Answer:
0.85c
Explanation:
Rest mass of Kaon [tex]M_{0K}[/tex] = 494 MeV/c²
Rest mass of proton [tex]M_{0P}[/tex] = 938 MeV/c²
The rest energy is gotten by multiplying the rest mass by the square of the speed of light c²
for the kaon, rest energy [tex]E_{0K}[/tex] = 494c² MeV
for the proton, rest energy [tex]E_{0P}[/tex] = 938c² MeV
Recall that the rest energy, and the total energy are related by..
[tex]E[/tex] = γ[tex]E_{0}[/tex]
which can be written in this case as
[tex]E_{K}[/tex] = γ[tex]E_{0K}[/tex] ...... equ 1
where [tex]E[/tex] = total energy of the kaon, and
[tex]E_{0}[/tex] = rest energy of the kaon
γ = relativistic factor = [tex]\frac{1}{\sqrt{1 - \beta ^{2} } }[/tex]
where [tex]\beta = \frac{v}{c}[/tex]
But, it is stated that the total energy of the kaon is equal to the rest mass of the proton or its equivalent rest energy, therefore...
[tex]E_{K}[/tex] = [tex]E_{0P}[/tex] ......equ 2
where [tex]E_{K}[/tex] is the total energy of the kaon, and
[tex]E_{0P}[/tex] is the rest energy of the proton.
From [tex]E_{K}[/tex] = [tex]E_{0P}[/tex] = 938c²
equ 1 becomes
938c² = γ494c²
γ = 938c²/494c² = 1.89
γ = [tex]\frac{1}{\sqrt{1 - \beta ^{2} } }[/tex] = 1.89
1.89[tex]\sqrt{1 - \beta ^{2} }[/tex] = 1
squaring both sides, we get
3.57( 1 - [tex]\beta^{2}[/tex]) = 1
3.57 - 3.57[tex]\beta^{2}[/tex] = 1
2.57 = 3.57[tex]\beta^{2}[/tex]
[tex]\beta^{2}[/tex] = 2.57/3.57 = 0.72
[tex]\beta = \sqrt{0.72}[/tex] = 0.85
but, [tex]\beta = \frac{v}{c}[/tex]
v/c = 0.85
v = 0.85c
Wind gusts create ripples on the ocean that have a wavelength of 3.03 cm and propagate at 3.37 m/s. What is their frequency (in Hz)?
Answer:
Their frequency is 111.22 Hz
Explanation:
Wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration and is expressed in units of length (m).
Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).
The propagation speed of a wave is the quantity that measures the speed at which the wave's disturbance propagates throughout its displacement. The speed at which the wave propagates depends on both the type of wave and the medium through which it propagates. Relate wavelength (λ) and frequency (f) inversely proportional using the following equation:
v = f * λ.
Then the frequency can be calculated as: f=v÷λ
In this case:
λ=3.03 cm=0.0303 m (1m=100 cm)v= 3.37 m/sReplacing:
[tex]f=\frac{3.37 \frac{m}{s} }{0.0303 m}[/tex]
Solving:
f=111.22 Hz
Their frequency is 111.22 Hz