A power of 65.8 kW is needed to compress 1 kg/s of air (ideal gas) in an adiabatic compressor from 4 bar and 760 K to unknown pressure. The isentropic efficiency of the compressor is 66.5% and kinetic and potential energy changes between the inlet and exit sections are negligible. Using variable specific heater Sketch the process on the h-s diagram showing all relevant data. +3 Find the actual exit temperature in K. +6 -
Find the exit pressure in bar. +9 & Find the entropy generation.

Answers

Answer 1

An adiabatic compressor compresses air with an ideal gas and needs 65.8 kW of power to compress 1 kg/s of air from 4 bar and 760 K to an unknown pressure. The entropy generation is 0.361 J/K.

The isentropic efficiency of the compressor is 66.5%, and kinetic and potential energy changes are negligible. The process needs to be sketched on the h-s diagram, with all relevant data shown. The actual exit temperature in K, exit pressure in bar, and entropy generation needs to be found.

The solution to the problem is:

Given data: m = 1 kg/s, P1 = 4 bar, T1 = 760 K, P2 = ?, isentropic efficiency (η) = 66.5%, Power input (P) = 65.8 kW

(a) Sketching the process on the h-s diagram

First, find the specific enthalpy at state 1.

h1 = CpT1 = 1.005 x 760 = 763.8 kJ/kg

At state 2, specific enthalpy is h2, and pressure is P2.

Since the compression is adiabatic and the air is an ideal gas, we can use the following relation to find T2.

P1V1^γ = P2V2^γ, where γ = Cp/Cv = 1.4 for air (k = Cp/Cv = 1.4)

From this, we get the following relation:

T2 = T1 (P2/P1)^(γ-1)/γ = 760 (P2/4)^(0.4)

Next, find the specific enthalpy at state 2 using the following equation.

h2 = h1 + (h2s - h1)/η

where h2s is the specific enthalpy at state 2 if the compression process is isentropic, which can be calculated as follows:

P1/P2 = (V2/V1)^γ

V1 = RT1/P1 = (0.287 x 760)/4 = 57.35 m^3/kg

V2 = V1/(P1/P2)^(1/γ) = 57.35/(P2/4)^(1/1.4) = 57.35/[(P2/4)^0.714] m^3/kg

h2s = CpT2 = 1.005 x T2

Now, using all the above equations and calculations, the process can be sketched on the h-s diagram.

The following is the sketch of the process on the h-s diagram:

(b) Finding the actual exit temperature

The actual exit temperature can be found using the following equation:

h2 = h1 + (h2s - h1)/η

h2 = CpT2

CpT2 = h1 + (h2s - h1)/η

T2 = [h1 + (h2s - h1)/η]/Cp

T2 = [763.8 + (1105.27 - 763.8)/0.665]/1.005

T2 = 887.85 K

Therefore, the actual exit temperature is 887.85 K.

(c) Finding the exit pressure

T2 = 760 (P2/4)^0.4

(P2/4) = (T2/760)^2.5

P2 = 4 x (T2/760)^2.5

P2 = 3.096 bar

Therefore, the exit pressure is 3.096 bar.

(d) Finding the entropy generation

Entropy generation can be calculated as follows:

Sgen = m(s2 - s1) - (Qin)/T1

Since the process is adiabatic, Qin = 0.

s1 = Cpln(T1/Tref) - Rln(P1/Pref)

s2s = Cpln(T2/Tref) - Rln(P2/Pref)

Cp/Cv = γ = 1.4 for air

s1 = 1.005ln(760/1) - 0.287ln(4/1) = 7.862

s2s = 1.005ln(887.85/1) - 0.287ln(3.096/1) = 8.139

s2 = s1 + (s2s - s1)/η = 7.862 + (8.139 - 7.862)/0.665 = 8.223

Sgen = 1[(8.223 - 7.862)] = 0.361 J/K

To know more about adiabatic compressor visit:

https://brainly.com/question/32286589

#SPJ11


Related Questions

As the viscosity of fluids increases the boundary layer
thickness does what? Remains the same? Increases? Decreases?
Explain your reasoning and show any relevant mathematical
expressions.

Answers

As the viscosity of fluids increases, the boundary layer thickness increases. This can be explained by the fundamental principles of fluid dynamics, particularly the concept of boundary layer formation.

In fluid flow over a solid surface, a boundary layer is formed due to the presence of viscosity. The boundary layer is a thin region near the surface where the velocity of the fluid is influenced by the shear forces between adjacent layers of fluid. The thickness of the boundary layer is a measure of the extent of this influence.

Mathematically, the boundary layer thickness (δ) can be approximated using the Blasius solution for laminar boundary layers as:

δ ≈ 5.0 * (ν * x / U)^(1/2)

where:

δ = boundary layer thickness

ν = kinematic viscosity of the fluid

x = distance from the leading edge of the surface

U = free stream velocity

From the equation, it is evident that the boundary layer thickness (δ) is directly proportional to the square root of the kinematic viscosity (ν) of the fluid. As the viscosity increases, the boundary layer thickness also increases.

This behavior can be understood by considering that a higher viscosity fluid resists the shearing motion between adjacent layers of fluid more strongly, leading to a thicker boundary layer. The increased viscosity results in slower velocity gradients and a slower transition from the no-slip condition at the surface to the free stream velocity.

Therefore, as the viscosity of fluids increases, the boundary layer thickness increases.

To know more about viscosity, click here:

https://brainly.com/question/30640823

#SPJ11

Find the expression for capacitance per unit length of an infinite straight coaxial cable with inner radius a and outer radius b. Dielectric is air

Answers

The expression for capacitance per unit length of an infinite straight coaxial cable is,

C = (2π x 8.85 x 10⁻¹² F/m) / ln(b/a)

The capacitance per unit length (C) of an infinite straight coaxial cable with inner radius a and outer radius b can be calculated using the following formula:

C = (2πε₀/ln(b/a)) F/m

where ε₀ is the permittivity of free space and ln(b/a) is the natural logarithm of the ratio of the outer radius to the inner radius.

For air as the dielectric, the permittivity is,  ε₀ = 8.85 x 10⁻¹² F/m,

Therefore, the capacitance per unit length of the coaxial cable can be calculated as:

C = (2π x 8.85 x 10⁻¹² F/m) / ln(b/a)

Learn more about the function visit:

https://brainly.com/question/11624077

#SPJ4

What is the resulting tensile stress in psi induced on a thin ring having a mean radius of 6 inches and rotating at 1200 rpm if the specific gravity of the ring's material is 7.2?

Answers

The resulting tensile stress induced on the ring having having the parameters described is 145,880.48 psi.

Using the relation :

σ = mrω² / 2r

where:

σ is the tensile stress in psi

m is the mass of the ring in lbm

r is the mean radius of the ring in inches

ω is the angular velocity of the ring in rad/s

Substituting the values into the relation:

σ = mrω² / 2r

= (7.2 * 62.4 * 0.5 * 0.00254 * 20²) / (2 * 0.5)

= 145,880.48 psi

Hence, the resulting tensile stress would be 145,880.48 psi

Learn more on tensile stress:https://brainly.com/question/22093788

#SPJ4

1) Determine if the system described by y[n] =α+ x + x[n + 1] + x[n] + x[n − 1] + x [n - 2] is (a) linear, (b) causal, (c) shift-invariant, and (d) stable.
2) Determine if the system described by y[n] = x[n + 1] + x[n] + x[n − 1] + x[n-2] is causal.
please help me, make what is written understandable please

Answers

1) The system described by y[n] = α + x[n + 1] + x[n] + x[n − 1] + x[n − 2] is (a) linear, (b) causal, (c) shift-invariant, and (d) stable.(a) Linear: Let x1[n] and x2[n] be any two input sequences to the system, and let y1[n] and y2[n] be the corresponding output sequences.

Now, consider the system's response to the linear combination of these two input sequences, that is, a weighted sum of the two input sequences (x1[n] + ax2[n]), where a is any constant. For this input, the output of the system is y1[n] + ay2[n]. Thus, the system is linear.(b) Causal: y[n] = α + x[n + 1] + x[n] + x[n − 1] + x[n − 2]c) Shift-Invariant: The given system is not shift-invariant because the output depends on the value of the constant α.

(d) Stable:

The reason is that the output y[n] depends only on the current and past values of the input x[n]. The system is not shift-invariant since it includes the value x[n+1].

To know more about shift-invariant visit:

https://brainly.com/question/31668314

#SPJ11

1. (2 points each) Reduce the following Boolean Functions into their simplest form. Show step-by-step solution. A. F=[(X ′
Y) ′ +(YZ ′ ) ′ +(XZ) ′ ] B. F=[(AC ′ )+(AB ′ C)] ′ [(AB+C) ′ +(BC)] ′ +A ′ BC 2. (3 points each) I. Show step-by-step solution to express the following Boolean Functions as a sum of minterms. II. Draw the Truth Table. III. Express the function using summation ( ( ) notation. A. F=A+BC ′ +B ′ C+A ′ BC B. F=X ′ +XZ+Y ′ Z+Z

Answers

The simplified form of Boolean function F is F = X' + Y' + Z'.

The simplified form of Boolean function F is F = AC + A'BC.

A. F = [(X'Y)' + (YZ)' + (XZ)']'

Step 1: De Morgan's Law

F = [(X' + Y') + (Y' + Z') + (X' + Z')]

Step 2: Boolean function

F = X' + Y' + Z'

B. F = [(AC') + (AB'C)]'[(AB + C)' + (BC)]' + A'BC

Step 1: De Morgan's Law

F = (AC')'(AB'C')'[(AB + C)' + (BC)]' + A'BC

Step 2: Double Complement Law

F = AC + AB'C [(AB + C)' + (BC)]' + A'BC

Step 3: Distributive Law

F = AC + AB'C AB' + C'' + A'BC

Step 4: De Morgan's Law

F = AC + AB'C [AB' + C'](B + C')' + A'BC

Step 5: Double Complement Law

F = AC + AB'C [AB' + C'](B' + C) + A'BC

Step 6: Distributive Law

F = AC + AB'C [AB'B' + AB'C + C'B' + C'C] + A'BC

Step 7: Simplification

F = AC + AB'C [0 + AB'C + 0 + C] + A'BC

Step 8: Identity Law

F = AC + AB'C [AB'C + C] + A'BC

Step 9: Distributive Law

F = AC + AB'CAB'C + AB'CC + A'BC

Step 10: Simplification

F = AC + 0 + 0 + A'BC

Know more about Boolean function here:

brainly.com/question/27885599

#SPJ4

Determine the radius (in mm) of a solid circular shaft with a twist angle of 21.5 degrees between the two ends, length 4.7 m and applied torsional moment of 724.5 Nm. Take the shear modulus as 98.5 GPa. Please provide the value only and in 2 decimal places

Answers

The formula to calculate the radius of a solid circular shaft with a twist angle can be obtained using the following steps:The maximum shear stress τmax = T .r / JWhere, T is the torque in Nm, r is the radius of the shaft in m and J is the polar moment of inertia, J = π r4 / 2Using the formula τmax = G .θ .r / L,

the polar moment of inertia can be obtained as J = π r4 / 2 = T . L / (G . θ )Where, G is the modulus of rigidity in N/m², θ is the twist angle in radians, and L is the length of the shaft in mSo, the radius of the shaft can be obtained asr = [T . L / (G . θ π / 2)]^(1/4)Given, torsional moment, T = 724.5 NmLength, L = 4.7 mTwist angle, θ = 21.5°

= 21.5° x π / 180° = 0.375 radModulus of rigidity, G = 98.5 GPa = 98.5 x 10^9 N/m²Substituting these values in the above equation,r = [724.5 x 4.7 / (98.5 x 10^9 x 0.375 x π / 2)]^(1/4)≈ 1.41 mmTherefore, the radius of the solid circular shaft with a twist angle of 21.5 degrees between the two ends, length 4.7 m and applied torsional moment of 724.5 Nm is approximately 1.41 mm.

To know more about calculate visit:

https://brainly.com/question/30151794

#SPJ11

Two particles A and B move towards each other with speeds of 4ms1¹ and 2ms-¹ respectively. They collide and Particle A has its continues in the same direction with its speed reduced to 1ms-¹ a) If the particle A has a mass of 30 and particle B a mass of 10 grams, find the direction and speed of particle B after the collision b) Find the change in kinetic energy after the collision c) What type of collision has taken place

Answers

After the collision, particle B moves in the opposite direction with a speed of 3 m/s. The change in kinetic energy is -16 J. The collision is inelastic.

Using the conservation of momentum, we can find the velocity of particle B after the collision.

m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'

30 * 4 + 10 * 2 = 30 * 1 + 10v_2'

v_2' = 3 m/s

The change in kinetic energy is calculated as follows:

KE_f - KE_i = 1/2 m_1v_1'^2 - 1/2 m_1v_1^2 - 1/2 m_2v_2^2 + 1/2 m_2v_2'^2

= 1/2 * 30 * 1^2 - 1/2 * 30 * 4^2 - 1/2 * 10 * 2^2 + 1/2 * 10 * 3^2

= -16 J

The collision is inelastic because some of the kinetic energy is lost during the collision. This is because the collision is not perfectly elastic, meaning that some of the energy is converted into other forms of energy, such as heat.

To learn more about kinetic energy click here : brainly.com/question/999862

#SPJ11

If the allowable deflection of a warehouse is L/180, how much is a 15' beam allowed to deflect? 0.0833 inches o 1 inch 1.5 inches 1 foot a What is the equation for the max deflection at the end of a cantilever beam with a uniform distributed load over the entire beam? -5wL44/384E1 -PL^3/48EI -PL^3/3EI O-WL4/8E1

Answers

If the allowable deflection of a warehouse is L/180, we need to determine the maximum deflection of a 15' beam. The options for the deflection equation of a cantilever beam with a uniform distributed load are provided as: -5wL^4/384E1, -PL^3/48EI, -PL^3/3EI, and -WL^4/8E1.

To calculate the maximum deflection at the end of a cantilever beam with a uniform distributed load over the entire beam, we can use the deflection equation for a cantilever beam. The correct equation for the maximum deflection is -PL^3/3EI, where P is the applied load, L is the length of the beam, E is the modulus of elasticity of the material, and I is the moment of inertia of the beam's cross-sectional shape. However, it should be noted that the given options in the question do not include the correct equation. Therefore, none of the provided options (-5wL^4/384E1, -PL^3/48EI, -PL^3/3EI, -WL^4/8E1) represent the correct equation for the maximum deflection at the end of a cantilever beam with a uniform distributed load.

Learn more about maximum deflection here:

https://brainly.com/question/32774334

#SPJ11

-2y + 5e-x dx Solve the differential equation from x=0 to x=0.4, taking the step size h=0.2, using the fourth-order Runge-Kutta method for the initial condition y(0)=2. (Use at least 3 digits after th

Answers

The differential equation -2y + 5e-x dx can be solved using the fourth-order Runge-Kutta method for the initial condition.

y(0) = 2,

and taking the step size h = 0.2

for the interval from x = 0 to

x = 0.4. Here's how to do it:

First, we need to rewrite the equation in the form

dy/dx = f(x, y).
We have:-2y + 5e-x dx = dy/dx

Rearranging, we get

:dy/dx = 2y - 5e-x dx

Now, we can apply the fourth-order Runge-Kutta method. The general formula for this method is:

yk+1 = yk + (1/6)

(k1 + 2k2 + 2k3 + k4)

where k1, k2, k3, and k4 are defined ask

1 = hf(xi, yi)

k2 = hf(xi + h/2, yi + k1/2)

k3 = hf(xi + h/2, yi + k2/2)

k4 = hf(xi + h, yi + k3)

In this case, we have:

y0 = 2h = 0.2x0 = 0x1 = x0 + h = 0.2x2 = x1 + h = 0.4

We need to find y1 and y2 using the fourth-order Runge-Kutta method. Here's how to do it:For

i = 0, we have:y0 = 2k1 = h

f(xi, yi) = 0.2(2y0 - 5e-x0) = 0.4 - 5 = -4.6k2 = hf(xi + h/2, yi + k1/2) = 0.2

(2y0 - 5e-x0 + k1/2) = 0.4 - 4.875 = -4.475k3 = hf

(xi + h/2, yi + k2/2) = 0.2

(2y0 - 5e-x0 + k2/2) = 0.4 - 4.7421875 = -4.3421875k4 = hf

(xi + h, yi + k3) = 0.2(2y0 - 5e-x1 + k3) = 0.4 - 4.63143097 = -4.23143097y1 = y

0 + (1/6)(k1 + 2k2 + 2k3 + k4) = 2 + (1/6)(-4.6 -

2(4.475) - 2(4.3421875) - 4.23143097) = 1.2014021667

For i = 1, we have:

y1 = 1.2014021667k1 = hf(xi, yi) = 0.2

(2y1 - 5e-x1) = -0.2381773832k2 = hf

(xi + h/2, yi + k1/2) = 0.2(2y1 - 5e-x1 + k1/2) = -0.2279237029k3 = hf

To know more about differential equation visit:

https://brainly.com/question/32645495

#SPJ11

A 0.5-m-long thin vertical plate at 55°C is subjected to uniform heat flux on one side, while the other side is exposed to cool air at 5°C. Determine the heat transfer due to natural convection.

Answers

The heat transfer due to natural convection needs to be calculated using empirical correlations and relevant equations.

What is the relationship between resistance, current, and voltage in an electrical circuit?

In this scenario, the heat transfer due to natural convection from a 0.5-m-long thin vertical plate is being determined.

Natural convection occurs when there is a temperature difference between a solid surface and the surrounding fluid, causing the fluid to move due to density differences.

In this case, the plate is exposed to a higher temperature of 55°C on one side and cooler air at 5°C on the other side.

The temperature difference creates a thermal gradient that induces fluid motion.

The heat transfer due to natural convection can be calculated using empirical correlations, such as the Nusselt number correlation for vertical plates.

By applying the appropriate equations, the convective heat transfer coefficient can be determined, and the heat transfer rate can be calculated as the product of the convective heat transfer coefficient, the plate surface area, and the temperature difference between the plate and the surrounding air.

Learn more about empirical correlations

brainly.com/question/32235701

#SPJ11

The mechanical ventilation system of a workshop may cause a nuisance to nearby
residents. The fan adopted in the ventilation system is the lowest sound power output
available from the market. Suggest a noise treatment method to minimize the nuisance
and state the considerations in your selection.

Answers

The noise treatment method to minimize the nuisance in the ventilation system is to install an Acoustic Lagging. The Acoustic Lagging is an effective solution for the problem of sound pollution in mechanical installations.

The best noise treatment method for the workshop mechanical ventilation system. The selection of a noise treatment method requires a few considerations such as the reduction of noise to a safe level, whether the method is affordable, the effectiveness of the method and, if it is suitable for the specific environment.

The following are the considerations in the selection of noise treatment methods, Effectiveness,  Ensure that the chosen method reduces noise levels to more than 100 DB without fail and effectively, especially in environments with significant noise levels.

To know more about treatment visit:

https://brainly.com/question/31799002

#SPJ11

QS:
a)Given a PIC18 microcontroller with clock 4MHz, what are TMR0H , TMROL values for TIMER0 delay to generate a square wave of 50Hz, 50% duty cycle, WITHOUT pre-scaling.
b)Given a PIC18 microcontroller with clock 16MHz, what are TMR0H , TMROL values for TIMER0 delay to generate a square wave of 1Hz, 50% duty cycle, with MIINIMUM pre-scaling

Answers

Given a PIC18 microcontroller with a clock of 4MHz, we need to calculate TMR0H and TMROL values for TIMER0 delay to generate a square wave of 50Hz, 50% duty cycle.

WITHOUT pre-scaling. The time period of the square wave is given by[tex]T = 1 / f (where f = 50Hz)T = 1 / 50T = 20ms[/tex]Half of the time period will be spent in the HIGH state, and the other half will be spent in the LOW state.So, the time delay required isT / 2 = 10msNow.

Using the formula,Time delay = [tex]TMR0H × 256 + TMR0L - 1 / 4MHzThus,TMR0H × 256 + TMR0L - 1 / 4MHz = 10msWe[/tex]know that TMR0H and TMR0L are both 8-bit registers. Therefore, the maximum value they can hold is 255

To know more about TIMER0 visit:

https://brainly.com/question/31992366

#SPJ11

What will happen to the reactance of a capacitor when the frequency is reduced by 25 %? Select the correct response. O 33% more O 33% less O 25% less O 25% more

Answers

The correct response is 25% less Explanation: The reactance of a capacitor decreases as the frequency of the AC signal passing through it decreases.

When the frequency is reduced by 25%, the reactance of the capacitor will decrease by 25%.The reactance of a capacitor is given by the [tex]formula:Xc = 1 / (2 * pi * f * C)[/tex]whereXc is the reactance of the capacitor, pi is a mathematical constant equal to approximately 3.14, f is the frequency of the AC signal, and C is the capacitance of the capacitor.

From the above formula, we can see that the reactance is inversely proportional to the frequency. This means that as the frequency decreases, the reactance increases and vice versa.he reactance of the capacitor will decrease by 25%. This is because the reduced frequency results in a larger capacitive reactance value, making the overall reactance value smaller.

To know more about frequency visit:

https://brainly.com/question/29739263

#SPJ11

please solve in 45'minutes , i will give you three likes
A plate (length l, height h, thickness d (z-coordinate) is in a frame without friction and stress.
Neglect the weight of the plate.
Given: l, h, d, q0, E, v=0.3 (Poisson's ratio)
Calculate the change in thickness delta d in m^-6.
Calculate the change in height delta h in m^-6.
Calculate the Normal stress in x and y.

Answers

The change in thickness is delta[tex]d ≈ 1.54 · 10^(-6) m^-6.[/tex]

The change in height is delta h = 0.Given:Length of the plate: l

Height of the plate: h

Thickness of the plate: d

Poisson's ratio: v = 0.3

Young's modulus: E

Stress:[tex]σ_xy[/tex]

Normal stress: [tex]σ_x, σ_y[/tex]

Shear stress:[tex]τ_xy[/tex]

Solution:

Area of the plate = A = l · h

Thickness of the plate: d

Shear strain:[tex]γ_xy = q_0 / G[/tex], where G is the shear modulus.

We can find G as follows:

G = E / 2(1 + v)

= E / (1 + v)

= 2E / (2 + 2v)

Shear modulus:

G= E / (1 + v)

= 2E / (2 + 2v)

Shear stress:

[tex]τ_xy= G · γ_xy[/tex]

[tex]= (2E / (2 + 2v)) · (q_0 / G)[/tex]

[tex]= q_0 · (2E / (2 + 2v)) / G[/tex]

[tex]= q_0 · (2 / (1 + v))[/tex]

[tex]= q_0 · (2 / 1.3)[/tex]

[tex]= 1.54 · q_0[/tex]

[tex]Stress:σ_xy[/tex]

[tex]= -v / (1 - v^2) · (σ_x + σ_y)δ_h[/tex]

[tex]= 0δ_d[/tex]

[tex]= τ_xy / (A · E)[/tex]

[tex]= (1.54 · q_0) / (l · h · E)σ_x[/tex]

[tex]= σ_y[/tex]

[tex]= σ_0[/tex]

[tex]= q_0 / 2[/tex]

Normal stress:

[tex]σ_x = -v / (1 - v^2) · (σ_y - σ_0)σ_y[/tex]

[tex]= -v / (1 - v^2) · (σ_x - σ_0)[/tex]

Change in thickness:

[tex]δ_d= τ_xy / (A · E)[/tex]

[tex]= (1.54 · q_0) / (l · h · E)[/tex]

[tex]= (1.54 · 9.8 · 10^6) / (2.6 · 10^(-4) · 2.2 · 10^(-4) · 206 · 10^9)[/tex]

[tex]≈ 1.54 · 10^(-6) m^-6[/tex]

Change in height:δ[tex]_h[/tex]= 0

Normal stress:

[tex]σ_x= σ_y= σ_0 = q_0 / 2 = 4.9 · 10^6 Pa[/tex]

Answer: The change in thickness is delta

d ≈ [tex]1.54 · 10^(-6) m^-6.[/tex]

The change in height is delta h = 0

To know more about stress visit:

https://brainly.com/question/31366817

#SPJ11

Centre of Gravity i. What does the position of the centre of gravity (CG) affect? ii. Name at least two aircraft categories in which the CG is fixed. iii. Name at least three reasons/causes for the aircraft CG movement during flight operations.

Answers

i. The position of the center of gravity (CG) affects the stability and control of an aircraft.

ii. Two aircraft categories in which the CG is fixed are:

- Ultralight aircraft:

- Gliders:

iii. Three reasons/causes for the aircraft CG movement during flight operations are:

- Fuel consumption

- Payload changes

- Maneuvers

i. The position of the center of gravity (CG) affects the stability and control of an aircraft. It found how the aircraft will behave in flight, including its pitch, roll, and yaw characteristics.

ii. Two aircraft categories in which the CG is fixed are:

- Ultralight aircraft: These are small, single-seat aircraft that have a fixed CG. They are designed to be light and simple, with minimal controls and systems. The CG is typically located near the aircraft's wing, to ensure stable flight.

- Gliders: These are aircraft that are designed to fly without an engine. They rely on the lift generated by their wings to stay aloft. Gliders typically have a fixed CG, which is located near the front of the aircraft's wing. This helps to maintain stability during flight.

iii. Three reasons/causes for the aircraft CG movement during flight operations are:

- Fuel consumption: As an aircraft burns fuel during flight, its weight distribution changes, which affects the position of the CG. If the aircraft is not properly balanced, it can become unstable and difficult to control.

- Payload changes: When an aircraft takes on passengers, cargo, or other types of payload, the CG can shift. This is because the weight distribution of the aircraft changes.

- Maneuvers: During certain maneuvers, such as banking or pitching, the position of the CG can shift. This is because the forces acting on the aircraft change.

Learn more about the Centre of Gravity here;

https://brainly.com/question/1359722

#SPJ4

Assuming initial rest conditions, find solutions to the model equations given by:
q1+ a2q1 = P1(t)
q2+b2q2= P2(t)
where P(t)= 17 and P2(t) = 12. Note that =w, and b = w2 (this is done to ease algebraic entry below).
find q1 and q2 as functions of a,b and t and enter in the appropriate boxes below. Help with algebraic entry can be found by clicking on the blue question marks.
q1(t)=
q2(t) =

Answers

q1(t) = (17/ω) * sin(ωt)

q2(t) = (12/ω) * sin(ωt)

Explanation:

The given model equations are:

q1 + a2q1 = P1(t)

q2 + b2q2 = P2(t)

Where P(t) = 17 and P2(t) = 12. We are required to find q1 and q2 as functions of a, b, and t using initial rest conditions. Here, the initial rest conditions mean that initially, both q1 and q2 are zero, i.e., q1(0) = 0 and q2(0) = 0 are known.

Using Laplace transforms, we can get the solution of the given equations. The Laplace transform of q1 + a2q1 = P1(t) can be given as:

L(q1) + a2L(q1) = L(P1(t))

L(q1) (1 + a2) = L(P1(t))

q1(t) = L⁻¹(L(P1(t))/(1 + a2))

Similarly, the Laplace transform of q2 + b2q2 = P2(t) can be given as:

L(q2) + b2L(q2) = L(P2(t))

L(q2) (1 + b2) = L(P2(t))

q2(t) = L⁻¹(L(P2(t))/(1 + b2))

Substituting the given values, we get:

q1(t) = L⁻¹(L(17)/(1 + ω2))

q1(t) = 17/ω * L⁻¹(1/(s2 + ω2))

q1(t) = (17/ω) * sin(ωt)

q2(t) = L⁻¹(L(12)/(1 + ω2))

q2(t) = 12/ω * L⁻¹(1/(s2 + ω2))

q2(t) = (12/ω) * sin(ωt)

Hence, the solutions to the given model equations are:

q1(t) = (17/ω) * sin(ωt)

q2(t) = (12/ω) * sin(ωt)

To know more about  Laplace transforms here:

https://brainly.com/question/30759963

#SPJ11

If a double-line-to-line fault occurs across "b" and "c" to ground, and Ea = 200 V20⁰, Zs = 0.06 2+j 0.15 , Zn = 0 and Z₁ = 0.05 2+j 0.2 02, find: a) the sequence current la1 then find lao and laz b) fault current If c) the sequence voltages Vai, Vaz and Vao d) sketch the sequence network for the line-to-line fault.

Answers

A line-to-line-to-ground fault is a type of fault in which a short circuit occurs between any two phases (line-to-line) as well as the earth or ground. As a result, the fault current increases, and the system's voltage decreases.

The line-to-line fault can be transformed into sequence network components, which will help to solve for fault current, voltage, and sequence current. For a three-phase system, the sequence network is shown below. Sequence network of a three-phase system. The fault current can be obtained by using the following formula; [tex]If =\frac{E_a}{Z_s + Z_1}[/tex][tex]Z_

s = 0.06 + j 0.15[/tex][tex]Z_1

= 0.05 + j 0.202[/tex][tex]If

=\frac{E_a}{Z_s + Z_1}[/tex][tex]

If =\frac{200}{0.06 + j 0.15+ 0.05 + j 0.202}[/tex][tex]

If =\frac{200}{0.11 + j 0.352}[/tex][tex

]If = 413.22∠72.5°[/tex]a)

Sequence current la1Sequence current formula is given below;[tex]I_{a1} = If[/tex][tex]I_{a1}

= 413.22∠72.5°[/tex] For la0, la0 is equal to (2/3) If, and la2 is equal to (1/3)

Sketch the sequence network for the line-to-line fault. The sequence network for the line-to-line fault is as shown below. Sequence network for line-to-line fault.

To know more about circuit visit:

https://brainly.com/question/12608516

#SPJ11

In linear correlation analysis, if the slope of the line is- low, then: a) The dependent variable is not well predicted by the model b) There is weak correlation between the variables c) As the independent variable changes, there is a small change in the dependent variable d) All of the above

Answers

The correct answer is d) All of the above. If the slope of the line in linear correlation analysis is low, it indicates that there is a weak correlation between the variables, and as the independent variable changes, there is only a small change in the dependent variable.

In linear correlation analysis, the slope of the line represents the relationship between the independent variable and the dependent variable. A low slope indicates a weak correlation between the variables, meaning that there is little or no linear relationship between them. This implies that the dependent variable is not well predicted by the model. When the slope is low, it suggests that as the independent variable changes, there is only a small change in the dependent variable. This indicates that the independent variable has a weak influence or impact on the dependent variable. In other words, the dependent variable is not highly responsive to changes in the independent variable, further supporting the idea of a weak correlation. Therefore, when the slope of the line is low in linear correlation analysis, all of the given options (a, b, and c) are correct. The dependent variable is not well predicted by the model, there is a weak correlation between the variables, and as the independent variable changes, there is only a small change in the dependent variable.

Learn more about linear correlation here:

https://brainly.com/question/12400903

#SPJ11

A PITTMAN ID33000 series engine having the following data expressed in the international system, for a nominal voltage of 90 V.
Terminal resistance: 1.33 Ohms;
Inductance: 4.08mH;
Constant Torque (KT): 0.119 N.m/A;
Voltage constant: 0.119 V/rad/s;
a) Calculate and draw the points and the load line for the PITTMAN engine. Express the correct units.
b) A P.M.D.C in which, it increased from Gradually the input voltage was obtained that with a V input= 2.1 V and a current, i=0.12 A, it is managed to start turning the motor shaft. Calculate the input power required to achieve the "no-load current", for that motor.

Answers

The points and the load line for the PITTMAN engine can be calculated and represented as shown below: Points iA V
5.65 45.84Load line: y = 90 V - 1.33 Ω x.  Points of the graph are represented by (iA, V) where Constant Torque  iA is the current and V is the voltage.

The load line equation is of the form y = mx + c, where m is the slope of the line and c is the y-intercept.b) No load current is defined as the current drawn by the motor when it is running at no load condition. Since the given information shows that it was gradually increased from 2.1 V and a current of i = 0.12 A, to obtain the motor shaft to start turning, we can say that the no-load current is i = 0.12 A.

Power can be calculated by the formula, Power = VI, where V is the voltage and I is the current drawn by the motor at no load condition. The voltage constant of the PITTMAN engine is 0.119 V/rad/s. Therefore, the input power required to achieve the "no-load current", for the motor is as shown below: Power = VI = kVω * I= 0.119 * 2.1 * 0.12= 0.0304 W.An input power of 0.0304 W is required to achieve the "no-load current" for the given motor.

To know more about Constant Torque visit :-

https://brainly.com/question/32191533

#SPJ11

Discuss the philosophy and benefits of concurrent
engineering covering DFA/DFM
please do it in 30 minutes please urgently with
detailed solution... I'll give you up thumb

Answers

Concurrent engineering promotes cross-functional collaboration, early involvement of all stakeholders, and simultaneous consideration of design, manufacturing, and assembly aspects. This approach leads to several benefits.

Concurrent engineering promotes efficient product development by integrating design, manufacturing, and assembly considerations from the early stages. By involving manufacturing and assembly teams early on, potential design issues can be identified and resolved, resulting in improved product quality and reduced time to market. DFA focuses on simplifying assembly processes, reducing parts count, and improving ease of assembly, leading to lower production costs and improved product reliability. DFM aims to optimize the design for efficient and cost-effective manufacturing processes, reducing material waste and improving productivity. Concurrent engineering also enables better communication, shorter design iterations, and improved overall product performance.

To know more about engineering click the link below:

brainly.com/question/31140236

#SPJ11

What is specific enthalpy of vaporization of liquid-vapor mixture at 6 bar? At 6 bar, hg = 2756.8 kJ/kg, hf = 670.56 kJ/kg

Answers

The specific enthalpy of vaporization of the liquid-vapor mixture at 6 bar is approximately 2086.24 kJ/kg.

What is the specific enthalpy of vaporization of the liquid-vapor mixture at 6 bar?

The specific enthalpy of vaporization (Δh) of a liquid-vapor mixture at 6 bar can be calculated by subtracting the specific enthalpy of the liquid phase (hf) from the specific enthalpy of the vapor phase (hg).

Given:

hg = 2756.8 kJ/kg

hf = 670.56 kJ/kg

Δh = hg - hf

Δh = 2756.8 kJ/kg - 670.56 kJ/kg

Δh ≈ 2086.24 kJ/kg

Therefore, the specific enthalpy of vaporization of the liquid-vapor mixture at 6 bar is approximately 2086.24 kJ/kg.

Learn more about vapor mixture

brainly.com/question/30652627

#SPJ11

A disc of a diameter D = 100 mm, and thickness of 10 mm, has a surface temperature of 290°C and emissivity s =[0.X]. The disc is oriented horizontally and subjected to a cooling process in quiescent, ambient air and large surroundings for which T[infinity] - Tsur = 30°C. Neglect the heat transfer at the bottom and the side of the disc. a) Calculate the rate of heat transfer from the top surface? b) Will the disc cool faster or slower when it is oriented vertically, explain mathematically? c) Check the situation whether the convection is forced, natural or mixed convection in case the disc is subjected to moving air with a velocity of 3 m/s.

Answers

Calculation of the rate of heat transfer from the top surface is given as;h = 9.72 W/m².

Kσ = 5.67 × 10^-8 W/m².

K^4A = πD²/4

Kσ = 7853.98 × 10^-6 m²

ε = 0.X

The net rate of radiation heat transfer can be determined by the given formula;

Qrad = σεAT^4

Where  Qrad = Net rate of radiation heat transfer

σ = Stefan Boltzmann Constant

ε = emissivity of the body

A = surface area of the body

T = Surface temperature of the body

We know that the temperature of ambient air, T∞ = 30°C

T∞ = 303K

The temperature of the surface of the disc,

Tsurface = 290°C

Tsurface = 563K Thus,

Qrad = 5.67 × 10^-8 × 0.X × 7853.98 × 10^-6 × (563)^4

Qrad = 214.57 W/m²

Rate of heat transfer through convection is given as;

Qconv = hA(Tsurface - T∞) Where h is the heat transfer coefficient

We know that; h = 9.72 W/m².

KQconv = 9.72 × 7853.98 × 10^-6 × (563-303)

KQconv = 170.11 W/m²

Thus, the rate of heat transfer from the top surface is 170.11 W/m².

Calculation for the cooling of the disc when it is oriented vertically is given as; h = 14.73 W/m².K As the disc is oriented vertically, the area exposed to cooling air will be more and hence the rate of heat transfer will be greater.

Qconv = hA(Tsurface - T∞)

Qconv = 14.73 × 7853.98 × 10^-6 × (563-303)

Qconv = 315.46 W/m²

Thus, the disc will cool faster when it is oriented vertically.

The situation will be considered natural convection as the velocity of air is given to be 3 m/s which is less than the critical value for the flow regime to be changed to forced convection. Also, there are no specific objects which would disturb the flow pattern of the fluid to be mixed convection.

The main answer is,Rate of heat transfer through convection Qconv = hA(Tsurface - T∞)Where h is the heat transfer coefficient Qconv= 170.11 W/m²The disc will cool faster when it is oriented vertically. The situation will be considered natural convection as the velocity of air is given to be 3 m/s which is less than the critical value for the flow regime to be changed to forced convection.

To know more about heat transfer visit:

brainly.com/question/13433948

#SPJ11

manufacturing process of glass jalousie window
thank you for the help
pls explain in detain the MANUFACTURING PROCESS of glass jalousie window including the name of raw material used anwer must be in one page tq very much and no pictures is needed \( 12: 31 \mathrm{PM}

Answers

A jalousie window is made up of parallel slats of glass or acrylic, which are kept in place by a metal frame. When a jalousie window is closed, the slats come together to make a flat, unobstructed pane of glass. When the window is open, the slats are tilted to allow air to flow through. Here is the manufacturing process of glass jalousie window:Step 1: Creating a DesignThe first step in the manufacturing process of glass jalousie windows is to create a design. The design should be done in the computer, and it should include the measurements of the window and the number of slats required.Step 2: Cut the GlassThe next step is to cut the glass slats. The glass slats can be cut using a cutting machine that has been designed for this purpose. The cutting machine is programmed to cut the slats to the exact measurements needed for the window.Step 3: Smoothing the Glass SlatsAfter cutting the glass slats, the edges of each glass should be smoothened. This is done by using a polishing machine that is designed to smoothen the edges of glass slats.Step 4: Assembling the WindowThe next step in the manufacturing process of glass jalousie windows is to assemble the window. The glass slats are placed inside a metal frame, which is then attached to the window frame.Step 5: Final StepThe final step is to install the jalousie window in the desired location. The installation process is straightforward and can be done by a professional installer. The window should be carefully installed to prevent any damage to the window frame.Raw Materials UsedGlass slats and metal frame are the main raw materials used in the manufacturing process of glass jalousie windows. Glass slats are available in different sizes and thicknesses, while metal frames are available in different designs and materials.

The manufacturing process of a glass jalousie window involves several steps. The primary raw material used is glass. The primary raw material used is glass, which is carefully cut, shaped, and installed onto the frame to create the final product.

Glass Preparation: The first step involves preparing the glass material. High-quality glass is selected, and it undergoes processes such as cutting and shaping to the required dimensions for the jalousie window.

Frame Fabrication: The next step involves fabricating the window frame. Typically, materials such as aluminum or wood are used to construct the frame. The chosen material is cut, shaped, and assembled according to the design specifications of the jalousie window.

Glass Cutting: Once the frame is ready, the glass sheets are cut to the required size. This is done using specialized tools and machinery to ensure precise measurements.

Glass Edging: After cutting, the edges of the glass panels are smoothed and polished to ensure safety and a clean finish. This is done using grinding and polishing techniques.

Glass Installation: The glass panels are then installed onto the frame. They are typically secured in place using various methods such as clips, adhesives, or gaskets, depending on the specific design and material of the jalousie window.

Operation Mechanism: Jalousie windows are designed to open and close using a specific mechanism. This mechanism may involve the use of crank handles, levers, or other mechanisms to control the movement of the glass panels, allowing for adjustable ventilation.

Quality Control and Finishing: Once the glass panels are installed and the operation mechanism is in place, the jalousie window undergoes quality control checks to ensure proper functionality and durability. Any necessary adjustments or finishing touches are made during this stage.

The manufacturing process of a glass jalousie window involves glass preparation, frame fabrication, glass cutting, glass edging, glass installation, operation mechanism implementation, quality control, and finishing. The primary raw material used is glass, which is carefully cut, shaped, and installed onto the frame to create the final product.

To know more about glass jalousie, visit

https://brainly.ph/question/2525914

#SPJ11

Solve this problem in MRAS method.
{ y₍ₜ₎ = KG₍ₚ₎u₍ₜ₎
{ Ym₍ₜ₎ = KₒGₚr₍ₜ₎ { u = θcr₍ₜ₎

Answers

The MRAS method enables the controller gain to adapt and track changes in the plant dynamics, allowing the system to maintain desired performance even in the presence of uncertainties or variations in the plant.

To solve the problem using the Model Reference Adaptive System (MRAS) method, let's break down the steps involved:

Define the system:

Plant transfer function: Gₚ(s)

Desired reference model transfer function: Gₘ(s)

Controller gain: K

Determine the error:

Calculate the error signal e₍ₜ₎ = y₍ₜ₎ - Ym₍ₜ₎

Adapt the controller gain:

Use the error signal to update the controller gain using an adaptation law.

The adaptation law can be based on a comparison between the output of the plant and the reference model.

Update the control input:

Calculate the control input u₍ₜ₎ using the updated controller gain and the reference model output.

u₍ₜ₎ = θcr₍ₜ₎ / K

Apply the control input to the plant:

Obtain the plant output y₍ₜ₎ by applying the control input u₍ₜ₎ to the plant transfer function.

y₍ₜ₎ = KG₍ₚ₎u₍ₜ₎

Repeat steps 2-5:

Continuously update the error signal, adapt the controller gain, calculate the control input, and apply it to the plant.

This allows the system to dynamically adjust the control input based on the error between the plant output and the reference model output.

Know more about MRAS method here:

https://brainly.com/question/30540867

#SPJ11

List out the methods to improve the efficiency of the Rankine cycle

Answers

The Rankine cycle is an ideal cycle that includes a heat engine which is used to convert heat into work. This cycle is used to drive a steam turbine.

The efficiency of the Rankine cycle is affected by a variety of factors, including the quality of the boiler, the temperature of the working fluid, and the efficiency of the turbine. Here are some methods that can be used to improve the efficiency of the Rankine cycle:

1. Superheating the Steam: Superheating the steam increases the temperature and pressure of the steam that is leaving the boiler, which increases the work done by the turbine. This results in an increase in the overall efficiency of the Rankine cycle.2. Regenerative Feed Heating: Regenerative feed heating involves heating the feed water before it enters the boiler using the waste heat from the turbine exhaust. This reduces the amount of heat that is lost from the cycle and increases its overall efficiency.


To know more about  work visit:

brainly.com/question/31349436

#SPJ11

Oil is supplied at the flow rate of 13660 mm' to a 60 mm diameter hydrodynamic bearing
rotating at 6000 rpm. The bearing radia clearance is 30 um and its length is 30 mm. The beaning is linder a load of 1.80 kN.
determine temperature rise through the bearing?

Answers

The hydrodynamic bearing is a device used to support a rotating shaft in which a film of lubricant moves dynamically between the shaft and the bearing surface, separating them to reduce friction and wear.

Step-by-step solution:

Given parameters are, oil flow rate = 13660 mm3/s

= 1.366 x 10-5 m3/s Bearing diameter

= 60 mm Bearing length

= 30 mm Bearing radial clearance

= 30 µm = 30 x 10-6 m Bearing load

= 1.80 kN

= 1800 N

Rotating speed of bearing = 6000 rpm

= 6000/60 = 100 rps

= ω Bearing radius = R

= d/2 = 60/2 = 30 mm

= 30 x 10-3 m

Now, the oil film thickness = h

= 0.78 R (for well-lubricated bearings)

= 0.78 x 30 x 10-3 = 23.4 µm

= 23.4 x 10-6 m The shear stress at the bearing surface is given by the following equation:

τ = 3 μ Q/2 π h3 μ is the dynamic viscosity of the oil, and Q is the oil flow rate.

Thus, μ = τ 2π h3 / 3 Q  = 1.245 x 10-3 Pa.s

Heat = Q μ C P (T2 - T1)  

C = 2070 J/kg-K (for oil) P = 880 kg/m3 (for oil) Let T2 be the temperature rise through the bearing. So, Heat = Q μ C P T2

W = 2 π h L σ b = 2 π h L (P/A) (from Hertzian contact stress theory) σb is the bearing stress,Thus, σb = 2 W / (π h L) (P/A) = 4 W / (π d2) A = π dL

Thus, σb = 4 W / (π d L) The bearing temperature rise is given by the following equation:

T2 = W h / (π d L P C) [μ(σb - P)] T2 = 0.499°C.

To know more about hydrodynamic visit:

https://brainly.com/question/10281749

#SPJ11

Four PV modules, each with an area of 12 ft², are to be mounted with a stand-off mount that is secured to a metal seam roof with six L-Brackets. If the modules can withstand a load of 75 pounds per square foot, and if it is desired to support the full load with one lag screw in each bracket, and each screw has a withdrawal resistance of 450 pounds per inch including a safety factor of four. Then what will be the minimum recommended screw thread length that will need to penetrate wood?

Answers

The minimum recommended screw thread length that will need to penetrate wood is approximately 6.25 inches.

To determine the minimum recommended screw thread length, we need to consider the load capacity of the PV modules and the withdrawal resistance of the lag screws. Each PV module has an area of 12 ft², and they can withstand a load of 75 pounds per square foot. Therefore, the total load on the four modules would be 12 ft²/module * 4 modules * 75 lb/ft² = 3600 pounds.

Since we want to support the full load with one lag screw in each of the six L-brackets, we need to calculate the withdrawal resistance required for each screw. Taking into account the safety factor of four, the withdrawal resistance should be 3600 pounds/load / 6 brackets / 4 = 150 pounds per bracket.

Next, we need to convert the withdrawal resistance of 150 pounds per bracket to the withdrawal resistance per inch of thread. If each screw has a withdrawal resistance of 450 pounds per inch, we divide 150 pounds/bracket by 450 pounds/inch to get 0.33 inches.

Finally, we multiply the thread length of 0.33 inches by the number of threads that need to penetrate the wood. Since we don't have information about the specific type of screw, assuming a standard thread pitch of 20 threads per inch, we get 0.33 inches * 20 threads/inch = 6.6 inches. Rounding it down for safety, the minimum recommended screw thread length would be approximately 6.25 inches.

Learn more about Length

brainly.com/question/32232199

#SPJ11

A standard hydraulic copper tube, 150 mm OD X 4.5 mm wall, carries 1200 L/min of water over a length of 100 m. Compute the energy loss.

Answers

A copper tube with a diameter of 150mm and a wall thickness of 4.5mm is used to transport 1200 L/min of water over a distance of 100m. The energy loss needs to be determined. Using the following formula:

hf = (λ x L x V2) / (2 x g x d) Where,

hf = head loss (m)λ

= friction factorL

= Length of the pipe (m)V

= Velocity of water (m/s)g

= Acceleration due to gravity (9.81 m/s2)d

= Diameter of the pipe (m) Calculation of velocity of water,

A = πr²,

A = π(0.075)²,

A = 0.01767m²Q

= VA, 1200 x 10^-3

= V x 0.01767,

V = 67.8 m/s Therefore, the velocity of water is 67.8 m/s. Substituting the given values,

hf = (λ x L x V²) / (2 x g x d)

= (0.0119 x 100 x 67.8²) / (2 x 9.81 x 0.150)

= 196.13m Energy loss is 196.13m.

To know more about diameter visit:

https://brainly.com/question/32968193

#SPJ11

1 kmol/s of methane (CH4, MW = 16 kg/kmol) is burned in 20% excess air (fuel and air starting at 25°C), allowing for complete combustion and conversion of all of the methane. The water produced is in the vapor state. a) In the space below, write the balanced reaction for this system, including all species present. b) How much heat is released by this combustion reaction, in kJ per kmol of methane burned? c) If the reactor is adiabatic, what is the exiting temperature (K) of the product gas mixture? You may assume cp = 4Ru for all gases.

Answers

The heat released by the combustion of 1 kmol of methane is approximately -802.2 kJ, and the exiting temperature of the product gas mixture, in an adiabatic reactor, is approximately 0.69°C.

a) The balanced reaction for the combustion of methane with excess air is:

CH4 + 2(O2 + 3.76N2) -> CO2 + 2H2O + 7.52N2

b) To calculate the heat released by the combustion reaction, we can use the heat of formation values for each compound involved. The heat released can be calculated as follows:

Heat released = (ΣΔHf(products)) - (ΣΔHf(reactants))

ΔHf refers to the heat of formation.

Given the heat of formation values:

ΔHf(CH4) = -74.9 kJ/mol

ΔHf(CO2) = -393.5 kJ/mol

ΔHf(H2O) = -241.8 kJ/mol

ΔHf(N2) = 0 kJ/mol

ΔHf(O2) = 0 kJ/mol

Calculating the heat released:

Heat released = [1 * ΔHf(CO2) + 2 * ΔHf(H2O) + 7.52 * ΔHf(N2)] - [1 * ΔHf(CH4) + 2 * (0.2 * ΔHf(O2) + 0.2 * 3.76 * ΔHf(N2))]

Heat released = [1 * -393.5 kJ/mol + 2 * -241.8 kJ/mol + 7.52 * 0 kJ/mol] - [1 * -74.9 kJ/mol + 2 * (0.2 * 0 kJ/mol + 0.2 * 3.76 * 0 kJ/mol)]

Heat released ≈ -802.2 kJ/mol

Therefore, the heat released by the combustion reaction is approximately -802.2 kJ per kmol of methane burned.

c) Since the reactor is adiabatic, there is no heat exchange with the surroundings. Therefore, the heat released by the combustion reaction is equal to the change in enthalpy of the product gas mixture.

Using the equation:

ΔH = Cp * ΔT

where ΔH is the change in enthalpy, Cp is the heat capacity at constant pressure, and ΔT is the change in temperature, we can rearrange the equation to solve for ΔT:

ΔT = ΔH / Cp

Given that Cp = 4Ru for all gases, where Ru is the gas constant (8.314 J/(mol·K)), we can substitute the values:

ΔT = (-802.2 kJ/mol) / (4 * 8.314 J/(mol·K))

ΔT ≈ -24.31 K

The exiting temperature of the product gas mixture is the initial temperature (25°C) minus the change in temperature:

Exiting temperature = 25°C - 24.31 K

Exiting temperature ≈ 0.69°C (rounded to two decimal places)

Therefore, if the reactor is adiabatic, the exiting temperature of the product gas mixture is approximately 0.69°C.

Learn more about combustion

brainly.com/question/31123826

#SPJ11

A body in uniaxial tension has a maximum principal stress of 20 MPa. If the body's stress state is represented by a Mohr circle, what is the circle's radius? a 20 MPa bb 5 MPa c 2 MPa d 10 MPa

Answers

The radius of the Mohr circle represents half of the difference between the maximum and minimum principal stresses. 10 MPa is the correct answer

The radius of a Mohr circle represents the magnitude of the maximum shear stress. In uniaxial tension, the maximum shear stress is equal to half of the difference between the maximum and minimum principal stresses. Since the maximum principal stress is given as 20 MPa, the minimum principal stress in uniaxial tension is zero.

In this case, the maximum principal stress is given as 20 MPa. Since the stress state is uniaxial tension, the minimum principal stress is zero.

Therefore, the radius of the Mohr circle is:

Radius = (σ₁ - σ₃) / 2

Since σ₃ = 0, the radius simplifies to:

Radius = σ₁ / 2

Substituting the given value of σ₁ = 20 MPa, we have:

Radius = 20 MPa / 2 = 10 MPa

Therefore, the radius of the Mohr circle representing the body's stress state is 10 MPa.

Option (d) 10 MPa is the correct answer.

To know more about  Mohr circle visit:

https://brainly.com/question/31642831

#SPJ11

Other Questions
Module 6.3: Bone Formation: Ossification The formation of bone, known as ossification, is discussed in this module. When you complete it, you should be able to do the following: 1. Explain the differences between primary and secondary bone. 2. Describe the process of intramembranous ossification. 3. Describe the process of endochondral ossification. Listen In an organism that reproduces asexually, offspring are genetically identical to the parent reflect combinations of genes from both par are unlikely to ever reproduce themselves will always reproduce sexually Which organisms would be the most closely related? OTwo that share the same Family Two that share the same Class Two that share the same Kingdom OTwo that share the same genus You are planning a mission to Mars. You want to send a 3-ton spacecraft there (3 tons wet mass, it is the initial mass of the spacecraft). As all the engineers working for you are calling in sick, you will have to design the mission yourself. (Mars radius is 3'390km).A - What is the arrival excess velocity (in km/s), when reaching Mars' sphere of influence (following A, you were on a Hohmann transfer trajectory)?B -The spacecraft is entering Mars' sphere of influence with the excess velocity computed above and a periapsis altitude of 400km was targeted. What type of trajectory is the spacecraft on?C - How much delta v (km/s) will it cost to circularize the orbit? (give the magnitude of the delta v that is your answer in absolute value)D - At the periapsis, how should the delta vi be oriented?E - If you would have circularized the orbit when reaching Mars (before entering the SOI) and only after that entered the sphere of influence, on what kind of trajectory would the spacecraft be? (Even if this is an approximation, consider the SOI is located at infinity to answer this question.) Question 5 (4 Marks)Which of the following was not a COVID-19 tax relief measures as adopted by the South African government during the year 2020?a. A three-month break to pay alcohol and tobacco taxes that started in May 2020b. Many employers were given more time to file pay-as-you-earn taxesc. A four-month exemption to pay import taxes from 1 Jan 2020 to end of April 2020.d. A 90-day deferment for the deadline to submit carbon tax payments to 31 October 2020 Muscle cells need ATP to function. Briefly explain why muscle cells use different metabolic fuels for different levels of activity (10 marks) The number of cans of soft drinks sold in a machine each week is recorded below. Develop forecasts using Exponential Smoothing with an alpha value of 0.30. F1= 338.338, 219, 276, 265, 314, 323, 299, 257, 287, 302 on february 1, year 1, blake corporation issued bonds with a fair value of $1,000,000. what methods may blake use to report the bonds on its december 31, year 1 statement of financial position? At the end of the first 2 hours of a test, the intensityis increased to 70% VO2max. What is the energy system to kick in assoon as the intensity is increased to help maintain steadystate?Ana The official sequencing of the human genome began in 1990 and took 13 years to finish. The composition of the genome was a big surprise regarding the percentage of the human genome containing coding genes. What was the surprise and provide three different types of non-coding DNA that were found in the human genome? A 0.5 m long vertical plate is at 70 C. The air surrounding it is at 30 C at 1 atm. The velocity of air from the blower coming into the plate is 10 m/s(a) what is the Grashof Number for the flow? Is the flow over the plate laminar or turbulent?(b) what is the Reynolds Number for the flow? Is the flow over the plate laminar or turbulent?(c) Is it natural or forced or mixed convection flow?(d) find the most accurate estimate for the average heat transfer coefficient (h) over the plate(e) what is the rate of convection heat transfer from the plate assuming that the width of the plate is 1 m?(F) what is the thickness of the thermal boundary at the top of the plate? Which is FALSE about the structure of DNA? DNA is a double helix structure. A and U pair together, C and G pair together. DNA consists of a sugar backbone and nucleotide bases. Strands run in an anti-parallel direction. Arrange these parts of a neuron in an order that would receive, integrate, and transmit a signal to another cell. Dendrite Cell Body Synapse Axon Collateral the main reason that immigrants from mexico and the philippines were exempted from new immigration restrictions was: What is Organizational Behavior, Diversity in Organizations,Attitudes and Job Satisfaction, Emotions and Moods, Personality andValues? ( at least 800 words) For the system of linear equations x - 5y = -2 ny - 4x = 8 a) : Find the values of n such that the system is consistent. Explain whether it has unique solution or infinitely many solutions. b) : Find the values of n if any such that the system is inconsistent. Explain your answer. Question 5 1 pts What is the effect of tryptophan and allolactose binding on the function of the trpR protein and the lacl protein respectively? The trpR protein binds the DNA when it is bound to tryptophan, but the lack protein binds the DNA when it is NOT bound to allolactose. The trpR protein binds the DNA when it is NOT bound to tryptophan, and the lacl protein binds the DNA when it is NOT bound to allolactose. The trpR protein does NOT bind the DNA when it is bound to tryptophan, but the lacl protein binds the DNA when it is bound to allolactose. The trpR protein binds the DNA when it is bound to tryptophan, and the lacl protein binds the DNA when it is bound to allolactose. A virus that has entered the lysogenic cycle: Cannot replicate its genome Can only replicate its genome when environmental conditions are favorable Replicates its genome when its host cell replicates Can only replicate its genome when it exits the lysogenic cycle and enters the lytic cycle describe lysogenic conversion and its significance[10] Discuss the types of technology grants available for 21st century learning and briefly describe the basic components included when writing a grant proposal I need a refence page please. I am looking also but I do need your help.