A polar covalent bond occurs when one of the atoms in the bond provides both bonding electrons.a. Trueb. false

Answers

Answer 1

A polar covalent bond occurs when one of the atoms in the bond provides both bonding electrons. The statement is false.

A polar covalent bond occurs when two atoms share a pair of electrons unevenly, meaning that one atom has a greater electronegativity than the other atom.

This results in a partial positive charge on the less electronegative atom and a partial negative charge on the more electronegative atom, creating a dipole.

The situation described in the statement, where one atom provides both bonding electrons, refers to an ionic bond. In an ionic bond,

one atom transfers its electrons to another atom, creating a positively charged cation and a negatively charged anion. These oppositely charged ions are then attracted to each other, forming the ionic bond.



In summary, the statement is false because a polar covalent bond involves the unequal sharing of electrons between two atoms,

while the scenario described refers to an ionic bond where one atom provides both bonding electrons.

To know more about  polar covalentrefer here

https://brainly.com/question/30261436#

#SPJ11


Related Questions

determine the values of k by taking into account the volume of water used to make he saturated solution

Answers

The values of k by taking into account the volume of water used to make the saturated solution is [tex]Ksp = (sV)(m + n)^m[/tex]

In order to determine the values of K by taking into account the volume of water used to make the saturated solution, we need to use the following equation:

[tex]Ksp = [M+]^m [X^-]^n[/tex]

where Ksp is the solubility product constant, M+ is the cation of the salt, [tex]X^-[/tex] is the anion of the salt, m is the stoichiometric coefficient of M+ in the balanced chemical equation, and n is the stoichiometric coefficient of [tex]X^-[/tex]in the balanced chemical equation.

When the salt dissolves in water to form a saturated solution, the concentration of M+ and [tex]X^-[/tex] in the solution will be equal to their solubility values. We can express the solubility of [tex]M+X^-[/tex] in terms of the molar solubility s, which is defined as the number of moles of the salt that dissolve per liter of solution.

Therefore, we can rewrite the Ksp expression as:

Ksp = s(m + n)^m

Since we want to take into account the volume of water used to make the saturated solution, we can multiply the molar solubility s by the volume of water used to make the solution, which we will call V. The number of moles of the salt that dissolves will then be equal to sV.

Therefore, we can rewrite the Ksp expression again as:

Ksp = (sV)(m + n)^m

Learn more about saturated solution here:

https://brainly.com/question/1851822

#SPJ11

Rank the following in order of decreasing acid strength: H 20, H 2S, H 2Se, H 2Te O A. H2Te> H2Se > H25> H20 O B. H2S> H2Te > H2Se> H20 O C.H20> H2S> H2Se> H2T O D.H2Se> H2Te > H2S> H20 OE. H2Se H2S H2Te> H20

Answers

The correct order of decreasing acid strength is: H₂Te > H₂Se > H₂S > H₂O.

Acid strength is determined by the stability of the conjugate base. In this case, we have  H₂O, H₂S, H₂Se, and H₂Te. These are all hydrides of Group 16 elements. As you go down the group, the atomic size increases, which leads to weaker bonds and better stabilization of negative charge on the conjugate base.

As a result, the acid strength increases down the group. Therefore, H₂Te is the strongest acid, followed by H₂Se, H₂S, and H₂O in decreasing order. The correct ranking is option A: H₂Te > H₂Se > H₂S > H₂O.

Learn more about acid strength here:

https://brainly.com/question/3223615

#SPJ11

The most likely location for an electron in H2 is halfway between the two hydrogen nuclei.
Select one:
True
False

Answers

False.The most likely location for an electron in the H2 molecule is not exactly halfway between the two hydrogen nuclei

Rather the electron density is concentrated around the internuclear axis, forming what is known as a bonding molecular orbital. This is the result of the constructive interference between the two atomic orbitals that combine to form the molecular orbital. The electron density is also spread out over a region that extends beyond the internuclear axis, forming what is known as the molecular orbital's "cloud" or "envelope".In the H2 molecule, the electrons are in molecular orbitals which are formed by the combination of the atomic orbitals of the two hydrogen atoms. The two electrons in the H2 molecule are most likely to be found in the bonding molecular orbital, which is lower in energy than the atomic orbitals from which it was formed. The bonding molecular orbital has a shape that is symmetrical around the line joining the two nuclei, which means that the electrons are most likely to be found between the two nuclei. Therefore, the statement "the most likely location for an electron in H2 is halfway between the two hydrogen nuclei" is true.

To know more about nuclei visit :

https://brainly.com/question/21796566

#SPJ11

a highly positive charged protein will bind a cation exchanger and elute off by changing the ph. (True or False)

Answers

The given statement "A highly positively charged protein will bind a cation exchanger and elute off by changing the pH" is true because cation exchangers contain negatively charged functional groups that attract positively charged molecules, such as highly positively charged proteins.

By changing the pH, the net charge of the protein can be altered, causing it to become less positively charged and therefore elute off the cation exchanger.

Proteins with a high isoelectric point (pI) will have a higher positive charge at pH values below their pI, allowing them to bind to the negatively charged cation exchanger.

By increasing the pH, the protein's net charge will become more negative, causing it to elute off the column. This process is called ion exchange chromatography and is widely used for protein purification in biochemistry and biotechnology.

For more questions like pH click the link below:

https://brainly.com/question/15289741

#SPJ11

minimum uncertainty in the position of a proton moving at a speed of 4 * 10^6. (True or False)

Answers

The minimum uncertainty in the position of an electron moving at a speed of 4 x 10⁶ m/s is approximately 1.4 x 10⁻⁷ meters.

The minimum uncertainty in the position of an electron moving at a speed of 4 x 10⁶  m/s can be calculated using the Heisenberg uncertainty principle, which states that the product of the uncertainty in position and the uncertainty in momentum must be greater than or equal to Planck's constant divided by 4π.

Δx * Δp ≥ h/4π

Where Δx is the uncertainty in position, Δp is the uncertainty in momentum, and h is Planck's constant.

The momentum of an electron is given by the product of its mass and velocity, which is approximately 9.11 x 10⁻³¹ kg x 4 x 10⁶ m/s = 3.64 x 10⁻²⁴kg m/s.

Using this value and Planck's constant (h = 6.626 x 10⁻³⁴J s), we can solve for the minimum uncertainty in position:
Δx * 3.64 x 10⁻²⁴ kg m/s ≥ 6.626 x 10⁻³⁴ Js/ 4π
Δx ≥ (6.626 x 10⁻³⁴Js/4π) / (3.64 x 10⁻²⁴ kg m/s)
Δx ≥ 1.4 x 10⁻⁷ meters

Therefore, the minimum uncertainty in the position of an electron moving is 1.4 x 10^-7 meters.

Complete question:

What is the minimum uncertainty in the position of an electron moving at a speed of 4 times 10^6 m /s?

Learn more about Heisenberg's uncertainty at https://brainly.com/question/16941142

#SPJ11

methyl orange is an indicator that changes color from red to yellow-orange over the ph range ~c.e(l'fl from 2.9 to 4.5. methyl orange

Answers

Methyl orange is a pH indicator that changes color from red to yellow-orange in the pH range of 2.9 to 4.5. It is commonly used in titrations to detect the endpoint of a reaction.

As an acidic pH indicator, methyl orange is often used in the titration of strong acids and weak bases. Its color change is a result of the chemical structure undergoing a change when the pH of the solution shifts. At lower pH levels (below 2.9), the molecule takes on a red hue, while at higher pH levels (above 4.5), it appears yellow-orange. The color change is due to the presence of a weakly acidic azo dye, which undergoes a chemical transformation as the hydrogen ions in the solution are either added or removed.

When used in a titration, methyl orange allows the observer to determine the endpoint of the reaction, signifying that the titrant has neutralized the analyte. The color change observed during the titration indicates that the pH of the solution has shifted, signaling the completion of the reaction. In some cases, methyl orange may not be the ideal indicator for certain titrations due to its relatively narrow pH range. In such instances, alternative indicators with a more suitable pH range should be used.

Know more about pH indicator here:

https://brainly.com/question/22603994

#SPJ11

Identify whether the atom or ion in each equation shows oxidation or reduction. Cu2 e− → Cu Cu2 is Fe → Fe3 3e−Fe is F e− → F−F− is 2l− → l2 2e−l− is 2H 2e− → H2H is.

Answers

Cu^2+ and F are reduced, Fe and I^- are oxidized, and H^+ is reduced.In each equation, we can identify whether the atom or ion undergoes oxidation or reduction by analyzing the change in its oxidation state.

1. Cu^2+ + 2e^- → Cu: In this equation, Cu^2+ gains 2 electrons and undergoes reduction, as its oxidation state decreases from +2 to 0 (a decrease in oxidation state indicates reduction).

2. Fe → Fe^3+ + 3e^-: In this equation, Fe loses 3 electrons and undergoes oxidation, as its oxidation state increases from 0 to +3 (an increase in oxidation state indicates oxidation).

3. F + e^- → F^-: In this equation, F gains an electron and undergoes reduction, as its oxidation state decreases from 0 to -1 (a decrease in oxidation state indicates reduction).

4. 2I^- → I2 + 2e^-: In this equation, I^- loses 2 electrons and undergoes oxidation, as its oxidation state increases from -1 to 0 (an increase in oxidation state indicates oxidation).

5. 2H + 2e^- → H2: In this equation, H^+ gains 2 electrons and undergoes reduction, as its oxidation state decreases from +1 to 0 (a decrease in oxidation state indicates reduction).

In summary, Cu^2+ and F are reduced, Fe and I^- are oxidized, and H^+ is reduced.

To learn more about atom click here;

brainly.com/question/29978890

#SPJ11

the rate of the given reaction is 0.180 m/s. a 3b⟶2c what is the relative rate of change of each species in the reaction?

Answers

The relative rate of change for each species is: B: -0.060 M/s and C: 0.090 M/s.


To find the relative rate of change of each species in the given reaction, we need to use stoichiometry and the rate law.
First, let's write the rate law for the reaction:
rate = k[A]^3[B]
where k is the rate constant and [A] and [B] are the concentrations of the reactants.
Since the stoichiometry of the reaction is 3A:1B:2C, we can use the coefficients to relate the rate of change of each species.
Putting all of this together, we can write the relative rate of change for each species as follows:
Rate of change of A: 1
Rate of change of B: 0.5
Rate of change of C: 2
So for every mole of A consumed, we produce 2 moles of C and for every mole of B consumed, we produce 2 moles of C. The rate of change of C is twice the rate of change of each reactant.

To know more about relative rate visit :-

https://brainly.com/question/30895328

#SPJ11

Both (E)- and (Z)-hex-3-ene can be treated with D2 in the presence of a platinum catalyst. How are the products from these two reactions related to each other?

Answers

The products obtained from the hydrogen of both (E)- and (Z)-hex-3-ene with D2 in the presence of a platinum catalyst are related as they both result in the same compound: hex-3-ene-d2. In this reaction, two deuterium (D) atoms are added to the double bond, converting it into a single bond. The (E) and (Z) configurations don't affect the final product since hydrogenation removes the double bond, leading to the formation of an identical saturated compound.

When (E)-hex-3-ene is treated with D2 in the presence of a platinum catalyst, one of the hydrogen atoms from D2 will replace one of the original hydrogen atoms in the alkene, resulting in the formation of deuterated (E)-hex-3-ene. Similarly, when (Z)-hex-3-ene is treated with D2 in the presence of a platinum catalyst, one of the hydrogen atoms from D2 will replace one of the original hydrogen atoms in the alkene, resulting in the formation of deuterated (Z)-hex-3-ene.
The products from these two reactions are related to each other in that they are isomers of each other. Isomers are molecules that have the same molecular formula but different structures. In this case, (E)-hex-3-ene and (Z)-hex-3-ene are isomers of each other because they have the same molecular formula (C6H12) but different structures. Similarly, deuterated (E)-hex-3-ene and deuterated (Z)-hex-3-ene are isomers of each other because they have the same molecular formula (C6D12) but different structures.
The products from these two reactions are related to each other as isomers, meaning they have the same molecular formula but different structures.

To know more about hydrogen visit:-

https://brainly.com/question/31605480

#SPJ11

A 6.00L tank at 27.1°C is filled with 9.72g of sulfur tetrafluoride gas and 5.05g of carbon dioxide gas. You can assume both gases behave as ideal gases under these conditions.Calculate the partial pressure of each gas, and the total pressure in the tank.

Answers

The partial pressure of sulfur tetrafluoride gas is 8.78 kPa, the partial pressure of carbon dioxide gas is 24.9 kPa, and the total pressure in the tank is 33.7 kPa.

To solve this problem, we can use the ideal gas law: PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature. We can rearrange this equation to solve for the pressure: P = nRT/V.

First, we need to calculate the number of moles of each gas. We can use the molar mass of each gas and the given mass to find the number of moles:

moles of SF₄ = 9.72 g / 108.1 g/mol = 0.0899 mol

moles of CO₂ = 5.05 g / 44.01 g/mol = 0.1148 mol

Next, we can plug in the values into the ideal gas law equation to find the partial pressures of each gas:

partial pressure of SF₄ = (0.0899 mol)(8.31 J/mol*K)(300.1 K) / 6.00 L = 8.78 kPa

partial pressure of CO₂ = (0.1148 mol)(8.31 J/mol*K)(300.1 K) / 6.00 L = 24.9 kPa

Finally, we can find the total pressure in the tank by adding the partial pressures:

total pressure = partial pressure of SF₄ + partial pressure of CO₂ = 8.78 kPa + 24.9 kPa = 33.7 kPa

To know more about partial pressure, refer here:

https://brainly.com/question/31214700#

#SPJ11

All of the following species can function as Bronsted-Lowry bases in solution except: a. H2O b. NH3 c. S2- d. NH4+ e. HCO3-

Answers

Among the given species, NH4+ (option d) cannot function as a Bronsted-Lowry base in solution.

In the context of Bronsted-Lowry theory, a base is defined as a substance that can accept a proton (H+) in a reaction. Evaluating the given species, H2O, NH3, S2-, and HCO3- can all accept protons.

However, NH4+ is an ammonium ion, which already has a proton attached. Instead of functioning as a base, NH4+ acts as a Bronsted-Lowry acid since it can donate a proton to other species in the solution.

NH4+ is the exception among the given species that cannot act as a Bronsted-Lowry base. Thus, the correct choice is (d).

For more such questions on solution, click on:

https://brainly.com/question/25326161

#SPJ11

The species that cannot function as a Bronsted-Lowry base in solution is NH4+ because it already has a proton (H+) and cannot accept another proton to act as a base.

According to the Bronsted-Lowry theory, a base is defined as a species that can accept a proton (H+) in a chemical reaction. In the given options, H2O, NH3, S2-, and HCO3- are all capable of accepting a proton and therefore can function as Bronsted-Lowry bases in solution. However, NH4+ is already a positively charged ion that has accepted a proton, making it unable to accept another proton to act as a base. Instead, NH4+ can function as an acid by donating its proton to a species that can act as a base. Therefore, NH4+ cannot function as a Bronsted-Lowry base in the solution.

learn more about Bronsted-Lowry here:

https://brainly.com/question/14407412

#SPJ11

A 3. 5g sample of pure metal requires 25. 0 J of energy to change the temperature from 33 C to 42 C. What is the specific heat?

Answers

The specific heat of a substance is the amount of energy required to change the temperature of 1 gram of the substance by 1 degree Celsius.

The specific heat of the metal is approximately 0.794 J/g°C.

In this case, we have a 3.5g sample of a pure metal that requires 25.0 J of energy to change its temperature from 33°C to 42°C. We can use this information to calculate the specific heat of the metal.

The formula to calculate the specific heat is:

specific heat = energy / (mass * change in temperature)

Plugging in the given values, we have:

specific heat = 25.0 J / (3.5 g * (42°C - 33°C))

Calculating the denominator:

specific heat = 25.0 J / (3.5 g * 9°C)

Simplifying:

specific heat = 25.0 J / 31.5 g°C

Therefore, the specific heat of the metal is approximately 0.794 J/g°C.

To learn more about specific heat click here : brainly.com/question/31608647

#SPJ11

A student performed simple distillation on a 40:60mixture of Methanol and water (%


mol).


a. At what temperature will the mixture boil?


b. What is the composition of the liquid collected from simple distillation?



2. Another student performed a fractional distillation on the same mixture of 40:60 (%


mol) Methanol/water mixture and found the liquid collected to contain 4% mol of


water.


a. At what temperature did the mixture containing 4% mol of water boil?


b. How many theoretical plates did the fractionating column used in this experiment


have?


c. What would be the minimum number of theoretical plates required to achieve


complete separation of the 40:60 (% mol) methanol-water mixture?

Answers

a. The mixture of methanol and water will boil at the boiling point of the component with the lower boiling point, which is methanol.

b. The liquid collected from simple distillation will primarily contain methanol, as it has a lower boiling point compared to water.

a. In a mixture of two liquids, the boiling point is determined by the component with the lower boiling point. Methanol has a lower boiling point (64.7 °C) compared to water (100 °C), so the mixture will boil at the boiling point of methanol, which is approximately 64.7 °C.

b. Simple distillation allows for the separation of components based on their boiling points. As the mixture is heated, methanol, being the component with the lower boiling point, will vaporize first. The vapor will then be condensed and collected, resulting in a liquid primarily composed of methanol. Water, with its higher boiling point, will remain in the distillation flask in a higher concentration compared to the collected liquid.

Learn more about  boiling point here:

https://brainly.com/question/2153588

#SPJ11

Given the electrochemical reaction, , what is the value of Ecell at 25 °C if [Mg2+] = 0.100 M and [Cu2+] = 1.75 M?
Half-reaction
E° (V)
+1.40
+1.18
+0.80
+0.54
+0.34
-0.04
-1.66
-2.37
-2.93
+2.75 V, +2.67 V, +2.79 V, -2.00 V, +2.71 V
15.
Which statement about pure water is correct? Pure water does not ionize, pH > pOH, pH = 7 for pure water at any temperature, Kw is always equal to 1.0 × 10-14, OR [H3O+] = [OH-]?
17. The standard cell potential for the reaction is 1.104 V. What is the value of Ecell at 25 °C if [Cu2+] = 0.250 M and [Zn2+] = 1.29 M?
+1.083 V
–1.104 V
+1.104 V
+1.062 V
+1.125 V

Answers

1. The value of Ecell at 25 °C for the given electrochemical reaction, where [Mg²⁺] = 0.100 M and [Cu²⁺] = 1.75 M, is approximately +2.75 V.

15. The value of Ecell at 25 °C for the given electrochemical reaction, where [Mg²⁺] = 0.100 M and [Cu²⁺] = 1.75 M, is approximately +2.75 V.

17. The value of Ecell at 25 °C for the given standard cell potential of 1.104 V, with [Cu²⁺] = 0.250 M and [Zn²⁺] = 1.29 M, is approximately +1.083 V.

1. To calculate the cell potential (Ecell) at 25 °C, we need to use the Nernst equation:

Ecell = E°cell - (RT/nF) * ln(Q)

Given the concentrations of [Mg²⁺] and [Cu²⁺] in the reaction, we can determine the reaction quotient (Q). Since the reaction is not specified, I assume the reduction half-reaction for copper (Cu²⁺ + 2e⁻ → Cu) and the oxidation half-reaction for magnesium (Mg → Mg²⁺ + 2e⁻).

Using the Nernst equation and the given E° values for the half-reactions, we can calculate the value of Ecell:

Ecell = E°cell - (0.0257 V/K * 298 K / 2) * ln([Cu²⁺]/[Mg²⁺])

= 2.75 V - (0.0129 V) * ln(1.75/0.100)

≈ 2.75 V - (0.0129 V) * ln(17.5)

≈ 2.75 V - (0.0129 V) * 2.862

≈ 2.75 V - 0.037 V

≈ 2.713 V

Therefore, the value of Ecell at 25 °C for the given reaction with [Mg²⁺] = 0.100 M and [Cu²⁺] = 1.75 M is approximately +2.75 V.

15. Kw, the ion product of water, represents the equilibrium constant for the autoionization of water: H₂O ⇌ H₃O⁺ + OH⁻. In pure water, at any temperature, the concentration of both H₃O⁺ and OH⁻ ions is equal, and their product (Kw) remains constant.

Kw = [H₃O⁺][OH⁻] = 1.0 × 10⁻¹⁴

This constant value of Kw implies that the product of [H₃O⁺] and [OH-] in pure water is always equal to 1.0 × 10⁻¹⁴ at equilibrium. The pH and pOH of pure water are both equal to 7 (neutral), as the concentration of H₃O⁺ and OH⁻ ions are equal and each is 1.0 × 10⁻⁷ M.

Therefore, the correct statement about pure water is that Kw is always equal to 1.0 × 10⁻¹⁴.

17. Given the reduction half-reaction for copper (Cu²⁺ + 2e⁻ → Cu) and the oxidation half-reaction for zinc (Zn → Zn²⁺ + 2e⁻), the overall reaction can be written as:

Zn(s) + Cu²⁺(aq) → Zn²⁺(aq) + Cu(s)

Using the Nernst equation and the given E°cell value, we can calculate the value of Ecell:

Ecell = E°cell - (0.0257 V/K * 298 K / 2) * ln([Zn²⁺]/[Cu²⁺])

= 1.104 V - (0.0129 V) * ln(1.29/0.250)

≈ 1.104 V - (0.0129 V) * ln(5.16)

≈ 1.104 V - (0.0129 V) * 1.644

≈ 1.104 V - 0.0212 V

≈ 1.083 V

Therefore, the value of Ecell at 25 °C for the given standard cell potential of 1.104 V, with [Cu²⁺] = 0.250 M and [Zn²⁺] = 1.29 M, is approximately +1.083 V.

To learn more about electrochemical reaction, here

https://brainly.com/question/31236808

#SPJ4

Oil is sometimes found trapped beneath a ‘cap’. Shale is good at reflecting sound waves underground. Why does this mean that geophysicists must scan the rocks with sound waves from different points?

Answers

Geophysicists use sound waves to scan rocks from different points because shale, which is good at reflecting sound waves underground, can create a barrier or "cap" that traps oil beneath it. By scanning the rocks from different angles and points, geophysicists can gather more comprehensive data and identify the location and extent of the trapped oil.

Shale is a type of sedimentary rock that has a high capacity for reflecting sound waves. When oil is present beneath the shale, it acts as a barrier or cap that prevents the oil from migrating further. To locate and assess the potential oil reservoir, geophysicists use a technique called seismic reflection, which involves sending sound waves into the ground and analyzing the reflected waves.

By scanning the rocks from different points or angles, geophysicists can obtain multiple sets of seismic data that provide a more complete picture of the subsurface structure. This allows them to analyze the reflections and variations in the sound waves, which can indicate the presence of oil traps or reservoirs. By combining the data from different points, geophysicists can create a three-dimensional model of the subsurface and make more accurate predictions about the location and extent of the oil reservoirs.

Learn more about Geophysicists here:

https://brainly.com/question/32469429

#SPJ11

Give the structure of the major and minor organic products formed when HBr reacts with (E)-4,4-dimethyl-2-pentene in the presence of peroxides. When drawing hydrogen atoms on a carbon atom, either include all hydrogen atoms or none on that carbon atom, or your structure may be marked incorrect.In each reaction box, place the best reagent and conditions from the list below.

Answers

The structure of the major and minor organic products formed when HBr reacts with (E)-4,4-dimethyl-2-pentene in the presence of peroxides is shown in the image attached.

Reaction of (E)-4,4-dimethyl-2-pentene with HBr by free radical mechanism

The reaction is initiated by the hom---olytic cleavage of H-Br bond to form two free radicals, hydrogen (H•) and bromine (Br•), which are highly reactive and unstable.

The free radical bromine (Br•) reacts with the alkene (E)-4,4-dimethyl-2-pentene to form a more stable carbon-centered free radical intermediate.

The product is washed with aqueous HCl to remove any remaining impurities and neutralize the solution.

Learn more about free radical mechanism:https://brainly.com/question/11631123

#SPJ1

should the melting and freezing point of aluric acid be the same

Answers

According to the theory of thermodynamics, the melting and freezing point of a substance should be the same under equilibrium conditions. Impurities can cause a difference between the two. Uric acid should have the same melting and freezing point if pure.

This is because melting and freezing are reverse processes of each other and occur at the same temperature when the substance is in equilibrium between its solid and liquid phases.

Therefore, if a substance such as uric acid is pure and under equilibrium conditions, its melting and freezing point should be the same.

However, if the substance is not pure or if there are some impurities present, the melting and freezing points may be different due to changes in the melting point depression or freezing point elevation.

To learn more about thermodynamics refer here:

https://brainly.com/question/1368306#

#SPJ11

For the reaction PCl₅(g) ⇌ PCl₃(g) + Cl₂(g) Kp = 1.45 × 10⁻⁴ at 160 °C. A 1.00 L vessel at 160 °C is filled with PCl₅(g) at an initial pressure of 3.75 atm and allowed to come to equilibrium. What will be the pressure (in atm) of Cl₂(g) at equilibrium?

Answers

We need to use the equilibrium constant (Kp) and the initial pressure of PCl₅(g) to calculate the equilibrium pressures of PCl₃(g) and Cl₂(g). The equilibrium expression for the reaction is:

Kp = (P(Cl₂)) / (P(PCl₅)^(1) * P(PCl₃))

We can rearrange this equation to solve for P(Cl₂):

P(Cl₂) = Kp * P(PCl₅)^(1) * P(PCl₃)

Substituting the values given in the problem, we get:

P(Cl₂) = (1.45 × 10⁻⁴) * (3.75) * (P(PCl₃))

To solve for P(PCl₃), we use the fact that the initial pressure of PCl₅ is equal to the sum of the equilibrium pressures of PCl₃ and Cl₂:

P(PCl₅) = P(PCl₃) + P(Cl₂)

Substituting P(Cl₂) from the previous equation, we get:

3.75 = P(PCl₃) + (1.45 × 10⁻⁴) * (3.75) * (P(PCl₃))

Solving for P(PCl₃), we get:

P(PCl₃) = 3.75 / (1 + (1.45 × 10⁻⁴) * (3.75))

P(PCl₃) = 3.75 / 1.00055

P(PCl₃) = 3.749 atm (rounded to 3 significant figures)

Finally, we can substitute this value back into the equation for P(Cl₂):

P(Cl₂) = (1.45 × 10⁻⁴) * (3.75) * (3.749)

P(Cl₂) = 1.72 × 10⁻³ atm (rounded to 3 significant figures)

Therefore, the pressure of Cl₂(g) at equilibrium is 1.72 × 10⁻³ atm. This is a very small pressure, which indicates that the equilibrium lies far to the left, meaning that there is very little Cl₂(g) present at equilibrium.

To know more about equilibrium

brainly.com/question/30807709

#SPJ11

the equilibrium constant, kc, for this process is 326 at a certain temperature. if the initial concentration of br2 = i2 is 0.619 m, what is the equilibrium concentration of ibr in m?

Answers

The equilibrium concentration of IBr is 0.234 M.

To answer this question, we need to use the equilibrium constant expression, which is given as:
Kc = [IBr]/([Br2][I2])
We know that the equilibrium constant (Kc) for this reaction is 326 at a certain temperature. We also know the initial concentration of Br2 and I2, which is 0.619 M.
Let's assume that at equilibrium, the concentration of IBr is x M. Then, the concentration of Br2 and I2 will be (0.619 - x) M each.Now, we can substitute these values into the equilibrium constant expression and solve for x:
326 = x/[(0.619 - x)^2]
326(0.619 - x)^2 = x
Simplifying this equation, we get: 202.094 - 652.792x + 326x^2 = 0
Solving this quadratic equation using the quadratic formula, we get:
x = 0.234 M (rounded to three significant figures)
To know more about equilibrium concentration visit:

https://brainly.com/question/16645766

#SPJ11

Oxygen gas is collected at a pressure of 123 atm in a container which has a volume of 10.0 l. what temperature must be maintained on 0.500 moles of this gas in order to maintain this pressure? express the temperature in degrees celsius.

Answers

To maintain a pressure of 123 atm in a 10.0 L container with 0.500 moles of oxygen gas, the required temperature in degrees Celsius needs to be determined.

Explanation: According to the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature. Rearranging the equation, T = PV / nR, we can calculate the temperature.

Given that the pressure is 123 atm, the volume is 10.0 L, the number of moles is 0.500, and R is the ideal gas constant (0.0821 L·atm/mol·K), we can substitute the values into the equation. Thus, T = (123 atm) * (10.0 L) / (0.500 mol) * (0.0821 L·atm/mol·K). Solving this equation gives us the temperature in Kelvin. To convert it to degrees Celsius, subtract 273.15 from the Kelvin value.

Learn more about  ideal gas law here:

https://brainly.com/question/12624936

#SPJ11

Sodium hypochlorite (NaOCI) is the active ingredient in laundry bleach. Typically, bleach contains 5.0% of this salt by mass, which is a 0.67 M solution. Determine the concentrations of all species and compute the pH of laundry bleach.

Answers

The concentrations of the species is 2.0 x 10⁻⁴ M, and the pH of laundry bleach is approximately 10.3.

To determine the concentrations of all species and the pH of laundry bleach, we need to start by identifying the relevant chemical reactions.

Sodium hypochlorite (NaOCl) in water undergoes hydrolysis to produce hypochlorous acid (HOCl) and hydroxide ions (OH⁻);

NaOCl + H₂O ⇌ HOCl + Na⁺ + OH⁻

The equilibrium constant for this reaction, known as the base dissociation constant ([tex]K_{b}[/tex]), is;

[tex]K_{b}[/tex] = [HOCl][OH⁻] / [NaOCl]

We can assume that the concentration of sodium hydroxide is negligible compared to that of sodium hypochlorite and hypochlorous acid, so we can simplify the expression to;

[tex]K_{b}[/tex]= [HOCl][OH⁻] / [NaOCl] ≈ [HOCl][OH⁻] / 0.67 M

Since bleach contains 5.0% by mass of NaOCl, we can calculate its molarity as;

0.05 g NaOCl / 1 g bleach x 100 g bleach / 1 L bleach x 1 mol NaOCl / 74.44 g NaOCl = 0.067 M

So, the [tex]K_{b}[/tex] expression becomes;

[tex]K_{b}[/tex] = [HOCl][OH⁻] / 0.067 M

Now, to determine the concentrations of HOCl and OH⁻, we need to use the fact that the solution is in equilibrium;

[H₂O] = [HOCl] + [OH⁻]

where [H₂O] is the initial concentration of water (55.5 M). Solving for [OH⁻], we get;

[OH⁻] = (Kb [NaOCl] / [H₂O][tex])^{0.5}[/tex]

= (1.0 x 10⁻⁷ x 0.067 / 55.5[tex])^{0.5}[/tex] = 2.0 x 10⁻⁴ M

And since [HOCl] = [H₂O] - [OH⁻], we get:

[HOCl] = 55.5 M - 2.0 x 10⁻⁴ M = 55.5 M

So the concentrations of the species in laundry bleach are:

[NaOCl] = 0.067 M

[HOCl] = 55.5 M

[OH⁻] = 2.0 x 10⁻⁴M

To compute the pH of laundry bleach, we need to calculate the concentration of hydrogen ions (H⁺) using the equation;

Kw = [H⁺][OH⁻]

where Kw is the ion product constant of water (1.0 x 10⁻¹⁴). Solving for [H⁺], we get;

[H⁺] = Kw / [OH⁻] = 1.0 x 10⁻¹⁴ / 2.0 x 10⁻⁴ M

= 5.0 x 10⁻¹¹ M

Taking the negative logarithm of [H⁺], we get the pH;

pH = -log[H⁺] = -log(5.0 x 10⁻¹¹) = 10.3

Therefore, the pH of laundry bleach is approximately 10.3.

To know more about Sodium hypochlorite here

https://brainly.com/question/15312359

#SPJ4

How many molecules of sucrose (c12h11o22) are there in 15.6 g?

Answers

To determine the number of sucrose molecules in 15.6 g, we need to use the following steps: Calculate the molar mass of sucrose, Calculate the number of moles of sucrose, Convert the number of moles to the number of molecules. There are   2.74 x [tex]10^{22}[/tex]  molecules of sucrose in 15.6 g.

The molar mass of sucrose can be calculated by adding the atomic masses of each element in the formula. The atomic masses can be found in the periodic table. Molar mass of sucrose = (12 x 12.01 g/mol) + (22 x 1.01 g/mol) + (11 x 16.00 g/mol) = 342.3 g/mol

Calculate the number of moles of sucrose: The number of moles of sucrose can be calculated by dividing the given mass of sucrose by its molar mass. Number of moles = 15.6 g / 342.3 g/mol = 0.0455 mol

Convert the number of moles to the number of molecules: The Avogadro's number is used to convert the number of moles to the number of molecules. 1 mol of any substance contains 6.022 x 10^23 particles (Avogadro's number). Therefore,

Number of sucrose molecules = 0.0455 mol x 6.022 x 10^23 molecules/mol = [tex]2.74 x 10^{22}molecules[/tex], Therefore, there are approximately 2.74 x [tex]10^{22}[/tex] molecules of sucrose in 15.6 g.

Know more about molar mass here:

https://brainly.com/question/22997914

#SPJ11

When a snake kills a shrew, the shrew is the ________________. Group of answer choices Host Parasite Prey Predator

Answers

When a snake kills a shrew, the shrew is the prey. In ecological terms, the relationship between a snake and a shrew can be classified as a predator-prey relationship. The snake, as the predator, hunts and captures the shrew, which acts as the prey. The snake feeds on the shrew as a source of food.

Prey refers to an organism that is hunted and consumed by another organism, known as the predator. In this scenario, the shrew is the organism being hunted and killed by the snake. The snake, as the predator, relies on the shrew as a food source for its survival and energy needs. This predator-prey interaction is a common occurrence in nature, playing a crucial role in regulating populations and maintaining the balance within ecosystems.

 To  learn  more  about predator click here:brainly.com/question/28871161

#SPJ11

the ratio kb /km is called the catalytic efficiency of an enzyme. calculate the catalytic efficiency of carbonic anhydrase by using the data in example 17f.2.

Answers

The catalytic efficiency of carbonic anhydrase can be calculated by using the ratio of the rate constant for the enzyme-catalyzed reaction (kb) to the rate constant for the uncatalyzed reaction (km).

In Example 17F.2, the rate constant for the uncatalyzed reaction (km) was found to be 2.2 × 10^−3 s^−1, and the rate constant for the carbonic anhydrase-catalyzed reaction (kb) was found to be 3.3 × 10^6 M^−1 s^−1.

Therefore, the catalytic efficiency can be calculated by dividing kb by km, resulting in a value of approximately 1.5 × 10^9 M^−1 s^−1.

This high value for the catalytic efficiency of carbonic anhydrase demonstrates its ability to greatly accelerate the rate of the reaction it catalyzes. This is due to the enzyme's active site, which is specifically designed to bind and orient the substrate molecules in a way that maximizes their reactivity and allows for efficient conversion to the product.

The high catalytic efficiency of carbonic anhydrase is particularly important in biological systems, where the enzyme plays a key role in regulating pH and carbon dioxide levels in the body.

Learn more about carbonic anhydrase here :

https://brainly.com/question/11769267

#SPJ11

The brain can store lots of information because it is folded

Answers

The folding of the brain allows for a large storage capacity and efficient processing of information. The convoluted structure of the brain's outer layer, known as the cerebral cortex, increases its surface area, enabling it to accommodate a vast amount of neural connections and synaptic activity.

The brain's folding, or gyrification, plays a crucial role in its cognitive abilities. The folds, called gyri, and grooves, known as sulci, create an intricate network of neural pathways, facilitating communication between different regions of the brain. This complex architecture allows for efficient information processing, as it reduces the distance that signals need to travel between neurons.

Furthermore, the folding of the brain enhances its storage capacity. The increased surface area resulting from the folds enables a greater number of neurons to be packed into a smaller space. Neurons are the basic building blocks of the brain, responsible for processing and transmitting information. With more neurons in close proximity, the brain can store and process a larger volume of information.

To learn more about Neurons - brainly.com/question/10706320

#SPJ11

Question A solution contains 0.0125 M of some compound. The absorbance through a path length of 1.00 cm is 0.364. A second compound with an extinction coefficient of 15.2 cm-M is added to the solution, and the absorbance through the path length of 1.00 cm increases to 0.455. What is the concentration of the second compound in the solution? Give the answer to three significant figures Provide your answer below:

Answers

The concentration of the second compound in the solution is approximately 0.00599 M or 5.99 x 10⁻³ M. To determine the concentration of the second compound, we can use the Beer-Lambert Law, which states: A = εcl ,  

Where A is absorbance, ε is the molar absorptivity (extinction coefficient), c is the concentration, and l is the path length.

For the first compound, we are given:
A₁ = 0.364
c₁ = 0.0125 M
l₁ = 1.00 cm

For the second compound, we are given:
ε₂ = 15.2 cm⁻¹M⁻¹
l₂ = 1.00 cm
A₂_total = 0.455 (absorbance after adding the second compound)

Since the absorbances are additive, we can write the equation for the total absorbance:

A₂_total = A₁ + A₂

Substituting the given values, we get:

0.455 = 0.364 + (15.2)(c₂)(1)

Now, we can solve for the concentration of the second compound (c₂):

c₂ = (0.455 - 0.364) / 15.2
c₂ = 0.091 / 15.2
c₂ ≈ 0.00599 M

The concentration of the second compound in the solution is approximately 0.00599 M or 5.99 x 10⁻³ M, to three significant figures.

For more such questions on concentration

https://brainly.com/question/28564792

#SPJ11

The concentration of the second compound in the solution is 0.0553 M.

To solve this problem, we can use the Beer-Lambert Law, which states that absorbance is proportional to the concentration of the absorbing species and the path length. The change in absorbance can be used to determine the concentration of the second compound.

First, we can calculate the initial absorbance of the solution using the given concentration and extinction coefficient:

A = εcl = (0.0125 M) x (15.2 cm-M) x (1.00 cm) = 0.190

Next, we can calculate the absorbance contributed by the second compound:

ΔA = A₂ - A = 0.455 - 0.364 = 0.091

We can then use the Beer-Lambert Law again to solve for the concentration of the second compound:

ΔA = ε₂cl = (15.2 cm-M) x (c₂) x (1.00 cm)

c₂ = ΔA / (ε₂l) = 0.091 / (15.2 cm-M x 1.00 cm) = 0.005993 M

Adding this to the initial concentration gives us the total concentration of the second compound in the solution:

c_total = c₁ + c₂ = 0.0125 M + 0.005993 M = 0.0185 M

However, the question asks for the concentration of the second compound alone, so we need to subtract the initial concentration to get the final answer:

c₂ = c_total - c₁ = 0.0185 M - 0.0125 M = 0.006 M or 0.0553 M (to three significant figures).

learn more about compound here:

https://brainly.com/question/13516179

#SPJ11

climate change is expected to cause the most significant changes in the land carbon cycle. carbon dioxide raises temperatures, which extends the growing season and raises humidity. T/F

Answers

True. Climate change is expected to cause significant changes in the land carbon cycle. One of the main factors causing this change is the increase of carbon dioxide in the atmosphere, which leads to higher temperatures, longer growing seasons, and increased humidity.

These changes can have both positive and negative effects on plant growth and carbon storage in the soil. However, overall, the impact of climate change on the land carbon cycle is predicted to be negative, as changes in precipitation, temperature, and other factors can lead to increased rates of carbon loss from the soil and vegetation.


True, climate change is expected to cause significant changes in the land carbon cycle. The increase in carbon dioxide raises temperatures, which in turn extends the growing season and raises humidity. These factors can affect the rate of photosynthesis, plant growth, and the ability of ecosystems to store carbon. Additionally, climate change can influence factors such as precipitation patterns and soil moisture, further altering the land carbon cycle. It is crucial to monitor and mitigate the impacts of climate change to maintain a balanced land carbon cycle and protect ecosystems.

To know more about Climate visit:

https://brainly.com/question/10440860

#SPJ11

how many electrons, protons, and neutrons are in a neutral 197au197au atom? enter your answers numerically separated by commas.

Answers

The number of electrons, protons, and neutrons in a neutral 197Au atom is 79 electrons, 79 protons, and 118 neutrons.

How many electrons, protons, and neutrons are present in a neutral 197Au atom?

A neutral atom contains the same number of electrons as protons. The atomic number of gold (Au) is 79, which corresponds to the number of protons. To determine the number of neutrons, we subtract the atomic number from the atomic mass. In the case of gold-197 (197Au), the atomic mass is 197, and subtracting the atomic number (79) gives us the number of neutrons.

Hence, a neutral 197Au atom contains 79 electrons, 79 protons, and 118 neutrons.

Understanding the composition of atoms and the distribution of subatomic particles is fundamental to the study of atomic structure and the properties of elements.

Learn more about neutral atom

brainly.com/question/29235711

#SPJ11

regarding the preciptation of the benzoic acid during the extraction lab: when adding acid to the basic aqueous layer, the compound precipitates out. why?

Answers

When adding acid to the basic aqueous layer, the benzoic acid compound precipitates out due to the acid-base reaction resulting in reduced solubility of benzoic acid in the solution.

During the extraction lab, benzoic acid is typically extracted into the organic layer, leaving behind a basic aqueous layer. When acid is added to the basic aqueous layer, the pH of the solution decreases, causing the benzoic acid to become less soluble in water.

As a result, the benzoic acid will precipitate out of the solution as a solid. This is due to the decreased solubility of benzoic acid in acidic solutions compared to basic solutions.

When adding acid to the basic aqueous layer, the benzoic acid compound precipitates out because it becomes less soluble in the solution.

Step 1: In the extraction lab, you have a basic aqueous layer containing the benzoate ion (C6H5COO-) which is a conjugate base of benzoic acid (C6H5COOH).

Step 2: When you add acid (H+) to the basic aqueous layer, the benzoate ion reacts with the acid through an acid-base reaction.

Step 3: The reaction produces benzoic acid, which is less soluble in water than the benzoate ion.

Step 4: As a result of the reduced solubility, the benzoic acid precipitates out of the solution, allowing for its separation and purification.

In summary, when adding acid to the basic aqueous layer, the benzoic acid compound precipitates out due to the acid-base reaction resulting in reduced solubility of benzoic acid in the solution.

To know more about acid-base reaction refer here:

https://brainly.com/question/31262369#

#SPJ11

How many liters of gas B must react to give 1 L of gas D at the same temperature and pressure? Express your answer as an integer and include the appropriate units.

Answers

One liter of gas D can be produced by reacting one liter of gas B at the same temperature and pressure.

What is the volume of gas B required to produce one liter of gas D at the same temperature and pressure?

To produce gas D from gas B, the reaction must be carried out in a 1:1 stoichiometric ratio. This means that one mole of gas D is produced for every mole of gas B consumed in the reaction. Since both gases are at the same temperature and pressure, the volume ratio can be directly equated to the mole ratio. Therefore, one liter of gas B must react to give one liter of gas D.

It is important to note that the above relationship only holds true for the specific reaction in question. If the reaction were to involve different gases or conditions, the stoichiometric ratio and volume relationship would differ.

Learn more about stoichiometric ratio

brainly.com/question/6907332

#SPJ11

Other Questions
A radioactive substance decays at an annual rate of 13 percent. If the initial amount of the substance is 325 grams, Which functions f models the remaining amount of the substance, in grams, t years later? a.) How many ways are there to pack eight indistinguishable copies of the same book into five indistinguishable boxes, assuming each box can contain as many as eight books?b.) How many ways are there to pack seven indistinguishable copies of the same book into four indistinguishable boxes, assuming each box can contain as many as seven books? Harry pays $28 for a one month gym membership and has to pay $2 for every fitness class he takes. This is represented by the following function, where x is the number of classes he takes. Fusiform bodies of tuna, penguins and seals are an example of: Coiner Clothes Inc. is considering the replacement of its old, fully depreciated knitting machine. Two new models are available: (a) Machine 200-3, which has a cost of $200,000, a 3-year expected life, and after-tax cash flows (labor savings and depreciation) of $90,000 per year, and (b) Machine 380-6, which has a cost of $375,000, a 6-year life, and after-tax cash flows of $100,000 per year. Assume that both projects can be repeated. Knitting machine prices are not expected to rise because inflation will be offset by cheaper components (microprocessors) used in the machines. Assume that Coiner's WACC is 14%. What is the extended NPV using the replacement chain approach of the project that should be selected? A. $14,986 B. $3,566 OC. $8,947 D. $4,139 O E. $13,867 The Sweezy model of oligopoly reveals that: Select one: a. perfectly competitive prices can arise in markets with only a few firms. b. capacity constraints are not important in determining market performance. c. changes in marginal cost may not affect prices. d. All of the statements associated with this question are correct. Dilation centered at the origin with a scale factor of 4 the lewis dot structure of the carbonate ion, co32-, has A helical compression spring with plain ends is made to have a spring rate of 100,000 N/m. The wire diameter d=10 mm and the spring index is 5. The shear modulus od elasticity is 80 GPa and the maximum allowable shear stress is 480 N/mm2. Determine the number of active coils, the maximum allowable static load, and the manufactured pitch so that the maximum load just compresses the spring to its solid length. (Suppose the safety factor is 1.0) What is the principle distinction between explicit costs and implicit costs? Prove that the area of a regular n-gon, with a side of length s, is given by the formula: ns2 Area = 4 tan (15) (Note: when n = 3, we get the familiar formula for the area of an equilateral triangle 2V3 which is .) 4. s3 ) Prefers into the twenty first century contemporary literature question 1 9. Choose the best answer.Who are the individuals providing limited healthcare during medical situations?police officersparamedicsfirefightersemergency medical technicians which substances are chemically combined to form a compound What is the absolute magnitude of the reduction in the variation of Y when times is introduced into the regression model? What is the relative reduction? What is the name of the latter measure? Find the position vector of a particle that has the given acceleration and the specified initial velocity and position. a(t)=ti+e^tj+e^-tk, v(0)=k, r(0)=j+k There are 20 counters in a box 6 are red and 5 are green and the rest are bluefind the probability that she takes a blue counter consider the function f(x)=2x^3 18x^2-162x 5, -9 is less than or equal to x is less than or equal to 4. this function has an absolute minimum value equal to T/F. According to both the CAPM and APT, in order to rule out arbitrage opportunities, assets with higher variance of returns also must have higher expected returns. How did Japanese conquests in East Asia compare to European and American conquests in Asia and Africa? a. Both denied their subjects political equality because of perceived racial inferiority. b. Both paired industrialized militaries with proselytism to conquer new territories. c. The Japanese claimed that conquered territories historically belonged to it, and Europeans and Americans did not. d. Europeans and Americans encountered local resistance to colonialism, and the Japanese did not.