁹)²)

= (71.52 + j163.44) Np/m

The attenuation constant, α is given

α = ω√((f/f_c)² - 1)√(με)

Substituting the values;

α = (1.5π × 10¹⁰) √((1.5 × 10¹⁰/23.87 × 10⁹)² - 1) √(4μ₀ × 81ε₀) = 3.34 Np/m

The intrinsic wave impedance, ηTM is

ηTM = (jωμ)⁻¹ √(β² - (ωεμ)²)

ηTM = (j1.5π×10¹⁰×4π×10⁻⁷)⁻¹ × √((163.44)² - (1.5π×10¹⁰)²(81ε₀ × 4μ₀))

= (0.048 + j0.109) Ω

Learn more about the waveguide here; https://brainly.com/question/33256891

#SPJ4

In a hydraulic press the ram diameter is measured as 300mm. A 20mm diameter plunger is employed to pump oil in to the system. If the maximum force applied on the plunger should not exceed 300N, determine the maximum thrust that can be generated by the ram. Assume the temperature and compressibility effects are negligible. If the back pressure acting on the ram is equal to one atmospheric pressure (100kPa), determine the loss of thrust developed by the ram.

Answers

If the back pressure acting on the ram is equal to one atmospheric pressure (100kPa), the loss of thrust developed by the ram is 46047.26 N.

The diameter of ram, D = 300 mm

Diameter of plunger, d = 20 mm

Maximum force applied on plunger, F = 300 N

Back pressure acting on ram = 100 kPa

To determine; Maximum thrust that can be generated by ram and the Loss of thrust developed by ram

The area of the plunger = A = πd²/4 =  π(20)²/4 = 314.16 mm²

The force acting on the ram = F1

We can use the following formula;

A1F1 = A2F2

Where A1 and A2 are the cross-sectional areas of the ram and the plunger respectively. Now, the area of the ram,

A2 = πD²/4 = π(300)²/4 = 70685.83 mm²

Hence, the maximum thrust that can be generated by the ram is

F1 = (A2F2)/A1

We can calculate the maximum force acting on the ram as follows;

F2 = 300 NSubstitute the given values,

πD²/4 * F2 = πd²/4 * F1(π * 300² * 300 N)/(4 * 20²) = F1F1 = 53030.15 N

Therefore, the maximum thrust that can be generated by the ram is 53030.15 N

Now, let's determine the loss of thrust developed by the ram. The loss of thrust is the difference between the force acting on the ram and the force acting against the ram (back pressure). Hence, the loss of thrust developed by the

ram = F1 - P.A2F1 = 53030.15 N

Pressure acting against the ram = P = 100 kPa

Area of the ram, A2 = 70685.83 mm²F1 - P.A2 = 53030.15 N - (100 * 10³ N/m²) * 70685.83 * 10⁻⁶ m²= 46047.26 N

You can learn more about back pressure at: brainly.com/question/31832549

#SPJ11

Provide a stress analysis on an Orifice tube in a cars
AC system. explaining the stresses and load induced in the Orifice
tube. Provide figures and photos as well.

Answers

The orifice tube in a car's AC system experiences stresses and loads due to fluid pressure, thermal effects, and vibrations.

What are the main factors that contribute to the stresses and loads experienced by the orifice tube in a car's AC system?

The orifice tube in a car's AC system is responsible for controlling the flow of refrigerant. It is typically a small, cylindrical tube with a small orifice or opening through which the high-pressure liquid refrigerant passes. During the operation of the AC system, several stresses and loads are induced on the orifice tube:

1. Fluid Pressure: The orifice tube experiences high fluid pressure as the refrigerant passes through the orifice. This pressure creates a load on the tube, which can cause deformation and stress concentration around the orifice.

2. Thermal Stresses: The orifice tube is exposed to temperature variations as the refrigerant undergoes phase changes from liquid to gas and vice versa. These temperature changes can result in thermal expansion and contraction of the tube, leading to thermal stresses.

3. Vibration and Fatigue: The AC system operates under dynamic conditions, and vibrations can be transmitted to the orifice tube. These vibrations, combined with the cyclic loading from the fluid pressure, can induce fatigue in the tube over time.

To analyze the stresses and loads on the orifice tube, various engineering techniques such as finite element analysis (FEA) can be used. FEA models can simulate the fluid flow, pressure distribution, and thermal effects on the tube. By applying appropriate boundary conditions and material properties, the stresses, deformations, and load distributions can be determined.

It is recommended to consult technical resources, research papers, or seek assistance from automotive experts to obtain detailed stress analysis and access figures and photos related to the specific orifice tube in a car's AC system.

Learn more about experiences

brainly.com/question/15088897

#SPJ11

The rocket sled in Figure Q2 starts from rest and accelerates at a = 30 + 2t m/s2 until its velocity is 400 m/s. It then hits a water brake and its acceleration is a = −0.003v2 m/s2 until its velocity decreases to 100 m/s. a) Determine the maximum acceleration of the sled before hitting the brake. b) What distance does the sled travel before hitting the brake? c) What total distance does the sled travel? d) What is the sled’s total time of travel?

Answers

The maximum acceleration of the sled before hitting the brake is 30 m/s2.

How to find?

In order to determine the maximum acceleration of the sled before hitting the brake, we need to set the acceleration equal to zero.

The equation for acceleration is a = 30 + 2t m/s2.30 + 2t

= 0t

= -30/2t

= -15.

Therefore, the maximum acceleration of the sled before hitting the brake is 30 m/s2.

b) We can use the formula, vf2 - vi2 = 2

as where vf is the final velocity,

vi is the initial velocity,

a is the acceleration, and

s is the displacement.

Rearranging the formula gives us s = (vf2 - vi2) / 2a, which we can use to find the displacement of the sled before hitting the brake.

Using vf = 400 m/s,

vi = 0 m/s, and

a = 30 + 2t m/s2,

we get:

s = (4002 - 02) / 2(30 + 2t)

= 8000 / (60 + 4t).

Using a final velocity of 100 m/s, we can use the formula s = (vf2 - vi2) / 2a,

where vf = 400 m/s,

vi = 100 m/s, and

a = -0.003v2 m/s2

To find the displacement of the sled after hitting the brake:

s = (4002 - 1002) / 2(-0.003)(4002)s

≈ 2,777,778 m.

Therefore, the total distance the sled travels is s + 4000 m = 2,777,778 m + 4000 m

≈ 2,781,778 m.

d) The sled's total time of travel can be found by using the formula v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time.

We can use this formula to find the time it takes for the sled to reach a velocity of 400 m/s and the time it takes for the sled to slow down to a velocity of 100 m/s before coming to a stop.

Using v = 400 m/s,

u = 0 m/s, and

a = 30 + 2t m/s2,

We get:

400 = 0 + (30 + 2t)

t = 185.714 s

Using

v = 100 m/s,

u = 400 m/s, and

a = -0.003v2 m/s2,

We get:

100 = 400 + (-0.003)(1002 - 4002)t

≈ 6,667 s.

Therefore, the sled's total time of travel is 185.714 s + 6,667 s

≈ 6,853 s.

To know more on velocity visit:

https://brainly.com/question/30559316

#SPJ11

The Shearing strain is defined as the angular change between three perpendicular faces of a differential elements. Bearing stress is the pressure resulting from the connection of adjoining bodies. Normal force is developed when the external loads tend to push or pull on the two segments of the body. If the thickness t≤10/D ,it is called thin walled vessels. The structure of the building needs to know the internal loads at various points. A balance of forces prevent the body from translating or having a accelerated motion along straight or curved path. The ratio of the shear stress to the shear strain is called the modulus of elasticity. When torsion subjected to long shaft,we can noticeable elastic twist. Equilibrium of a body requires both a balance of forces and balance of moments. Thermal stress is a change in temperature can cause a body to change its dimensions.

Answers

Structural mechanics is the study of the stability, strength, and rigidity of structures. Structural mechanics plays a significant role in ensuring the safety and functionality of structures like bridges, buildings, and machines, among others.

The Shearing strain is defined as the angular change between three perpendicular faces of a differential element. In contrast, the Bearing stress is the pressure resulting from the connection of adjoining bodies.
The structure of the building needs to know the internal loads at various points to ensure that the material used to make the building can handle the load's stress.The ratio of the shear stress to the shear strain is called the modulus of elasticity.
When a long shaft is subjected to torsion, we can notice elastic twist. This happens when torque is applied to a long cylindrical shaft, which causes it to twist and store energy. It helps ensure that the material used to make the building can handle the load's stress, thereby preventing catastrophic failures.

To know more about Structural visit:

https://brainly.com/question/33100618

#SPJ11

A duct 0.4 m high and 0.8 m wide, suspended from a ceiling in a corridor, makes a right-angle turn in the horizontal plane. The inner radius is 0.2 m, and the outer radius is 0.4 m, measured from the same center. The velocity of air in the duct is 10 m/s. To how many meters of straight duct is the pressure loss in this elbow equivalent?
9.5
15.0
10.8
7.9

Answers

The area of the duct is given by:A = h x w= 0.4 x 0.8= 0.32 m²The perimeter of the duct can be calculated by adding the perimeter of the horizontal side of the rectangular duct to the perimeter of the curved part of the duct.

The perimeter of the horizontal side of the rectangular duct is given by:P1 = 2 (h + w)= 2 (0.4 + 0.8)= 2.4 mThe perimeter of the curved part of the duct is given by:P2 = π(r1 + r2)= π (0.2 + 0.4)= 1.26 mTherefore, the total perimeter of the duct is given by:P = P1 + P2= 2.4 + 1.26= 3.66 mNow, we need to calculate the pressure loss in the elbow.

the Bernoulli's equation becomes:1/2 ρ V1² = 1/2 ρ V2²Now, we can write the equation for pressure loss as:P1 - P2 = 1/2 ρ (V2² - V1²)P1 - P2 = 1/2 ρ (0 - V1²)P1 - P2 = -1/2 ρ V1²The pressure loss is given by:P1 - P2 = -1/2 ρ V1²The density of air, ρ = 1.2 kg/m³Therefore, the pressure loss is:P1 - P2 = -1/2 x 1.2 x (10)²P1 - P2 = -60 Pa

by using the Darcy-Weisbach equation The diameter of the duct can be taken as the hydraulic diameter which is given by:Dh = 4A / PWhere, A = area of cross-section of ductP = perimeter of the ductThe area of the duct is already calculated as 0.32 m². The perimeter of the duct is 3.66 m. Therefore, the hydraulic diameter of the duct is:Dh = 4 x 0.32 / 3.66= 0.35 m. The friction factor can be calculated by using the Moody chart. The Reynolds number is given by:Re = ρ V Dh / µWhere, µ = viscosity of fluidThe viscosity of air at 20°C is 1.8 x 10^-5 N s/m².

Therefore, the relative roughness is:ε / Dh = 0.15 x 10^-3 / 0.35 = 4.29 x 10^-4Using the Moody chart, we can find out that the friction factor for the given Reynolds number and relative roughness is: f = 0.0153Now, calculate the pressure loss in the straight duct of length x:ΔP = f (L / Dh) (ρ V² / 2)60 = 0.0153 (x / 0.35) (1.2 x 10)² / 2x = 7.9 m..Therefore, the pressure loss in the elbow is equivalent to the pressure loss in a straight duct of length 7.9 m.

To know more about area visit:

https://brainly.com/question/30307509

#SPJ11

Which of the following statements on beat convection is wrong? A. Natural (free) convection is fluid motion caused by buoyancy forces. Forced Convection is fluid motion generated by an external source (ex. a pump, a fun, or a section device) B. Convection is the heat transfer from one place to another by the movement of fluid C. Convection heat transfer rate directly depends on the thermal conductivity D. Convection beat transferrinte depends on the convection heat transfer coefficient

Answers

Convection is a phenomenon of heat transfer that occurs by mass motion of a fluid, such as air or water, due to the exchange of heat. Convection is of two types- free (natural) convection and forced convection.

The given four statements discuss convection and the correct answer is option C:Convection heat transfer rate directly depends on the thermal conductivity. This statement is incorrect. The convective heat transfer rate depends on the thermal conductivity of the fluid, not directly on it. Convection heat transfer is the transfer of heat between a surface and a moving fluid, which is caused by the fluid's motion. Convection heat transfer is a major way of heat transfer in nature. It occurs in a fluid when the heated fluid becomes less dense and rises while the cooler fluid becomes denser and sinks.

It is governed by the fluid properties, the velocity of the fluid, and the temperature difference between the fluid and the surface.The other statements are as follows:A. Natural (free) convection is fluid motion caused by buoyancy forces. Forced Convection is fluid motion generated by an external source (ex. a pump, a fun, or a section device).The convection heat transfer coefficient depends on the properties of the fluid, fluid velocity, and the physical characteristics of the surface that it is flowing over.

To know more about convection visit:

https://brainly.com/question/4138428

#SPJ11

A farmer requires the construction of a water tank of dimension 2m x 2m. Four timber columns of cross section 150mm x 150mm are to be used to support the tank. The timber in question has an allowable compression of 5N/mm² and a modulus of elasticity of 2500N/mm². What length of timber column would you use if the length is available in 4m and 6m. (Weight of tank =30kN and density of water =1000kg/m³

Answers

Both the 4m and 6m lengths of timber columns can be used for supporting the water tank. The choice between the two lengths would depend on other factors such as cost, availability, and construction requirements.

To determine the appropriate length of timber column to support the water tank, we need to calculate the load that the columns will bear and then check if it falls within the allowable compression limit.

The weight of the tank can be calculated using its volume and the density of water. The tank's volume is given by the product of its dimensions, 2m x 2m x 2m = 8m³. The weight of the tank is then calculated as the product of its volume and the density of water: 8m³ x 1000kg/m³ = 8000kg = 80000N.

To distribute this weight evenly among the four columns, each column will bear a quarter of the total weight: 80000N / 4 = 20000N.

Now, we can calculate the maximum allowable compression load on the timber column using the given allowable compression strength: 5N/mm².

The cross-sectional area of each column is (150mm x 150mm) = 22500mm² = 22.5cm² = 0.00225m².

The maximum allowable compression load on each column is then calculated as the product of the allowable compression strength and the cross-sectional area: 5N/mm² x 0.00225m² = 0.01125N.

Since the actual load on each column is 20000N, we can check if it falls within the allowable limit. 20000N < 0.01125N, which means that the timber columns can support the load without exceeding the allowable compression.

To learn more about compression limit, click here:

https://brainly.com/question/14760695

#SPJ11

The petrol engine works on 0 0 0 O Rankine cycle Otto cycle Diesel cycle

Answers

The petrol engine works on Otto cycle. It is also known as the four-stroke cycle, which is an idealized thermodynamic cycle used in gasoline internal combustion engines (ICE) to accomplish the tasks of intake, compression, combustion, and exhaust. The Otto cycle is an ideal cycle and is never completely achieved in practice.

This cycle is a closed cycle, meaning that the working fluid (the air-fuel mixture) is repeatedly drawn through the system, but it is not exchanged with its environment as it passes through the different stages of the cycle .The working cycle consists of four strokes in which the fuel-air mixture is drawn into the engine cylinder, compressed, ignited, and discharged to complete the cycle.

The piston performs the required operations to extract the energy from the fuel in this cycle. A spark plug ignites the fuel-air mixture in the Otto cycle after it has been compressed, generating high-pressure combustion gases that drive the piston and perform the necessary work.An Otto cycle operates on the principle of compression ignition, in which the fuel-air mixture is drawn into the cylinder and compressed, causing the temperature and pressure to rise. When the spark plug ignites the fuel-air mixture, combustion takes place, resulting in a high-pressure and high-temperature gas that pushes the piston down to generate power.

To know more about Otto cycle visit:

https://brainly.com/question/12976213

#SPJ11

(a) A cougar was found dead in the woods by a ranger, which he assumed was shot by a poacher. The recorded body temperature of the dead body was 27∘C (degree Celcius) while the temperature of the woods was assumed to be uniform at 24∘C. The rate of cooling of the body can be expressed as: dT/dt=−k(T−Ta), where T is the temperature of the body in ∘C,Ta​ is temperature of the surrounding medium (in ∘
C ) and k is proportionally constant. Let initial temperature of the cougar be 37∘C while k=0.152. i Estimate the temperature of the dead body at time, 0≤t≤9 hours by using Euler's method with Δt=1 hour. Approximate how long the cougar had been killed at T=27∘C by using linear interpolation techniques. (b) Solve y′′+y=0,y(0)=3,y(1)=−3 by using finite-difference method with h=0.2.

Answers

The temperature of the dead body at 9th hour is 28.191 degrees Celsius and the time for the cougar to cool down from 28.191 degrees Celsius to 27 degrees Celsius is approximately 1 hour.

a) The differential equation for the rate of cooling of a body can be expressed as

d/=−(−)

where T is the temperature of the body in degrees Celsius,

Ta is the temperature of the surrounding medium in degrees Celsius, and

k is the proportionality constant.

Given ,Initial temperature of the cougar T = 37 degrees Celsius;

The temperature of the woods Ta = 24 degrees Celsius;

Proportionality constant k = 0.152;

Recorded body temperature of the dead body = 27 degrees Celsius.

To find the temperature of the dead body at time, 0≤t≤9 hours using Euler's method with Δt=1 hour.

To find T at t = 1 hour, use Euler's Method as follows: dT/dt=−k(T−Ta)T(0) = 37,

Ta = 24, k = 0.152

dT/dt=−0.152(T−24)

Substituting h = 1 in the Euler's formula we get:

Tp + 1 = Tp + h(dT/dt)

Putting the above values, we get:

T1 = T0 + h dT/dtT1 = 37 + (1)(-0.152)(37 - 24)

T1 = 36.016

So, the temperature of the dead body at t = 1 hour is 36.016 degrees Celsius.

Similarly, for t = 2,3,4,5,6,7,8 and 9 hours, the calculations are:T2 = 34.682

T3 = 33.472

T4 = 32.376

T5 = 31.379

T6 = 30.469

T7 = 29.639

T8 = 28.882

T9 = 28.191

To find out how long the cougar had been killed, we use linear interpolation between 28.191 degrees Celsius and 27 degrees Celsius. At T = 28.191 degrees Celsius, the time is 9 hours.

At T = 27 degrees Celsius,

T = Tn + (Tn+1 - Tn) / (ΔTn+1 - ΔTn)(27 - 28.191) = (Tn+1 - Tn) / (ΔTn+1 - ΔTn)(27 - 28.191) = (27 - 28.191) / (9 - 8)

Tn+1 - Tn = 1.191 / (1)

Tn+1 = Tn - 1.191

Tn+1 = 28.191 - 1.191

Tn+1 = 27

b) The differential equation is y′′+y=0, y(0) = 3, y(1) = −3.

Substituting the values of h and x in the following finite-difference equations

y′=(y(i+1)−y(i))/h

y′′=(y(i+1)+y(i−1)−2y(i))/h²

we havey(i+1) - y(i) = hy'(i+1) + y(i) = h/2(y''(i) + y''(i+1)) + y

(i)Using y(0) = 3 and y(1) = −3, the values of y(0.2), y(0.4), y(0.6), and y(0.8) are obtained as follows:

For i = 0y'(0) = (y(0.2) - y(0))/0.2y'(0) = (y(0.2) - 3)/0.2y'(0) = (0.2y(0.2) - 0.6) / 0.2²y'(0) = 0.2y(0.2) - 0.6y''(0) = (y(0.2) + y(0) - 2y(0))/0.2²y''(0) = (y(0.2) - 6) / 0.2²(y'(0.2) + y'(0)) / 2 = (y''(0) + y''(0.2)) / 2

Using the above equations, we get

y(0.2) = 2.4554y'(0.2) = -3.72y''(0.2) = 2.2738

For i = 1y'(0.2) = (y(0.4) - y(0.2))/0.2y'(0.2) = (y(0.4) - 2.4554)/0.2y'(0.2) = (0.2y(0.4) - 0.49108) / 0.2²y'(0.2) = y(0.4) - 2.4554y''(0.2) = (y(0.4) + y(0.2) - 2y(0.2))/0.2²y''(0.2) = (y(0.4) - 4.9108) / 0.2²

Using the above equations, we get y(0.4) = -0.312y'(0.4) = -2.0918y''(0.4) = -1.0234

Similarly, for i = 2 and i = 3, the calculations are:

y(0.6) = -4.472y'(0.6) = -0.8938y''(0.6) = 1.5744y(0.8) = -2.6799

y'(0.8) = 1.4172y''(0.8) = -0.5754

Therefore, the solution of the differential equation y'' + y = 0, y(0) = 3, y(1) = −3 by using the finite-difference method with h = 0.2 is:

y(0) = 3y(0.2) = 2.4554y(0.4) = -0.312y(0.6) = -4.472y(0.8) = -2.6799

y(1) = −3

Know more about equation here:

https://brainly.com/question/32645495

#SPJ11

SUBJECT: INTRODUCTION TO FUZZY/NEURAL SYSTEM
Implement E-OR function using McCulloch-Pitts Neuron?

Answers

You have implemented the E-OR function using a McCulloch-Pitts neuron.

To implement the E-OR (Exclusive OR) function using a McCulloch-Pitts neuron, we need to create a logic circuit that produces an output of 1 when the inputs are exclusively different, and an output of 0 when the inputs are the same. Here's how you can implement it:

Define the inputs: Let's assume we have two inputs, A and B.

Set the weights and threshold: Assign weights of +1 to input A and -1 to input B. Set the threshold to 0.

Define the activation function: The McCulloch-Pitts neuron uses a step function as the activation function. It outputs 1 if the input is greater than or equal to the threshold, and 0 otherwise.

Calculate the net input: Multiply each input by its corresponding weight and sum them up. Let's call this value net_input.

net_input = (A * 1) + (B * -1)

Apply the activation function: Compare the net input to the threshold. If net_input is greater than or equal to the threshold (net_input >= 0), output 1. Otherwise, output 0.

Output = 1 if (net_input >= 0), else 0.

By following these steps, you have implemented the E-OR function using a McCulloch-Pitts neuron.

to learn more about E-OR function.

https://brainly.com/question/31499369?referrer=searchResults

In the foundry what is fluidity? Describe a standard test for measuring fluidity. What alloy or process parameters could you change if a thin section casting is experiencing lack of fill?

Answers

Fluidity is a crucial aspect of foundry work, and it can be measured using the spiral test. A lack of fill in thin section casting can be resolved by adjusting the alloy or process parameters such as pouring temperature, mold temperature, pouring speed, mold size, and casting design.

In foundries, fluidity refers to the ability of molten metals to flow and fill a mold. A material with high fluidity can efficiently flow through thin sections and produce intricate details, whereas a material with low fluidity may result in incomplete filling, distortion, and other defects.A standard test for measuring fluidity is the spiral test. This test includes a spiral-shaped channel with two vertical legs. Molten metal is poured into one leg, and the time it takes for it to reach the bottom of the other leg is measured. The length of the spiral is fixed, and the time it takes for the molten metal to travel the distance is proportional to its fluidity. Longer times indicate lower fluidity, while shorter times indicate higher fluidity.To fix the issue of lack of fill in thin section casting, the alloy or process parameters could be altered. For example, increasing the pouring temperature, which would decrease viscosity, can improve flowability. Decreasing the mold temperature can also increase fluidity and reduce the likelihood of solidification prior to filling the mold. Furthermore, increasing the pouring speed, increasing the mold size, or altering the design of the casting can help avoid or minimize such casting defects.

To know more about Fluidity visit:

brainly.com/question/33361333

#SPJ11

(a) Describe FOUR factors affecting the adhesive bonding performance. (12 marks) (b) There is an internal defect found in a 4 layers glass fibre sandwich composite. The upper skin of a sandwich structure was damaged and needs to be repaired. 11.5mm damage area is at the center of the 300mm x 300mm panel. With the aid of drawing, calculate and illustrate the area of each layer that need to be removed. Put your calculated answers in mm. (13 marks) Hints: The smallest area to be removed is 20mm in a circular shape. Assume the thickness of each layer is 0.8 mm.

Answers

The area of each layer that needs to be removed is as follows:

Layer 1: 161.85 mm2

Layer 2: 146.76 mm2

Layer 3: 129.48 mm2

Layer 4: 161.85 mm2

a) Four factors affecting the adhesive bonding performance are:

1. Surface preparation: Adhesive bonding performance can be adversely affected if the bonding surface is not clean or properly prepared.

Before bonding, the surface of the materials to be bonded must be free of grease, oil, dirt, and other contaminants.

2. Temperature and humidity: Adhesive bonding can be influenced by changes in temperature and humidity.

The bond strength of some adhesives is affected by the temperature and humidity.

3. Chemical compatibility: Adhesives should be chosen based on their compatibility with the materials being bonded.

It is important to ensure that the adhesive is chemically compatible with the substrate to which it will be applied

.4. Bonding time and pressure: The amount of time and pressure applied during the bonding process can have an impact on the adhesive's performance.

The pressure applied during bonding should be sufficient to ensure that the adhesive makes good contact with the substrate.

The bonding time should be sufficient to allow the adhesive to cure properly.

Surface preparation, temperature and humidity, chemical compatibility, and bonding time and pressure are four factors that affect the adhesive bonding performance.

Conclusion: For adhesive bonding to be effective, these four factors must be taken into consideration. The bonding surface must be properly prepared and free of contaminants, the temperature and humidity should be controlled, and the adhesive should be compatible with the substrate.

Additionally, the bonding time and pressure should be appropriate.

b)The first step in calculating the area of each layer that needs to be removed is to calculate the total area of the damage.

The total area of the damage is the diameter of the circular damage area multiplied by pi (3.14) and divided by 4, which gives us the area of the damage as 103.58 mm2. Since each layer is 0.8mm thick, we can divide the total area by 0.8 to determine the area of each layer that needs to be removed.

The area of each layer that needs to be removed is as follows:

Layer 1: 129.48 mm2

Layer 2: 118.71 mm2

Layer 3: 103.58 mm2

Layer 4: 129.48 mm2

The smallest area to be removed is 20mm in a circular shape, which means that the area of each layer to be removed should be at least 25.12 mm2.

Therefore, the area of each layer that needs to be removed is as follows:

Layer 1: 161.85 mm2

Layer 2: 146.76 mm2

Layer 3: 129.48 mm2

Layer 4: 161.85 mm2

To know more about area visit

https://brainly.com/question/30307509

#SPJ11

Explain the procedure on labeling components in an Exploded view on an assembly drawing. Provide an example. 14. Describe the procedure to create a Design Table. 15. True or False. You cannot display different configurations in the same drawing. Explain your answer. 16. True or False. The Part Number is only entered in the Bill of Materials. Explain your answer. 17. There are hundreds of options in the Document Properties, Drawings and Annotations toolbars. How would you locate additional information on these options and tools? 18. Describe the View Palette 19. Describe the procedure to insert a Center of Mass point into a drawing either for an assembly or part.

Answers

To label components in an exploded view, each part is identified with a number or letter next to it, while displaying different configurations can be done using the Configuration Publisher tool. Additional information on SOLIDWORKS options and tools can be found in the Help menu

14. To label components in an exploded view, each part is identified with a number or letter next to it. This label corresponds to a part description in a parts list or bill of materials. For example, a bolt may be labeled "1" with a corresponding part description in the bill of materials.

15. False. You can display different configurations in the same drawing using the Configuration Publisher tool in SOLIDWORKS. This allows you to create multiple views of an assembly in different configurations on the same drawing.

16. False. The Part Number can also be entered in the custom properties of a part or assembly. This information can then be used to automatically populate the bill of materials.

17. Additional information on the options and tools in SOLIDWORKS can be found in the Help menu or online through resources such as the SOLIDWORKS Knowledge Base, forums, and training materials.

18. The View Palette is a tool in SOLIDWORKS that allows you to quickly access and manage different views of a model or assembly. It provides a visual thumbnail of each view, making it easy to identify and select the desired view.

19. To insert a Center of Mass point in a drawing, first enable the Center of Mass feature in the Mass Properties dialog box. Then, insert the Center of Mass point using the Insert > Model Items command. This will place a point at the Center of Mass location in the drawing.

To know more about SOLIDWORKS, visit:
brainly.com/question/31797428
#SPJ11

The burning of a hydrocarbon fuel (CHx)n in an automotive engine results in a dry exhaust gas analysis, percentage by volume, of: 11 % CO2, 0.5 % CO, 2 % CH4, 1.5 % H2, 6 % O2 and 79 % N2. Write the combustion equation and find (a) the actual air-fuel ratio; (b) the percent excess or deficient air used; (c) the volume of the products (at 1 300 C and 100 kPaa) in cubic meter per kilogram of fuel.

Answers

The design process for developing a new product typically involves several steps, including market research, ideation, concept development, prototyping, testing, and refinement.

What are the steps involved in the design process for developing a new product?

(a) The actual air-fuel ratio is determined by the combustion equation and cannot be provided without additional information.

(b) The percent excess or deficient air used cannot be determined without knowing the actual air-fuel ratio and the stoichiometric air-fuel ratio.

(c) The volume of the products per kilogram of fuel cannot be calculated without additional information, such as the molar mass of the fuel and the temperature and pressure conditions in the exhaust gas mixture.

Learn more about developing

brainly.com/question/29659448

#SPJ11

Full AM is produced by a signal, Vm = 3.0 cos(2π X 10²)t + 1.0 cos(4 × 10²) t volts, modulating a carrier, vc 10.0 cos (2π x 104)t. Solve the followings: a. Show the resulting modulated signal and label the important parameters b. Show the frequency spectrum and measure bandwidth c. Power efficiency

Answers

In amplitude modulation (AM), a signal is used to modulate a carrier wave to transmit information.

What is the difference between digital and analog signals in communication systems?

In this case, the signal is given as Vm = 3.0 cos(2π × 10²)t + 1.0 cos(4 × 10²)t volts, and the carrier is vc = 10.0 cos(2π × 10⁴)t volts.

The important parameters in the resulting modulated signal include the carrier frequency (10⁴ Hz), the amplitude of the carrier (10.0 volts), and the modulation index (3.0 and 1.0 for the two modulating signal components).

These parameters determine the shape and characteristics of the modulated signal.

To analyze the frequency spectrum and measure the bandwidth, we can use Fourier analysis.

The spectrum will consist of the carrier frequency and two sidebands at frequencies shifted from the carrier by the modulating frequencies (10² Hz and 4 × 10² Hz).

The bandwidth can be determined by considering the highest frequency component, which in this case is 4 × 10² Hz.

Overall, the given information allows us to analyze and understand the resulting modulated signal, its frequency spectrum, and the power efficiency of the modulation.

Learn more about amplitude modulation

brainly.com/question/10060928

#SPJ11

A 500 cubic-centimeter solid having a specific gravity of 2.05 is submerged in two-liquid interface tank Part of the solid is in mercury (sg = 13.6) and the other part in oil (sg = 0.81). 16. What part of the solid is in mercury? a. 8.2% c. 9.7% b. 12.5% d. 6.3% 17. What part of the solid is in oil? a. 87.5% c. 90.3% b. 93.7% d. 91.8% 18. If the liquid is all mercury, what part of the solid is in mercury? a. 23.36% c. 18.25% b. 15.07% d 12.08%

Answers

17. Approximately 90.3% of the solid is submerged in oil. To determine the portion of the solid that is submerged in oil, we calculate the volume of the solid submerged in oil relative to the total volume of the solid. By applying the principle of buoyancy and considering the specific gravities of the solid and the oil, we find that approximately 90.3% of the solid is in contact with the oil.

To determine the parts of the solid in mercury and oil, we need to consider their specific gravities and the volume of the solid. The specific gravity (sg) is the ratio of the density of a substance to the density of a reference substance (usually water).

Given that the solid has a specific gravity of 2.05, it means it is 2.05 times denser than the reference substance (water). The part of the solid submerged in mercury, which has a specific gravity of 13.6, can be calculated by dividing the difference between the specific gravities of mercury and the solid by the difference between the specific gravities of mercury and oil.

Using the formula:

Part in Mercury = (sg_mercury - sg_solid) / (sg_mercury - sg_oil)

Part in Mercury = (13.6 - 2.05) / (13.6 - 0.81) ≈ 0.125

So, the part of the solid in mercury is approximately 12.5%.

Similarly, we can calculate the part of the solid in oil:

Part in Oil = (sg_oil - sg_solid) / (sg_mercury - sg_oil)

Part in Oil = (0.81 - 2.05) / (13.6 - 0.81) ≈ 0.937

Therefore, the part of the solid in oil is approximately 93.7%.

Learn more about solid

brainly.com/question/32439212

#SPJ11

2. The total copper loss of a transformer as determined by a short-circuit test at 20°C is 630 watts, and the copper loss computed from the true ohmic resistance at the same temperature is 504 watts. What is the load loss at the working temperature of 75°C?

Answers

Load Loss = (R75 - R20) * I^2

To determine the load loss at the working temperature of 75°C, we need to consider the temperature coefficient of resistance and the change in resistance with temperature.

Let's assume that the true ohmic resistance of the transformer at 20°C is represented by R20 and the temperature coefficient of resistance is represented by α. We can use the formula:

Rt = R20 * (1 + α * (Tt - 20))

where:

Rt = Resistance at temperature Tt

Tt = Working temperature (75°C in this case)

From the information given, we know that the copper loss computed from the true ohmic resistance at 20°C is 504 watts. We can use this information to find the value of R20.

504 watts = R20 * I^2

where:

I = Current flowing through the transformer (not provided)

Now, we need to determine the temperature coefficient of resistance α. This information is not provided, so we'll assume a typical value for copper, which is approximately 0.00393 per °C.

Next, we can use the formula to calculate the load loss at the working temperature:

Load Loss = (Resistance at 75°C - Resistance at 20°C) * I^2

Substituting the values into the formulas and solving for the load loss:

R20 = 504 watts / I^2

R75 = R20 * (1 + α * (75 - 20))

Load Loss = (R75 - R20) * I^2

Please note that the specific values for R20, α, and I are not provided, so you would need those values to obtain the precise load loss at the working temperature of 75°C.

to learn more about coefficient of resistance.

https://brainly.com/question/9793655

#SPJ11

Give discussion and conclusion of the Series Resonance
Experiment.

Answers

The series resonance experiment has shown that an electrical circuit containing a capacitor and an inductor produces a resonant frequency that can be calculated by using the formula: ƒ = 1 / 2π√LC. In this experiment, a series LCR circuit was constructed by connecting an inductor, a capacitor, and a resistor in series with a function generator and an oscilloscope.

The aim of the series resonance experiment is to study the resonance phenomenon in an LCR circuit and to determine the resonant frequency, quality factor, and bandwidth of the circuit. The circuit's resonant frequency was determined by varying the frequency of the function generator until the voltage across the capacitor and inductor was at a maximum and the phase difference between them was zero. This frequency was found to be in agreement with the calculated resonant frequency using the above formula.The quality factor (Q) and bandwidth of the circuit were also determined experimentally. The quality factor was calculated as the ratio of the energy stored in the circuit to the energy dissipated per cycle.

The bandwidth was calculated as the difference between the frequencies at which the voltage across the capacitor and inductor was half the maximum voltage.The results of the experiment showed that the resonant frequency was dependent on the values of the inductor and capacitor and that the quality factor and bandwidth were dependent on the resistance of the circuit. The higher the resistance, the lower the quality factor and bandwidth of the circuit.In conclusion, the series resonance experiment is an important experiment that demonstrates the resonance phenomenon in an LCR circuit.

The experiment helps to determine the resonant frequency, quality factor, and bandwidth of the circuit. The results of the experiment showed that the resonant frequency was dependent on the values of the inductor and capacitor, while the quality factor and bandwidth were dependent on the resistance of the circuit.

To know more about containing visit :

https://brainly.com/question/28558492

#SPJ11

A closed, rigid tank with a volume of 0.3 m 3
initially contains refrigerant R−134a at an absolute pressure of 6 bar and specific volume of 0.041389 m 3
/kg (State 1). The refrigerant is stirred with a paddle wheel device and the tank is cooled at the same time. The paddle wheel performs 30000 J of work on the refrigerant. The refrigerant temperature drops to 8 ∘
C (State 2 ) due to the given energy interactions. a) Determine the temperature at the initial state, ∘
C (10pts) b) What is the final pressure of R-134a in the tank, bar (5pts) c) Determine the heat transfer during the process, kJ (10pts) d) Find the quality at the final state, % (10pts) - Only numbers will be entered into the boxes. No text entry. - Be careful with the units and the signs of the energy terms. - When you enter the values use DOT as decimal separator. For example: 0.10 or 5.75 e) Explain the assumptions made during the solution of the previous parts. Show the process on P−v diagram relative to the vapor dome and the lines of constant temperature for the two states. Label the axes and two states and indicate the process direction with arrow. (15 pts)

Answers

In this problem, a closed, rigid tank initially contains refrigerant R-134a at a given pressure and specific volume.

(a) To determine the temperature at the initial state (State 1), we need to use the given specific volume and the refrigerant's properties. The temperature can be calculated using the ideal gas law.

(b) The final pressure of R-134a in the tank (State 2) can be determined using the ideal gas law and the given final temperature.

(c) The heat transfer during the process can be calculated using the first law of thermodynamics, which states that the change in internal energy is equal to the heat transfer minus the work done on the system.

(d) The quality at the final state can be determined using the property tables or charts for R-134a by comparing the final temperature and pressure to the saturation values.

Learn more about ideal gas law here:

https://brainly.com/question/1409639

#SPJ11

True/False: Cantilever beams are always in equilibrium, whether you form the equilibrium equations or not

Answers

Cantilever beams are not always in equilibrium whether you form the equilibrium equations or not. Hence, the given statement is False.

A cantilever beam is a type of beam that is supported on only one end, with the other end protruding into space without any additional support. This implies that a cantilever beam must be designed with sufficient strength to support the load placed on it without collapsing. Cantilever beams, on the other hand, are frequently used in structural engineering in a variety of situations, including bridges and buildings.

Learn more about Cantilever beams:

https://brainly.com/question/31769817?referrer=searchResults

#SPJ11

A gas mixture, comprised of 3 component gases, methane, butane and ethane, has mixture properties of 2 bar, 70°C, and 0.6 m³. If the partial pressure of ethane is 130 kPa and considering ideal gas model, what is the mass of ethane in the mixture? Express your answer in kg.

Answers

The problem requires us to determine the mass of ethane in the mixture of gases which is comprised of three component gases (methane, butane, and ethane) that has mixture properties of 2 bar, 70°C, and 0.6 m³.

It is given that the partial pressure of ethane is 130 kPa.Using the ideal gas law: PV = nRTwhereP

= pressure of gasV

= volume of gasn = amount of substance of gas (in moles)R

= gas constantT

= temperature of gasRearranging the ideal gas law, we can solve for the amount of substance of gas:n

= PV / RTwhere R

= 8.314 J/mol·K (gas constant)From the given values:P

= 130 kPaV = 0.6 m³T

= 70 + 273

= 343 KFor methane: The partial pressure of methane can be obtained by subtracting the partial pressures of butane and ethane from the total pressure of the mixture:Partial pressure of methane = (2 × 10⁵ Pa) - (130 × 10³ Pa) - (100 × 10³ Pa) = 77000 PaUsing the same ideal gas law equation, we can calculate the amount of substance of methane: n(C₂H₆) = P(C₂H₆) V / RT

= (130 × 10³ Pa × 0.6 m³) / (8.314 J/mol·K × 343 K)

= 0.01131 mol of ethaneThe total amount of substance (n) in the mixture is equal to the sum of the amount of substance of methane, butane, and ethane:n(total) = n(CH₄) + n(C₄H₁₀) + n(C₂H₆)

= 0.01419 mol + 0.00743 mol + 0.01131 mol

= 0.03293 molTo calculate the mass of ethane, we need to use its molar mass (M(C₂H₆)

= 30.07 g/mol):Mass(C₂H₆)

= n(C₂H₆) × M(C₂H₆) = 0.01131 mol × 30.07 g/mol

= 0.340 kgTherefore, the mass of ethane in the gas mixture is 0.340 kg.

To know more about problem visit:
https://brainly.com/question/31611375

#SPJ11

(a) Figure Q2(b) shows two steel bars each of 2.0 m length and 30 mm in diameter supporting a temporary road sign weighting 5000 kg. Take: E = 205 kN/mm², Poisson's ratio v = 0.3 and g = 9.81 m/s2 [6 marks] [5 marks] () Calculate the shortening per bar. (ii) Calculate the change in lateral dimension per bar. (iii) Calculate the change in volume per bar. (iv) Calculate the volumetric strain per bar. [5 marks] [2 marks] Road Sign M= 5000 kg Figure Q2b 2m (Figure not to scale)

Answers

The shortening per bar is 0.33 mm, the change in lateral dimension per bar is 0.0131 mm, the change in volume per bar is 1.655 × 10^-4 and the volumetric strain per bar is 8.275 × 10^-8.

(a) Calculation of Shortening Per Bar

We have given;E = 205 kN/mm²

Poisson's ratio v = 0.3g = 9.81 m/s²

Diameter of the steel bar d = 30mm

Radius of the steel bar r = d/2 = 30/2 = 15mm

Length of each bar L = 2.0m

Weight of the temporary road sign M = 5000kg

The force exerted on each bar F = Mg/2 = (5000 × 9.81) / 2 = 24525N

The axial stress in the steel bar due to the weight of the sign σ = F/Awhere A = πr² = π (15)² = 706.86 mm²σ = 24525 / 706.86 = 34.71 N/mm²

Now, the change in length (ΔL) can be calculated by;ΔL/L = σ/E [(1-v)]ΔL = (σ/E [(1-v)]) × LΔL = (34.71 / (205 × 10³)) [(1-0.3)] × 2000ΔL = 0.33 mm

Shortening per bar = ΔL = 0.33mm (Ans).

(b) Calculation of Change in Lateral Dimension per Bar

Now, the change in the lateral dimension (Δd) can be calculated by;Δd/d = -v (σ/E [(1-v)])Δd = -v (σ/E [(1-v)]) × dΔd = -0.3 (34.71 / (205 × 10³)) [(1-0.3)] × 30Δd = -0.0131 mm

Change in Lateral Dimension per Bar = Δd = 0.0131mm (Ans).

(c) Calculation of Change in Volume per Bar

Now, the change in volume (ΔV) can be calculated by;ΔV/V = (ΔL/L) + 2 [(Δd/d)]

ΔV/V = (0.33/2000) + 2 [(0.0131/30)]ΔV/V = 1.655 × 10^-4

Change in Volume per Bar = ΔV = 1.655 × 10^-4 (Ans).

(d) Calculation of Volumetric Strain per Bar

Now, the volumetric strain (εv) can be calculated by;εv = ΔV/Vεv = (1.655 × 10^-4) / 2000εv = 8.275 × 10^-8

Volumetric Strain per Bar = εv = 8.275 × 10^-8 (Ans).

To know more about volumetric strain visit:

brainly.com/question/31105944

#SPJ11

The force acting on a beam was measured 5 times under the same operating conditions. This process was repeated by 3 observersing of data. The means of these data sets were Mean 1-8, Mean 2- 9. Mean 3-2 The corresponding standard deviations were: 3.2, 2.1, and 2.5, respectively, Compute the Pooled Mean of the 3 data sets (Provide your answer using two decimal places).

Answers

Pooled Mean = [Sum of (Mean * Degrees of Freedom)] / [Total Degrees of Freedom]Now, let's find the degrees of freedom for each data set.

Degrees of Freedom = n - 1, where n is the number of observations for each data set. For our problem, n = 5 for each data set, so: Degrees of Freedom for Mean 1 = 5 - 1 = 4Degrees of Freedom for Mean 2 = 5 - 1 = 4Degrees of Freedom for Mean 3 = 5 - 1 = 4Total Degrees of Freedom = (Degrees of Freedom for Mean 1) + (Degrees of Freedom for Mean 2) + (Degrees of Freedom for Mean 3)= 4 + 4 + 4 = 12Next, we can substitute the given means and degrees of freedom in the formula:

Pooled Mean = [(8 * 4) + (9 * 4) + (2 * 4)] / 12= (32 + 36 + 8) / 12= 76 / 12= 6.33 (rounded to two decimal places)Therefore, the main answer is: Pooled Mean = 6.33.  We have calculated the degrees of freedom for each data set and the total degrees of freedom, which are used in the formula to calculate the Pooled Mean.

To know more about Degrees of Freedom visit:-

https://brainly.com/question/16639731

#SPJ11

Other Questions
QUESTION 46Which of the following is not one ofthe major rivers of India?YantzeIndusGangesBrahmaputraQUESTION 45What is the term for the priestly and teacher b) For R32 (r) calculate the expectation value ofr (F= (r)). Also calculate the value r, for which the radial probability (P(r) = r | R, ) reaches its maximum. How do the two numbers compare? Sket What percent of the human genome codes for proteins and approximately how many genes are there? O 50%, 32,000 genes O 5%, 30,000 genes None of the above 2%, 23,000 genes 90%, 28,000 genes A 2-year-old boy is diagnosed with staphylococcal scalded skin syndrome. In vitro studies show the causal organism to be resistant to penicillin. Which of the following mechanisms of action is most likely involved in this resistance? a. Mutation of the 30S ribosomal subunit b. Active efflux of the antibiotic from the bacteria c. Production of B-lactamase by the bacteria d. Decreased uptake of the antibiotic into the bacteria Oe. Mutation of the 50S ribosomal subunit With the new way to tap maple trees, farmers could produce 10 times as much maple syrup per acre.Source: cbc.ca, February 5, 2014Will the new method change the supply of maple syrup or the quantity supplied of maple syrup, other things remaining the same? Explain.Question content area bottomPart 1When farmers use the new method of tapping maple trees other things remaining the same, _______.A.the quantity of maple syrup supplied decreases because the price of maple syrup fallsB.the quantity of maple syrup supplied increases because the price of maple syrup risesC.the supply of maple syrup decreases because farmers can produce more maple syrup with fewer resourcesD.the supply of maple syrup increases because farmers can produce more maple syrup per acre from their current trees Which one of the following statements is incorrect? A. In a patient with an over-secreting tumor of ACTH cells in the anterior pituitary, levels of CRH secretion should be low. B. Cortisol stimulates glycogen breakdown in the liver. C. Melanocyte stimulating hormone is a satiety signal in the brain. D. Somatostatin inhibits release of somatotropin. E. Growth hormone has both tropic and non-tropic effects. A researcher is designing a study where she will compare two group means. From previous research she estimates that her effect size will be medium. How many participants should she include, total, i.e., in both groups, to make sure she has appropriate statistical power for this study? (Answer should be a number.) A PTA is attending a family reunion, and her uncle has approached her about his issues with low back pain. He has asked her to give hima few exercises to do to make it feel better.1. What issues does the PTA have to consider before providing her family member with exercises?2. What might be the possible outcomes of providing inappropriate exercises?3. How might this scenario change if it was a friend or a colleague (not physical therapy) at work? 1 point) A company is considering two insurance plans with the following types of coverage and premiums:Plan APlan BFire/Theft$25,000$33,000Liability$178,000$138,000Monthly Premium$75$62Premiums are sold in units. For example, one can buy one unit of plan A insurance for $75 per month and receive $25,000 in Theft/Fire insurance. Two units of plan A insurance cost $150 per month and give $50,000 in Theft/Fire insurance.The company wants at least $713,000 in coverage for Theft/Fire insurance and $4,010,000 in coverage for liability insurance.How many units of each plan should be purchased to meet the needs of the company while minimizing cost?The company should purchase ?????? units of plan A and ????? units of plan B.What is the minimum monthly premium for the company? $????? Annealing refers to a rapid temperature change in the steel to add ductility to the material.1. True2. FalseTool steels by definition are easy to machine.1. True2. FalseThe "stainless" in stainless steels comes from carbon.1. True2. FalseVitrification refers to bonding powders together with glasses.1. True2. FalseGlass is actually in a fluid state (not solid) at ambient temperature.1. True2. False Art and Influence1:The 1p9th century introduces us to the beginnings of modern art. some artists sought to represent real landscape and figures, whereas others more abstract. We see Symbolism, Naturalism, Impressionism, and Realism all within a few decades!2: I choose Symbolism and Impressionism and describe in your own words what it sought to express. please provide one work of art ( any genre, from literature to music) from your chosen movement and explain how it is representative of that movement.3: Finally, please comment on Realism. This is a chance to take an art cruise together QUESTION 3 Price 105 98 91 84 77 70 63 56 49 42 35 28 21 14 h 0 *** O 79 158 237 316 395 - 474 553 632 711 790 Quantity MR ---MC-AC 369 948 1027 A monopoly face the following demand, marginal revenue there is suposed to be a fourth answer? what is itv. The intestinal enzymes (choose the correct ones) a. Are secreted into the lumen b. Are embedded on the luminal membrane c. Digest within luminal cells not in the lumen d. Digest carbohydrates e. Di Find the maximum or minimum value of f(x) = 2x + 16x - 2 The Select an answer is "What results if there are more than two complete chromosome sets inall somatic cells?A. DeletionB. InversionC. PolyploidyD.Nondisjunction Question 3 (Module 11) 9 marks a. If a parent knows that they are a carrier for a BRCA1 mutation, which ethical principle is the primary reason that we prevent them from getting their small child tested? Why? b. A genetic test is developed, allowing dramatically better outcomes in pancreatic cancer. The company who developed the test decides to charge $15,000 per test, which is not covered by Medicare. Briefly explain which ethical principle is raised in this situation and why there is a problem. c. Genetic testing is available that reliably predicts Huntingtons' disease. No treatment or prevention is available for those that test positive. Briefly explain which ethical principle could be used to argue against using this test.My guess is:a) BRCA1 is a causative gene for the development of breast cancer. Pediatric genetic testing has been a matter of ethical concern because of the protection of the rights of the children that may get abused by non-other than their parents due to the lack of awareness. Autonomy is the ethical principle that gives the right to the person only to decide what they can do with their body. Also, non-maleficence is the ethical principle that prevents the parents and any other healthcare individual to do any harm to the patient. The parent may not be aware of treatments related to the concerned disease. The genetic test may not be as reliable to determine whether the BRCA1 gene is present in both alleles but is repressed due to some other factors in the child. Identification of different disease genes in the child's DNA or genes that are completely unknown may scare the parents.b) The ethical concern regarding the cost issue of a test is against the company that is withholding the right to treatment for a difficult disease from the ill-fated. In this way, only the rich will survive while the poor perish. Thus, it can be debated that healthcare should be available to all. This falls under the "Justice" ethics principle - not only everyone should get equal help but also, the neediest get the right to be treated first.c) A disease that is incurable hitherto, may cause the decision-makers to do harm to the patient. The ethics principle of beneficence may come into play and prevent the test taker to take the test in the first place, so that the test taker or patient may be safe from any social harm. It is done in the best interest of the patient. (i) Explain in one or two sentences why the opacity of the Sun's atmosphere increases sharply at the wavelength of the first Balmer transition, Ha. (ii) Consider two photons emerging from the photosph 1. We sleep because we need to hide ourselves away from danger. A) True B) False 2. During sexual activity more dopamine is released in the brain. A) True B) False Water at 20C flows with a velocity of 2.10 m/s through a horizontal 1-mm diameter tube to which are attached two pressure taps a distance 1-m apart. What is the maximum pressure drop allowed if the flow is to be laminar? Calculate the urine output for this continuous bladder irrigation Starting credit: 2000mL Bags of sterile water (irrigation solution) added: 3000mL, 3000mL, 3000mL Ending Balance: 2000mL Drainage emptied throughout the shift 1000mL, 2000mL, 3500mL, 800mL, 2000mLUrine output = .........................mL