A particular solid can be modeled as a collection of atoms connected by springs (this is called the Einstein model of a solid). In each
direction the atom can vibrate, the effective spring constant can be taken to be 3.5 N/m. The mass of one mole of this solid is 750 g
How much energy, in joules, is in one quantum of energy for this solid?

Answers

Answer 1

A particular solid can be modeled as a collection of atoms connected by springs (this is called the Einstein model of a solid). In each direction the atom can vibrate, the effective spring constant can be taken to be 3.5 N/m.

The mass of one mole of this solid is 750 g. The aim is to determine how much energy, in joules, is in one quantum of energy for this solid. Therefore, according to the Einstein model, the energy E of a single quantum of energy in a solid of frequency v isE = hνwhere h is Planck's constant, v is the frequency, and ν = (3k/m)1/2/2π is the vibration frequency of the atoms in the solid. Let's start by converting the mass of the solid from grams to kilograms.

Mass of one mole of solid = 750 g or 0.75 kgVibration frequency = ν = (3k/m)1/2/2πwhere k is the spring constant and m is the mass per atom = (1/6.02 × 10²³) × 0.75 kgThe frequency is given as ν = (3 × 3.5 N/m / (1.6605 × 10⁻²⁷ kg))1/2/2π= 1.54 × 10¹² s⁻¹The energy of a single quantum of energy in the solid isE = hνwhere h = 6.626 × 10⁻³⁴ J s is Planck's constant.

To know more about collection visit:

https://brainly.com/question/32464115

#SPJ11


Related Questions

A thermistor is used in a circuit to control a piece of equipment automatically. What might this circuit be used for? A lighting an electric lamp as it becomes darker B ringing an alarm bell if a locked door is opened C switching on a water heater at a pre-determined time D turning on an air conditioner when the temperature rises

Answers

A thermistor is used in a circuit to control a piece of equipment automatically, this circuit be used for D. Turn on an air conditioner when the temperature rises.

A thermistor is a type of resistor whose resistance value varies with temperature. In a circuit, it is used as a sensor to detect temperature changes. The thermistor is used to control a piece of equipment automatically in various applications like thermostats, heating, and cooling systems. A circuit with a thermistor may be used to turn on an air conditioner when the temperature rises. In this case, the thermistor is used to sense the increase in temperature, which causes the resistance of the thermistor to decrease.

This change in resistance is then used to trigger the circuit, which turns on the air conditioner to cool the room. A thermistor circuit may also be used to switch on a water heater at a pre-determined time. In this case, the thermistor is used to detect the temperature of the water, and the circuit is programmed to turn on the heater when the water temperature falls below a certain level. This helps to maintain a consistent temperature in the water tank. So therefore the correct answer is D, turn on an air conditioner when the temperature rises.

Learn more about thermistor at:

https://brainly.com/question/31888503

#SPJ11

What is the pressure drop (in N/2) due to the Bernoulli effect as water goes into a 3.5 cm diameter
nozzle from a 8.9 cm diameter fire hose while carrying a flow of 35 L/s?

Answers

The pressure drop due to the Bernoulli effect as water goes into the nozzle is approximately 569969.28 N/m^2 or 569969.28 Pa.

To find the pressure drop (ΔP) due to the Bernoulli effect as water goes into the nozzle,

We need to calculate the velocities (v1 and v2) and substitute them into the pressure drop formula.

Given:

Diameter of the fire hose (D1) = 8.9 cm = 0.089 m

Diameter of the nozzle (D2) = 3.5 cm = 0.035 m

Flow rate (Q) = 35 L/s = 0.035 m^3/s

Density of water (ρ) = 1000 kg/m^3

Calculating the cross-sectional areas:

A1 = (π/4) * D1^2

A2 = (π/4) * D2^2

Calculating the velocities:

v1 = Q / A1

v2 = Q / A2

Substituting the values into the equations:

A1 = (π/4) * (0.089 m)^2 ≈ 0.00622 m^2

A2 = (π/4) * (0.035 m)^2 ≈ 0.000962 m^2

v1 = 0.035 m^3/s / 0.00622 m^2 ≈ 5.632 m/s

v2 = 0.035 m^3/s / 0.000962 m^2 ≈ 36.35 m/s

Using the pressure drop formula:

ΔP = (1/2) * ρ * (v2^2 - v1^2)

ΔP = (1/2) * 1000 kg/m^3 * ((36.35 m/s)^2 - (5.632 m/s)^2)

ΔP ≈ 569969.28 N/m^2 ≈ 569969.28 Pa

Therefore, the pressure drop due to the Bernoulli effect as water goes into the nozzle is approximately 569969.28 N/m^2 or 569969.28 Pa.

Learn more about Bernoulli’s principle from the given link :

https://brainly.com/question/13344039

#SPJ11

50. The angle that a reflected light ray makes with the surface normal A) is smaller B) the same size C) greater than the angle that the incident ray makes with the normal 51. The speed of light in gl

Answers

The angle that a reflected light ray makes with the surface normal is smaller.

The law of reflection states that the angle of incidence is equal to the angle of reflection. When light is reflected from a surface, the angle at which it is reflected (angle of reflection) is equal to the angle at which it hits the surface (angle of incidence). The angle that a reflected light ray makes with the surface normal is the angle of reflection. Therefore, the answer is that the angle that a reflected light ray makes with the surface normal is smaller than the angle that the incident ray makes with the normal.

The speed of light in glass is less than the speed of light in a vacuum. This means that the refractive index of glass is greater than 1. When light passes through a medium with a higher refractive index than the medium it was previously in, the light is bent towards the normal. Therefore, the answer is that the speed of light in glass is less than the speed of light in a vacuum, and the refractive index of glass is greater than 1.

The angle that a reflected light ray makes with the surface normal is A) is smaller. The law of reflection states that the angle of incidence is equal to the angle of reflection. When light is reflected from a surface, the angle at which it is reflected (angle of reflection) is equal to the angle at which it hits the surface (angle of incidence). The angle that a reflected light ray makes with the surface normal is the angle of reflection. Therefore, the answer is that the angle that a reflected light ray makes with the surface normal is smaller than the angle that the incident ray makes with the normal.

The speed of light in glass is less than the speed of light in a vacuum. This means that the refractive index of glass is greater than 1. When light passes through a medium with a higher refractive index than the medium it was previously in, the light is bent towards the normal. Therefore, the answer is that the speed of light in glass is less than the speed of light in vacuum, and the refractive index of glass is greater than 1.


When a light wave strikes a surface, it can be either absorbed or reflected. Reflection occurs when light bounces back from a surface. The angle at which the light strikes the surface is known as the angle of incidence, and the angle at which it reflects is known as the angle of reflection. The angle of incidence is always equal to the angle of reflection, as stated by the law of reflection. The angle that a reflected light ray makes with the surface normal is the angle of reflection. It's smaller than the angle of incidence.

When light travels through different mediums, such as air and glass, its speed changes, and it bends. Refraction is the process of bending that occurs when light moves from one medium to another with a different density. The refractive index is a measure of the extent to which a medium slows down light compared to its speed in a vacuum. The refractive index of a vacuum is 1.

When light moves from a medium with a low refractive index to a medium with a high refractive index, it bends toward the normal, which is a line perpendicular to the surface separating the two media.

When light is reflected from a surface, the angle of reflection is always equal to the angle of incidence. The angle of reflection is the angle that a reflected light ray makes with the surface normal, and it is smaller than the angle of incidence. The refractive index of a medium is a measure of how much the medium slows down light compared to its speed in a vacuum. When light moves from a medium with a low refractive index to a medium with a high refractive index, it bends toward the normal.

To know more about refractive index visit

brainly.com/question/30761100

#SPJ11

Write a x; in a form that includes the Kronecker delta. Now show that V.r=3.

Answers

x; = Σn=1 to ∞ δn,x vn,
where δn,x is the Kronecker delta and vn is a vector in the basis of x.


Kronecker delta is a mathematical symbol that is named after Leopold Kronecker. It is also known as the Kronecker's delta or Kronecker's symbol. It is represented by the symbol δ and is defined as δij = 1 when i = j, and 0 otherwise. Here, i and j can be any two indices in the vector x. The vector x can be expressed as a sum of vectors in the basis of x as follows: x = Σn=1 to ∞ vn, where vn is a vector in the basis of x.

Using the Kronecker delta, we can express this sum in the following form:

x; = Σn=1 to ∞ δn,x vn, where δn,x is the Kronecker delta. Now, if we take the dot product of the vector V and x, we get the following:

V·x = V·(Σn=1 to ∞ vn) = Σn=1 to ∞ (V·vn)

Since V is a 3-dimensional vector, the dot product V·vn will be zero for all but the third term, where it will be equal to 3. So, V·x = Σn=1 to ∞ (V·vn) = 3, which proves that V·x = 3.

Learn more about Kronecker delta here:

https://brainly.com/question/30894460

#SPJ11

Consider a diffraction grating with a grating constant of 500 lines/mm. The grating is illuminated with a monochromatic light source of unknown wavelength. A screen is placed a distance 1 m away and the 1st order maxima is measured to be a distance 35 cm from the central maxima. What is the wavelength of the light expressed in nm?

Answers

The wavelength of the monochromatic light source is approximately 350 nm or 700 nm (if we consider the wavelength of the entire wave, accounting for both the positive and negative directions).

The wavelength of the monochromatic light source can be determined using the given information about the diffraction grating and the position of the 1st order maxima on the screen. With a grating constant of 500 lines/mm, the distance between adjacent lines on the grating is 2 μm. By measuring the distance of the 1st order maxima from the central maxima on the screen, which is 35 cm or 0.35 m, and utilizing the formula for diffraction grating, the wavelength of the light is found to be approximately 700 nm.

The grating constant of 500 lines/mm means that there are 500 lines per millimeter on the diffraction grating. This corresponds to a distance of 2 μm between adjacent lines. The distance between adjacent lines on the grating, also known as the slit spacing (d), is given by d = 1/500 mm = 2 μm.

The distance from the central maxima to the 1st order maxima on the screen is measured to be 35 cm or 0.35 m. This distance is known as the angular separation (θ) and is related to the wavelength (λ) and the slit spacing (d) by the formula: d sin(θ) = mλ, where m is the order of the maxima.

In this case, we are interested in the 1st order maxima, so m = 1. Rearranging the formula, we have sin(θ) = λ/d. Since the angle θ is small, we can approximate sin(θ) as θ in radians.

Substituting the known values, we have θ = 0.35 m/d = 0.35 m/(2 μm) = 0.35 × 10^(-3) m / (2 × 10^(-6) m) = 0.175.

Now, we can solve for the wavelength λ.

Rearranging the formula, we have λ = d sin(θ) = (2 μm)(0.175) = 0.35 μm = 350 nm.

Learn more about monochromatic light source here:

brainly.com/question/11395095

#SPJ11

Questions 7.39 Homework. Unanswered ★ A pendulum is fashioned out of a thin bar of length 0.55 m and mass 1.9 kg. The end of the bar is welded to the surface of a sphere of radius 0.11 m and mass 0.86 kg. Find the centre of mass of the composite object as measured in metres from the end of the bar without the sphere. Type your numeric answer and submit

Answers

The center of mass of the composite object, consisting of the bar and sphere, is approximately 0.206 meters from the end of the bar. This is calculated by considering the individual centers of mass and their weighted average based on their masses.

To find the center of mass of the composite object, we need to consider the individual center of masses of the bar and the sphere and calculate their weighted average based on their masses.

The center of mass of the bar is located at its midpoint, which is L/2 = 0.55 m / 2 = 0.275 m from the end of the bar.

The center of mass of the sphere is at its geometric center, which is at a distance of R/2 = 0.11 m / 2 = 0.055 m from the end of the bar.

Now we calculate the weighted average:

Center of mass of the composite object = ([tex]m_bar[/tex] * center of mass of the bar + [tex]m_bar[/tex] * center of mass of the sphere) / ([tex]m_bar + m_sphere[/tex])

Center of mass of the composite object = (1.9 kg * 0.275 m + 0.86 kg * 0.055 m) / (1.9 kg + 0.86 kg)

To solve the expression (1.9 kg * 0.275 m + 0.86 kg * 0.055 m) / (1.9 kg + 0.86 kg), we can simplify the numerator and denominator separately and then divide them.

Numerator: (1.9 kg * 0.275 m + 0.86 kg * 0.055 m) = 0.5225 kg⋅m + 0.0473 kg⋅m = 0.5698 kg⋅m

Denominator: (1.9 kg + 0.86 kg) = 2.76 kg

Now we can calculate the expression:

(0.5698 kg⋅m) / (2.76 kg) ≈ 0.206 m

Therefore, the solution to the expression is approximately 0.206 meters.

To know more about the center of mass refer here,

https://brainly.com/question/8662931#

#SPJ11

Which graphs could represent CONSTANT VELOCITY MOTION

Answers

A constant velocity motion will be represented by a straight line on the position-time graph as in option (c). Therefore, the correct option is C.

An object in constant velocity motion keeps its speed and direction constant throughout. The position-time graph for motion with constant speed is linear. The magnitude and direction of the slope on the line represent the speed and direction of motion, respectively, and the slope itself represents the velocity of the object.

A straight line with a slope greater than zero on a position-time graph indicates that the object is traveling at a constant speed. The velocity of the object is represented by the slope of the line; A steeper slope indicates a higher velocity, while a shallower slope indicates a lower velocity.

Therefore, the correct option is C.

Learn more about Slope, here:

https://brainly.com/question/3605446

#SPJ4

Your question is incomplete, most probably the complete question is:

Which of the following position-time graphs represents a constant velocity motion?

PROBLEM STATEMENT Housewives claims that bulk red label wine is stronger than the Red Label wine found on Supermarket shelves. Plan and design an experiment to prove this claim HYPOTHESIS AM APPARATUS AND MATERIALS DIAGRAM OF APPARATUS (f necessary METHOD On present tense) VARIABLES: manipulated controlled responding EXPECTED RESULTS ASSUMPTION PRECAUTIONS/ POSSIBLE SOURCE OF ERROR

Answers

To prove the claim that bulk red label wine is stronger than the Red Label wine found on supermarket shelves, an experiment can be designed to compare the alcohol content of both types of wine.

To investigate the claim, the experiment would involve analyzing the alcohol content of bulk red label wine and the Red Label wine available in supermarkets. The hypothesis assumes that bulk red label wine has a higher alcohol content than the Red Label wine sold in supermarkets.

In order to conduct this experiment, the following apparatus and materials would be required:

1. Samples of bulk red label wine

2. Samples of Red Label wine from a supermarket

3. Alcohol meter or hydrometer

4. Wine glasses or containers for testing

The experiment would proceed as follows:

1. Obtain representative samples of bulk red label wine and Red Label wine from a supermarket.

2. Ensure that the samples are of the same vintage and have been stored under similar conditions.

3. Use the alcohol meter or hydrometer to measure the alcohol content of each wine sample.

4. Pour the wine samples into separate wine glasses or containers.

5. Observe and record any visual differences between the wines, such as color or clarity.

Variables:

- Manipulated variable: Type of wine (bulk red label wine vs. Red Label wine from a supermarket)

- Controlled variables: Vintage of the wine, storage conditions, and volume of wine used for testing

- Responding variable: Alcohol content of the wine

Expected Results:

Based on the hypothesis, it is expected that the bulk red label wine will have a higher alcohol content compared to the Red Label wine from a supermarket.

Assumption:

The assumption is that the bulk red label wine, being purchased in larger quantities, may be sourced from different suppliers or production methods that result in a higher alcohol content compared to the Red Label wine sold in supermarkets.

Precautions/Possible Sources of Error:

1. Ensure that the alcohol meter or hydrometer used for measuring the alcohol content is calibrated properly.

2. Take multiple measurements for each wine sample to ensure accuracy.

3. Avoid cross-contamination between the wine samples during testing.

4. Ensure the wine samples are handled and stored properly to maintain their integrity.

Learn more about alcohol

brainly.com/question/29268872

#SPJ11

Two pellets, each with a charge of 1.2 microcoulomb
(1.2×10−6 C), are located 2.6 cm(2.6×10−2 m) apart. Find the
electric force between them.

Answers

The electric force between two charged objects can be calculated using Coulomb's law. Coulomb's law states that the electric force (F) between two charges is directly proportional to the product of the charges (q1 and q2) and inversely proportional to the square of the distance (r) between them. The formula for electric force is:

F = k * (|q1 * q2| / r^2)

Where:

F is the electric force

k is the electrostatic constant (k ≈ 8.99 × 10^9 N·m^2/C^2)

q1 and q2 are the charges

r is the distance between the charges

q1 = q2 = 1.2 × 10^(-6) C (charge of each pellet)

r = 2.6 × 10^(-2) m (distance between the pellets)

Substituting these values into the formula, we have:

F = (8.99 × 10^9 N·m^2/C^2) * (|1.2 × 10^(-6) C * 1.2 × 10^(-6) C| / (2.6 × 10^(-2) m)^2)

Calculating this expression will give us the electric force between the two pellets.

learn more about " Coulomb's law":- https://brainly.com/question/506926

#SPJ11

A solution consisting of 30% MgSO4 and 70% H2O is cooled to 60°F. During cooling, 5% of the water evaporates.
whole system. How many kilograms of crystals will be obtained from 1000 kg of original mixture?

Answers

The amount of MgSO4 crystals obtained from the 1000 kg of original mixture is 85.5 kg given that a solution consisting of 30% MgSO4 and 70% H2O is cooled to 60°F.

The total amount of the mixture is 1000 kg. The solution consists of 30% MgSO4 and 70% H2O.The weight of MgSO4 in the initial solution = 30% of 1000 kg = 300 kg

The weight of water in the initial solution = 70% of 1000 kg = 700 kg

The mass of the solution (mixture) = 1000 kg

During cooling, 5% of water evaporates => The mass of water in the final mixture = 0.95 × 700 kg = 665 kg

The mass of MgSO4 in the final mixture = 300 kg

Remaining mixture (H2O) after evaporation = 665 kg

The amount of MgSO4 crystals obtained = Final MgSO4 weight – Initial MgSO4 weight = 300 – (1000 – 665) × 0.3 = 85.5 kg

Therefore, the amount of MgSO4 crystals obtained from the 1000 kg of original mixture is 85.5 kg.

More on crystals: https://brainly.com/question/20896360

#SPJ11

A CONCAVE lens has the same properties as a CONCAVE mirror.
A. true
B. False

Answers

The Given statement "A CONCAVE lens has the same properties as a CONCAVE mirror" is FALSE because A concave lens and a concave mirror have different properties and behaviors.

A concave lens is thinner at the center and thicker at the edges, causing light rays passing through it to diverge. It has a negative focal length and is used to correct nearsightedness or to create virtual images.

On the other hand, a concave mirror is a reflective surface that curves inward, causing light rays to converge towards a focal point. It has a positive focal length and can produce both real and virtual images depending on the location of the object.

So, a concave lens and a concave mirror have opposite effects on light rays and serve different purposes, making the statement "A concave lens has the same properties as a concave mirror" false.

Learn more about CONCAVE at

https://brainly.com/question/29142394

#SPJ11

A skateboard of mass m slides from rest over a large
spherical boulder of radius R. The skateboard gains speed as it
slides, eventually falling off at a maximum angle.
a. Determine the Kinetic Energy

Answers

The kinetic energy of the skateboard sliding over the large spherical boulder is given by m * g * (R - R * cos(θ)), having a large spherical boulder of radius R.

To determine the kinetic energy of the skateboard as it slides over the large spherical boulder, we need to consider the conservation of energy.

Initially, the skateboard is at rest, so its initial kinetic energy (K.E.) is zero.

As the skateboard slides over the boulder, it gains speed and kinetic energy due to the conversion of potential energy into kinetic energy.

The potential energy at the initial position (at the top of the boulder) is given by:

P.E. = m * g * h

where m is the mass of the skateboard, g is the acceleration due to gravity, and h is the height of the initial position (the height of the boulder).

Since the skateboard slides down to a maximum angle, all the potential energy is converted into kinetic energy at that point.

Therefore, the kinetic energy at the maximum angle is equal to the initial potential energy:

K.E. = P.E. = m * g * h

Now, to determine the kinetic energy in terms of the radius of the boulder (R) and the maximum angle (θ), we can express the height (h) in terms of R and θ.

The height (h) can be given by:

h = R - R * cos(θ)

Substituting this expression for h into the equation for kinetic energy:

K.E. = m * g * (R - R * cos(θ))

Therefore, the kinetic energy of the skateboard sliding over the large spherical boulder is given by m * g * (R - R * cos(θ)).

To know more about kinetic energy please refer:

https://brainly.com/question/8101588

#SPJ11

A small light fixture on the bottom of a swimming pool is \( 1.30 \mathrm{~m} \) below the surface. The light emerging from the still water forms a circle on the water surface. What is the diameter of this circle?

Answers

The diameter can be determined by doubling the distance of 1.30 m, resulting in a diameter of approximately 2.60 m.

The diameter of the circle formed by the light emerging from the bottom of the swimming pool can be determined by considering the refractive properties of water and the geometry of the situation.

When light travels from one medium (in this case, water) to another medium (air), it undergoes refraction. The angle of refraction depends on the angle of incidence and the refractive indices of the two media.

In this scenario, the light is traveling from water to air, and since the light is emerging from the still water, the angle of incidence is 90 degrees (perpendicular to the surface). The light will refract and form a circle on the water surface.

To determine the diameter of this circle, we can use Snell's law, which relates the angles of incidence and refraction to the refractive indices of the two media. The refractive index of water is approximately 1.33, and the refractive index of air is approximately 1.00.

Applying Snell's law, we find that the angle of refraction in air is approximately 48.76 degrees. Since the angle of incidence is 90 degrees, the light rays will spread out symmetrically in a circular shape, with the point of emergence at the center.

The diameter of the circle formed by the light on the water surface will depend on the distance between the light fixture and the water surface. In this case, the diameter can be determined by doubling the distance of 1.30 m, resulting in a diameter of approximately 2.60 m.

Learn more about Diameter from the given link:

https://brainly.com/question/32968193

#SPJ11

You have a resistor of resistance 230 Ω , an inductor of inductance 0.360 H, a capacitor of capacitance 5.60 μF and a voltage source that has a voltage amplitude of 29.0 V and an angular frequency of 300 rad/s. The resistor, inductor, capacitor, and voltage source are connected to form an L-R-C series circuit.
a) What is the impedance of the circuit?
b) What is the current amplitude?
c) What is the phase angle of the source voltage with respect to the current?
d) Does the source voltage lag or lead the current?
e) What is the voltage amplitude across the resistor?
f) What is the voltage amplitude across the inductor?
g) What is the voltage amplitudes across the capacitor?

Answers

The L-R-C series circuit has an impedance of 250.5 Ω, current amplitude of 0.116 A, and source voltage leads the current. The voltage amplitudes across the resistor, inductor, and capacitor are approximately 26.68 V, 12.528 V, and 1.102 V, respectively.

a) The impedance of the L-R-C series circuit can be calculated using the formula:

Z = √(R^2 + (Xl - Xc)^2)

where R is the resistance, Xl is the inductive reactance, and Xc is the capacitive reactance.

Given:

Resistance (R) = 230 Ω

Inductance (L) = 0.360 H

Capacitance (C) = 5.60 μF

Voltage amplitude (V) = 29.0 V

Angular frequency (ω) = 300 rad/s

To calculate the reactances:

Xl = ωL

Xc = 1 / (ωC)

Substituting the given values:

Xl = 300 * 0.360 = 108 Ω

Xc = 1 / (300 * 5.60 * 10^(-6)) ≈ 9.52 Ω

Now, substituting the values into the impedance formula:

Z = √(230^2 + (108 - 9.52)^2)

Z ≈ √(52900 + 9742)

Z ≈ √62642

Z ≈ 250.5 Ω

b) The current amplitude (I) can be calculated using Ohm's Law:

I = V / Z

I = 29.0 / 250.5

I ≈ 0.116 A

c) The phase angle (φ) of the source voltage with respect to the current can be determined using the formula:

φ = arctan((Xl - Xc) / R)

φ = arctan((108 - 9.52) / 230)

φ ≈ arctan(98.48 / 230)

φ ≈ arctan(0.428)

φ ≈ 23.5°

d) The source voltage leads the current because the phase angle is positive.

e) The voltage amplitude across the resistor is given by:

VR = I * R

VR ≈ 0.116 * 230

VR ≈ 26.68 V

f) The voltage amplitude across the inductor is given by:

VL = I * Xl

VL ≈ 0.116 * 108

VL ≈ 12.528 V

g) The voltage amplitude across the capacitor is given by:

VC = I * Xc

VC ≈ 0.116 * 9.52

VC ≈ 1.102 V

To know more about circuit, click here:

brainly.com/question/9682654?

#SPJ11

(a) Find the distance of the image from a thin diverging lens of focal length 30 cm if the object is placed 20 cm to the right of the lens. Include the correct sign. cm (b) Where is the image formed?

Answers

The image is formed on the same side of the object.

Focal length, f = -30 cm

Distance of object from the lens, u = -20 cm

Distance of the image from the lens, v = ?

Now, using the lens formula, we have:

1/f = 1/v - 1/u

Or, 1/-30 = 1/v - 1/-20

Or, v = -60 cm (distance of image from the lens)

The negative sign of the image distance indicates that the image formed is virtual, erect, and diminished.

The image is formed on the same side of the object. So, the image is formed 60 cm to the left of the lens.

To learn more about image, refer below:

https://brainly.com/question/30725545

#SPJ11

" An object moves (3.5x10^0) metres, stops, and them moves (3.340x10^0) Ý metres. What is the total displacement. Give your answer to 2 sf.

Answers

The total displacement of the object is approximately 165.64 meters.

Given

The first movement is (3.5 × 10) meters.

The second movement is (3.34 × 10)  [tex]\hat{y}[/tex] meters.

Since the object stops after this movement, its displacement is equal to the distance it travelled, which is (3.5 × 10) meters.

To find the total displacement, we need to consider both movements. Since the movements are in different directions (one in the x-direction and the other in the y-direction), we can use the Pythagorean theorem to calculate the magnitude of the total displacement:

Total displacement = [tex]\sqrt{(displacement_x)^2 + (displacement_y)^2})[/tex]

In this case,

[tex]displacement_x[/tex] = 3.5 × 10 meters and

[tex]displacement_y[/tex] = 3.34 × 10 meters.

Plugging in the values, we get:

Total displacement =  ([tex]\sqrt{(3.5 \times 10)^2 + (3.34 \times 10)^2})[/tex]

Total displacement = [tex]\sqrt{(122.5)^2 + (111.556)^2})[/tex]

Total displacement ≈ [tex]\sqrt{(15006.25 + 12432.835936)[/tex]

Total displacement ≈ [tex]\sqrt{27439.085936[/tex])

Total displacement ≈ 165.64 meters (rounded to 2 significant figures)

Therefore, the total displacement of the object is approximately 165.64 meters.

Learn more about Displacement from the given link:

https://brainly.com/question/29769926

#SPJ11

A beam of green light enters glass from air, at an angle of incidence = 39 degrees. The frequency of green light = 560 x 1012 Hz. Refractive index of glass = 1.5. Speed of light in air = 3 x 108 m/s. What will be its wavelength inside the glass? Write your answer in terms of nanometers. You Answered 357 Correct Answer 804 margin of error +/- 3%

Answers

The wavelength of green light inside the glass is approximately 357 nanometers, calculated using the given angle of incidence, frequency, and refractive index. The speed of light in the glass is determined based on the speed of light in air and the refractive index of the glass.

To find the wavelength of light inside the glass, we can use the formula:

wavelength = (speed of light in vacuum) / (frequency)

Given:

Angle of incidence = 39 degrees

Frequency of green light = 560 x 10¹² Hz

Refractive index of glass (n) = 1.5

Speed of light in air = 3 x 10⁸ m/s

First, we need to find the angle of refraction using Snell's Law:

n₁ * sin(angle of incidence) = n₂ * sin(angle of refraction)

In this case, n₁ is the refractive index of air (approximately 1) and n₂ is the refractive index of glass (1.5).

1 * sin(39°) = 1.5 * sin(angle of refraction)

sin(angle of refraction) = (1 * sin(39°)) / 1.5

sin(angle of refraction) = 0.5147

angle of refraction ≈ arcsin(0.5147) ≈ 31.56°

Now, we can calculate the speed of light in the glass using the refractive index:

Speed of light in glass = (speed of light in air) / refractive index of glass

Speed of light in glass = (3 x 10⁸ m/s) / 1.5 = 2 x 10⁸ m/s

Finally, we can calculate the wavelength inside the glass using the speed of light in the glass and the frequency of the light:

wavelength = (speed of light in glass) / frequency

wavelength = (2 x 10⁸ m/s) / (560 x 10¹² Hz)

Converting the answer to nanometers:

wavelength ≈ 357 nm

Therefore, the wavelength of the green light inside the glass is approximately 357 nanometers.

To know more about the refractive index refer here,

https://brainly.com/question/28346030#

#SPJ11

Part A A1 1-cm-tall object is 17 cm in front of a concave mirror that has a 69 em focal length Calculate the position of the image. Express your answer using two significant figures. ΨΗ ΑΣΦ O ? cm Submit Request Answer Part 8 A 1.1-cm-tall object is 17 cm in front of a concave mirror that has a 69 cm focal length Calculate the height of the image Express your answer using two significant figures. Vo] ΑΣΦ XE Cm

Answers

The position of the image is approximately -6.81 cm, and the height of the image is approximately 0.4 cm.The position of the image is approximately -6.81 cm, and the height of the image is approximately 0.4 cm.

To calculate the position of the image formed by a concave mirror and the height of the image, we can use the mirror equation and magnification formula.

Given:

- Object height (h_o) = 1 cm

- Object distance (d_o) = -17 cm (negative because the object is in front of the mirror)

- Focal length (f) = 69 cm

Using the mirror equation:

1/f = 1/d_i + 1/d_o

Since the object distance (d_o) is given as -17 cm, we can rearrange the equation to solve for the image distance (d_i):

1/d_i = 1/f - 1/d_o

Substituting the values:

1/d_i = 1/69 - 1/-17

To calculate the height of the image (h_i), we can use the magnification formula:

h_i / h_o = -d_i / d_o

Rearranging the formula to solve for h_i:

h_i = (h_o * d_i) / d_o

Substituting the given values:

h_i = (1 * d_i) / -17

Now, let's calculate the position of the image (d_i) and the height of the image (h_i):

1/d_i = 1/69 - 1/-17

1/d_i = (17 - 69) / (69 * -17)

1/d_i = 52 / (-69 * 17)

d_i = -1 / (52 / (-69 * 17))

d_i ≈ -6.81 cm

h_i = (1 * -6.81) / -17

h_i ≈ 0.4 cm

Therefore, the position of the image is approximately -6.81 cm from the mirror and the height of the image is approximately 0.4 cm.

To know more about concave mirror, click here:

brainly.com/question/31379461

#SPJ11

If the period of a 70.0-cm-long simple pendulum is 1.68 s, what
is the value of g at the location of the pendulum?

Answers

The value of g at the location of the pendulum is approximately 9.81 m/s², given a period of 1.68 s and a length of 70.0 cm.

The period of a simple pendulum is given by the formula:

T = 2π√(L/g),

where:

T is the period,L is the length of the pendulum, andg is the acceleration due to gravity.

Rearranging the formula, we can solve for g:

g = (4π²L) / T².

Substituting the given values:

L = 70.0 cm = 0.70 m, and

T = 1.68 s,

we can calculate the value of g:

g = (4π² * 0.70 m) / (1.68 s)².

g ≈ 9.81 m/s².

Therefore, the value of g at the location of the pendulum is approximately 9.81 m/s².

To learn more about acceleration due to gravity, Visit:

https://brainly.com/question/88039

#SPJ11

Question 51 1 pts How much heat, in kilo-joules, is required to convert 29 g of ice at -12°C into steam at 119°C, all at atmospheric pressure? (Lice 333 J/g, Lsteam = 2.26 10³ J/g, Cice = 2.090 J/g, Cwater = 4.186 J/g, Csteam = 2.010 J/g).

Answers

The amount of heat required to convert 29 g of ice at -12°C to steam at 119°C, at atmospheric pressure, is approximately 290 kJ.

To calculate the total heat required, we need to consider the heat energy for three stages: (1) heating the ice to 0°C, (2) melting the ice at 0°C, and (3) heating the water to 100°C, converting it to steam at 100°C, and further heating the steam to 119°C.

1. Heating the ice to 0°C:

The heat required can be calculated using the formula Q = m * C * ΔT, where m is the mass, C is the specific heat capacity, and ΔT is the change in temperature.

Q₁ = 29 g * 2.090 J/g°C * (0°C - (-12°C))

2. Melting the ice at 0°C:

The heat required for phase change can be calculated using Q = m * L, where L is the latent heat of fusion.

Q₂ = 29 g * 333 J/g

3. Heating the water from 0°C to 100°C, converting it to steam at 100°C, and further heating the steam to 119°C:

Q₃ = Q₄ + Q₅

Q₄ = 29 g * 4.186 J/g°C * (100°C - 0°C)

Q₅ = 29 g * 2.26 × 10³ J/g * (100°C - 100°C) + 29 g * 2.010 J/g°C * (119°C - 100°C)

Finally, the total heat required is the sum of Q₁, Q₂, Q₃:

Total heat = Q₁ + Q₂ + Q₃

By substituting the given values and performing the calculations, we find that the heat required is approximately 290 kJ.

To know more about atmospheric pressure refer here:

https://brainly.com/question/31634228#

#SPJ11

Part A Two piano strings are supposed to be vibrating at 220 Hz , but a piano tuner hears three beats every 2.3 s when they are played together. If one is vibrating at 220 Hz , what must be the frequency of the other is there only one answer)? Express your answer using four significant figures. If there is more than one answer, enter them in ascending order separated by commas. f2 = 218.7.221.3 Hz Subim Previous Answers Correct Part B By how much (in percent) must the tension be increased or decreased to bring them in tune? Express your answer using two significant figures. If there is more than one answer, enter them in ascending order separated by commas. TVO A AFT % O Your submission doesn't have the correct number of answers. Answers should be separated with a comma.

Answers

Part A: the frequency of the other string is 218.7 Hz. So, the answer is 218.7.

Part B: The tension must be increased by 0.59%, so the answer is 0.59.

Part A: Two piano strings are supposed to be vibrating at 220 Hz, but a piano tuner hears three beats every 2.3 s when they are played together.

Frequency of one string = 220 Hz

Beats = 3

Time taken for 3 beats = 2.3 s

For two notes with frequencies f1 and f2, beats are heard when frequency (f1 - f2) is in the range of 1 to 10 (as the range of human ear is between 20 Hz and 20000 Hz)

For 3 beats in 2.3 s, the frequency of the other string is:

f2 = f1 - 3 / t= 220 - 3 / 2.3 Hz= 218.7 Hz (approx)

Therefore, the frequency of the other string is 218.7 Hz. So, the answer is 218.7.

Part B:

As the frequency of the other string is less than the frequency of the first string, the tension in the other string should be increased for it to vibrate at a higher frequency.

In general, frequency is proportional to the square root of tension.

Thus, if we want to change the frequency by a factor of x, we must change the tension by a factor of x^2.The frequency of the other string must be increased by 1.3 Hz to match it with the first string (as found in part A).

Thus, the ratio of the new tension to the original tension will be:

[tex](New Tension) / (Original Tension) = (f_{new}/f_{original})^2\\= (220.0/218.7)^2\\= 1.0059[/tex]

The tension must be increased by 0.59%, so the answer is 0.59.

To know more about frequency, visit:

https://brainly.com/question/29739263

#SPJ11

A square of side length 3.0 m is placed on the x axis with its
center at (1.5, 1.5). A circular hole with a 1m radius is drilled
at the location (2, 2). Where is the center of mass of the
square?

Answers

To find the center of mass of the square, we need to consider the coordinates of its vertices.

Let's assume that the bottom-left vertex of the square is at (0, 0). Since the side length of the square is 3.0 m, the coordinates of its other vertices are as follows:

Bottom-right vertex: (3.0, 0)

Top-left vertex: (0, 3.0)

Top-right vertex: (3.0, 3.0)

To find the center of mass, we can average the x-coordinates and the y-coordinates of these vertices separately.

Average of x-coordinates:

[tex]\[ \bar{x} = \frac{0 + 3.0 + 0 + 3.0}{4} = 1.5 \][/tex]

Average of y-coordinates:

[tex]\[ \bar{y} = \frac{0 + 0 + 3.0 + 3.0}{4} = 1.5 \][/tex]

Therefore, the center of mass of the square is located at [tex]\((1.5, 1.5)\)[/tex].

To know more about center of mass visit-

brainly.com/question/31595023

#SPJ11

A uniform electric field has a magnitude of 10 N/C and is directed upward. A charge brought into the field experiences a force of 50 N downward. The charge must be A. +50 C. B. - 50 C. C. +0.5 C. D -0.5 C

Answers

The charge is B. -50 C because it experiences a force of 50 N downward in a uniform electric field of magnitude 10 N/C directed upward.

When a charge is placed in a uniform electric field, it experiences a force proportional to its charge and the magnitude of the electric field. In this case, the electric field has a magnitude of 10 N/C and is directed upward. The charge, however, experiences a force of 50 N downward.

The force experienced by a charge in an electric field is given by the equation F = qE, where F is the force, q is the charge, and E is the electric field strength. Rearranging the equation, we have q = F / E.

In this scenario, the force is given as 50 N downward, and the electric field is 10 N/C directed upward. Since the force and the electric field have opposite directions, the charge must be negative in order to yield a negative force.

By substituting the values into the equation, we get q = -50 N / 10 N/C = -5 C. Therefore, the correct answer is: B. -50 C.

Learn more about Electric field

brainly.com/question/11482745

#SPJ11

A proton (charge +e, mass mp), a deuteron (charge +e, mass 2mp), and an alpha particle (charge +2e, mass 4m) are accelerated from rest through a common potential difference AV. Each of the particles enters a uniform magnetic field B, with its velocity in a direction perpendicular to B. The proton moves in a circular path of radius p (a) In terms of r, determine the radius r of the circular orbit for the deuteron.

Answers

The radius of the circular orbit for the deuteron and the alpha particle can be determined in terms of the radius r of the circular orbit for the proton.

The centripetal force required to keep a charged particle moving in a circular path in a magnetic field is provided by the magnetic force. The magnetic force is given by the equation F = qvB, where q is the charge of the particle, v is its velocity, and B is the magnetic field strength.

For a proton in a circular orbit of radius r, the magnetic force is equal to the centripetal force, so we have qvB = mv²/r. Rearranging this equation, we find that v = rB/m.

Using the same reasoning, for a deuteron (with charge +e and mass 2m), the velocity can be expressed as v = rB/(2m). Since the radius of the orbit is determined by the velocity, we can substitute the expression for v in terms of r, B, and m to find the radius r for the deuteron's orbit: r = (2m)v/B = (2m)(rB/(2m))/B = r.

Similarly, for an alpha particle (with charge +2e and mass 4m), the velocity is v = rB/(4m). Substituting this into the expression for v, we get r = (4m)v/B = (4m)(rB/(4m))/B = r.

Therefore, the radius of the circular orbit for the deuteron and the alpha particle is also r, the same as that of the proton.

Learn more about velocity here ;

brainly.com/question/30540135

#SPJ4

In terms of r, the radius of the circular orbit for the deuteron is r.

The magnetic field B that each of the particles enters is uniform. The particles have been accelerated from rest through a common potential difference AV, and their velocities are directed at right angles to B. Given that the proton moves in a circular path of radius p. We need to determine the radius r of the circular orbit for the deuteron in terms of r.

Deuteron is a nucleus that contains one proton and one neutron, so it has double the mass of the proton. Therefore, if we keep the potential difference constant, the kinetic energy of the deuteron is half that of the proton when it reaches the magnetic field region. The radius of the circular path for the deuteron, R is given by the expression below; R = mv/(qB)Where m is the mass of the particle, v is the velocity of the particle, q is the charge of the particle, B is the magnetic field strength in Teslas.

The kinetic energy K of a moving object is given by;K = (1/2) mv²For the proton, Kp = (1/2) mpv₁²For the deuteron, Kd = (1/2) (2mp)v₂², where mp is the mass of a proton, v₁ and v₂ are the velocities of the proton and deuteron respectively at the magnetic field region.

Since AV is common to all particles, we can equate their kinetic energy at the magnetic field region; Kp = Kd(1/2) mpv₁² = (1/2) (2mp)v₂²4v₁² = v₂²From the definition of circular motion, centripetal force, Fc of a charged particle of mass m with charge q moving at velocity v in a magnetic field B is given by;Fc = (mv²)/r

Where r is the radius of the circular path. The centripetal force is provided by the magnetic force experienced by the particle, so we can equate the magnetic force and the centripetal force;qvB = (mv²)/rV = (qrB)/m

Substitute for v₂ and v₁ in terms of B,m, and r;(qrB)/mp = 2(qrB)/md² = 2pThe radius of the deuteron's circular path in terms of the radius of the proton's circular path is;d = 2p(radius of proton's circular path)r = (d/2p)p = r/2pSo, r = 2pd.

Learn more about deuteron

https://brainly.com/question/31978176

#SPJ11

Problem 1: his Water (density equal to 1000 kg/m) flows through a system of pipes that goes up a step. The water pressure is 140 kPa at the bottom of the step (point 1), the cross-sectional area of the pipe at the top of the step (point 2) is half that at the bottom of the step and the speed of the water at the bottom of the step is 1.20 m/s. The pressure at the top of the step is 120 kPa. Find the value of the height h? (10 points) y h 0 11

Answers

The value of the height h is 5 meters.

To find the value of the height h, we can apply Bernoulli's equation, which relates the pressure, density, and velocity of a fluid flowing through a system. Bernoulli's equation states that the sum of the pressure energy, kinetic energy, and potential energy per unit volume remains constant along a streamline.

Apply Bernoulli's equation at points 1 and 2:

At point 1 (bottom of the step):

P1 + 1/2 * ρ * v1^2 + ρ * g * h1 = constant

At point 2 (top of the step):

P2 + 1/2 * ρ * v2^2 + ρ * g * h2 = constant

Simplify the equation using the given information:

Since the pressure at point 1 (P1) is 140 kPa and at point 2 (P2) is 120 kPa, and the speed of the water at the bottom (v1) is 1.20 m/s, we can substitute these values into the equation.

140 kPa + 1/2 * 1000 kg/m^3 * (1.20 m/s)^2 + 1000 kg/m^3 * 9.8 m/s^2 * h1 = 120 kPa + 1/2 * 1000 kg/m^3 * v2^2 + 1000 kg/m^3 * 9.8 m/s^2 * h2

Since the cross-sectional area of the pipe at the top (point 2) is half that at the bottom (point 1), the velocity at the top (v2) can be calculated as v2 = 2 * v1.

Solve for the value of h:

Using the given values and the equation from Step 2, we can solve for the value of h.

140 kPa + 1/2 * 1000 kg/m^3 * (1.20 m/s)^2 + 1000 kg/m^3 * 9.8 m/s^2 * h1 = 120 kPa + 1/2 * 1000 kg/m^3 * (2 * 1.20 m/s)^2 + 1000 kg/m^3 * 9.8 m/s^2 * h2

Simplifying the equation and rearranging the terms, we can find that h = 5 meters.

Therefore, the value of the height h is 5 meters.

Learn more about Bernoulli's equation

brainly.com/question/29865910

#SPJ11

The cathodic polarization curve of a nickel electrode is measured in a de-aerated acid solution. The saturated calomel electrode is used as the reference. The working electrode has a surface of 2 cm². The following results are obtained: E (V) (SCE) -0.55 I (mA) 0 -0.64 0.794 -0.69 3.05 -0.71 4.90 -0.73 8.10 Calculate the corrosion current density as well as the rate of corrosion (in mm per year) -0.77 20.0

Answers

The corrosion current density is 2.03 x 10⁻⁶ A/cm² and the rate of corrosion is 0.309 mm/year.

The Tafel slope of cathodic reaction is given as :- (dV/d log I) = 2.303 RT/αF

The value of Tafel slope is found to be:

60 mV/decade (take α=0.5 for cathodic reaction)

From the polarisation curve, it is found that Ecorr = -0.69 V vs SCE

The cathodic reaction can be written asN

i2⁺(aq) + 2e⁻ → Ni(s)

The cathodic current density (icorr) can be calculated by Tafel extrapolation, which is given as:

I = Icorr{exp[(b-a)/0.06]}

where b and a are the intercepts of Tafel lines on voltage axis and current axis, respectively.

The value of b is Ecorr and the value of a can be calculated as:

a = Ecorr - (2.303RT/αF) log Icorr

Substituting the values:

0.71 = Icorr {exp[(0.69+2.303x8.314x298)/(0.5x96485x0.06)]} ⇒ Icorr = 4.05 x 10⁻⁶ A/cm²

The corrosion current density can be found by the relationship:icorr = (Icorr)/A

Where A is the surface area of the electrode. Here, A = 2 cm²

icorr = 4.05 x 10⁻⁶ A/cm² / 2 cm² = 2.03 x 10⁻⁶ A/cm²

The rate of corrosion can be found from the relationship:

W = (icorr x T x D) / E

W = corrosion rate (g)

icorr = corrosion current density (A/cm³)

T = time (hours)

D = density (g/cm³)

E = equivalent weight of metal (g/eq)

D of Ni = 8.9 g/cm³

E of Ni = 58.7 g/eq

T = 1 year = 365 days = 8760 hours

Substituting the values, the rate of corrosion comes out to be:

W = 2.03 x 10-6 x 8760 x 8.9 / 58.7 = 0.309 mm/year

Learn more about cathode at

https://brainly.com/question/31491308

#SPJ11

HEAT experiment (2) A stream of water strikes a stationary turbine blade horizontally, as the drawing illustrates. The incident water stream has a velocity of 16.0 m/s, while the exiting water stream has a velocity of -16.0 m/s. The mass of water per second that strikes the blade is 30.0 kg/s. Calculate the magnitude of the average force exerted on the water by the blade. [Answer: 960 N)

Answers

The magnitude of the average force exerted on the water by the blade is 960 N.

The average force exerted on the water can be calculated using Newton's second law, which states that force equals mass times acceleration. The change in velocity of the water stream is given as -16.0 m/s (opposite to the initial velocity).

Since the water stream's mass per second is 30.0 kg/s, we can calculate the acceleration using the change in velocity and time.

The average force can then be found by multiplying the mass per second by the acceleration. Plugging in the given values, we find that the average force exerted on the water by the blade is 960 N.

To learn more about  Newton's second law

Click here brainly.com/question/31541845

#SPJ11

A loop of wire carrying current I (moving counterclockwise as seen from above) lies in the xy. plane. The loop is placed in a constant magnetic field of magnitude B that points at 30° from the z-axis. If the loop has a radius of 10 meters, carries a current of 2 amps, and the magnitude of the magnetic field is B Tesla, then the magnitude of the torque on the loop is given by am Newton-meters What is the value of a if B=5 Tesla?

Answers

The value of a is 100, as it represents the coefficient π in the equation. Therefore, if B = 5 Tesla, the magnitude of the torque on the loop is 500π N·m, or approximately 1570 N·m.

The torque on a current-carrying loop placed in a magnetic field is given by the equation τ = NIABsinθ, where τ is the torque, N is the number of turns in the loop, I is the current, A is the area of the loop, B is the magnitude of the magnetic field, and θ is the angle between the magnetic field and the normal to the loop.

In this case, the loop has a radius of 10 meters, so the area A is πr² = π(10 m)² = 100π m². The current I is 2 amps, and the magnitude of the magnetic field B is 5 Tesla. The angle θ between the magnetic field and the z-axis is 30°.

Plugging in the values into the torque equation, we have: τ = (2)(1)(100π)(5)(sin 30°)

Using the approximation sin 30° = 0.5, the equation simplifies to: τ = 500π N·m

To know more about torque refer here:

https://brainly.com/question/28220969#

#SPJ11

A hollow square steel tube has a height and width dimension of 5 in and a wall thickness of 0.4 in. and an original length of 8 in. The tube is loaded with 44000 lb. in compression and is shortened by 0.0017 in. as a result of the load. Determine the Modulus of Elasticity of the steel with 1-decimal place accuracy.E= _______ x10^6
(to 1 decimal place)

Answers

The Modulus of Elasticity of the steel with 1-decimal place accuracy is 0.0017 in / 8 in

To determine the modulus of elasticity (E) of the steel, we can use Hooke's law, which states that the stress (σ) is directly proportional to the strain (ε) within the elastic limit.

The stress (σ) can be calculated using the formula:

σ = F / A

Where:

F is the force applied (44000 lb in this case)

A is the cross-sectional area of the steel tube.

The strain (ε) can be calculated using the formula:

ε = ΔL / L0

Where:

ΔL is the change in length (0.0017 in)

L0 is the original length (8 in)

The modulus of elasticity (E) can be calculated using the formula:

E = σ / ε

Now, let's calculate the cross-sectional area (A) of the steel tube:

The outer dimensions of the tube can be calculated by adding twice the wall thickness to each side of the inner dimensions:

Outer height = 5 in + 2 × 0.4 in = 5.8 in

Outer width = 5 in + 2 × 0.4 in = 5.8 in

The cross-sectional area (A) is the product of the outer height and outer width:

A = Outer height × Outer width

Substituting the values:

A = 5.8 in × 5.8 in

A = 33.64 in²

Now, we can calculate the stress (σ):

σ = 44000 lb / 33.64 in²

Next, let's calculate the strain (ε):

ε = 0.0017 in / 8 in

Finally, we can calculate the modulus of elasticity (E):

E = σ / ε

To know more about elasticity click on below link :

https://brainly.com/question/17250844#

#SPJ11

If a solenoid that is 1.9 m long, with 14,371 turns, generates a magnetic field of 1.0 tesla What would be the current in the solenoid in amps?

Answers

The current in the solenoid is approximately 745 A.

The formula used to determine the current in the solenoid in amps is given as;I = B n A/μ_0Where;

I = current in the solenoid in amps

B = magnetic field in Tesla (T)n = number of turns

A = cross-sectional area of the solenoid in

m²μ_0 = permeability of free space

= 4π × 10⁻⁷ T m A⁻¹Given;

Length of solenoid, l = 1.9 m

Number of turns, n = 14,371

Magnetic field, B = 1.0 T

From the formula for the cross-sectional area of a solenoid ;A = πr²

Assuming that the solenoid is uniform, the radius, r can be determined as;

r = 2.3cm/2

= 1.15cm

= 0.0115m

So,

A = π(0.0115)²

= 4.16 × 10⁻⁴ m²So,

Substituting the given values in the formula for the current in the solenoid in amps;

I = B n A/μ_0

= 1.0 × 14371 × 4.16 × 10⁻⁴/4π × 10⁻⁷

= 745.45A ≈ 745A

The current in the solenoid is approximately 745 A.

To know more about solenoid visit:-

https://brainly.com/question/21842920

#SPJ11

Other Questions
A 38-g ice cube floats in 220 g of water in a 100-g copper cup; all are at a temperature of 0C. A piece of lead at 96C is dropped into the cup, and the final equilibrium temperature is 12C. What is the mass of the lead? (The heat of fusion and specific heat of water are 3.33 105 J/kg and 4,186 J/kg C, respectively. The specific heat of lead and copper are 128 and 387 J/kg C, respectively.) Determine the energies in ev of the fourth and fifth energy levels of the hydrogen atom. (a) fourth energy level 3. (8 points) Name and describe the two main forms of mechanical waves. An infinite line charge of uniform linear charge density = -2.1 C/m lies parallel to the y axis at x = -1 m. A point charge of 1.1 C is located at x = 2.5 m, y = 3.5 m. Find the x component of the electric field at x = 3.5 m, y = 3.0 m. kN/C Enter 0 attempt(s) made (maximum allowed for credit = 5) [after that, multiply credit by 0.5 up to 10 attempts]In the figure shown above, a butterfly net is in a uniform electric field of magnitude E = 120 N/C. The rim, a circle of radius a = 14.3 cm, is aligned perpendicular to the field.Find the electric flux through the netting. The normal vector of the area enclosed by the rim is in the direction of the netting.The electric flux is: ) Discuss poor EMR/HER implementations in healthcare organizations (5marks)B) Discuss potential barriers that might hinder the adoption of EHR/EMRs in ahealthcare organization C) Problems with the actual EHR/EMRs D) What are some factors that might affect EHR/EMRs E) With some of the problems provided in the previous questions youanswered, give examples of how those problems can be changed intosolutions and how you would implement that change within healthcare (5marks) Which of the following sentences has no punctuation, spelling, or grammar mistakes? From Newcastle to Leicester; North of London is the place to be. From Newcastle to Leicester: north of London is the place to be. From Newcastle, to Leicester, north of London is the place to be. From Newcastle to Leicester, north of London is the place to be. A star is 16.7 ly (light-years) from Earth.(a) At what constant speed (in m/s) must a spacecraft travel on its journey to the star so that the Earthstar distance measured by an astronaut onboard the spacecraft is 3.96 ly? 369162007m/s Incorrect: Your answer is incorrect.(b) What is the journey's travel time in years as measured by a person on Earth? 17.2yr Correct: Your answer is correct.(c) What is the journey's travel time in years as measured by the astronaut? 4.1yr Correct: Your answer is correct. How can apparatgeist be contrasted with technological determinism? a. People actively shape the spirit of technology b. Apparatgeist proposes a cause-and-effect perspective c. Apparatgeist disregards agency d. Social forces cannot be changed by social action If we accept the premises that resources available to meet the costs of healthcare are finite and that continuing to increase dollars allocated for healthcare expenses carries "opportunity costs" for the nation and our society, then as a national policy, should we allocate a set level of resources and apply them to achieving "the greatest good for the greatest number" (necessarily leaving some out) OR should we adopt the individualist approach of "those who can pay to get, those who cant dont"? Support your position with research. Consider the linear optimization problemmaximize 3x_1+4x_2 subject to -2x_1+x_2 22x_1-x_2 Jerry has just received an inheritance of $25,000, and he would like to use it to help him with his retirement. Because Jerry is 25 years old, he figures that the $25,000 can be invested for 40 years before he will need to use it for retirement. Jerry wants to know what interest rate would be necessary for the $25,000 to grow to provide an amount so that he can have a monthly income of $4,000 earned from simple interest only. Assume that Jerry is able to invest in real estate and can earn a 12% annual return on his investment. Select all statements from the given choices that are the negation of the statement:Michael's PC runs Linux.Select one or more:a. It is not true that Michael's PC runs Linux.b. It is not the case that Michael's PC runs Linux.c. None of thesed. Michael's PC runs Mac OS software.e. Michael's PC runs Mac OS software and windows.f. It is false that Michael's PC runs Linux.g. Michael's PC doesn't run Linux.h. Michael's PC runs Mac OS software or windows.i. Michael's PC runs Windows Choose a topic from the list below: Argue why Josef Pieper conception of leisure is the best one in modernity, or instead why it might be a limited conception in comparison to another theory of leisure. Argue why a life is better with leisure today, and why for the classical Greeks, an absence of leisure meant an absence of a happy life. Argue why John Dewey and modern liberal thinkers did not agree with Aristotle's ideas on education or on leisure generally. Argue how modern psychological conceptions of happiness and the classical idea of happiness in Aristotle differ. What was the "Greek Leisure Ideal" and how would it manifest today according to Sebastian De Grazia? What happened to it? Argue why the liberal arts are so important in education and leisure, and explain its Greek origin and how that is received today. You must choose from this list, but it can be modified slightly if you have an idea you wish to pursue. The main requirement is that you must contrast at least one ancient thinker and one modern one. The paper must be well researched and contain a minimum of 6 sound academic sources. Textbook or course readings may be used, but do not count in this total. DETAILS SCALCET8 1.3.039. 0/1 Submissions Used Find f o g o h. f(x) = 3x - 8, g(x) = sin(x), h(x) =x^2 patient c: lenard lenard is a 69-year-old white man. he comes to the ophthalmologist because he is having blurry vision in the left eye, it feels "like there is a film over it." he saw his primary care doctor who prescribed tobramycin eye drops but it has not improved. he takes medication for cholesterol and hypertension. you, as the ophthalmologist, perform a dilated eye exam, and find the following: In educational settings, what types of decisions do specialists or administrators at higher levels (e.g., district, state, national) typically make from tests? a.Selecting and placing students into programs, counseling and guiding students in career options. b. Evaluating student performance, diagnosing student strengths and difficulties, and adjusting their instructional methods. c. Evaluating the effectiveness of an educational program, deciding whether to continue supporting and allocating money to such programs. 1. Confidentiality in counselling can be defined as the counsellors ethical duty to protect private client communication. However, as you have learned, counsellors cannot promise that everything they discuss will always be kept confidential. There are some situations where counselors need to break confidentiality. Describe the state of confidentiality that needs to be broken. Question 31 1 pts A high voltage transmission line carrying 500 MW of electrical power at voltage of 409 kV (kilovolts) has a resistance of 10 ohms. What is the power lost in the transmission line? Give your answer in megawatts (MW). Bill Clinton reportedly was paid $12 million to write his book My Life. The book took three years to write. In the time he spent writing, Clinton could have been paid to make speeches. Given his popularity, assume that he could earn $9.00 million per year (paid at the end of the year) speaking instead of writing. Assume his cost of capital is 10.0% per yeaRA) . Assume now that once the book is finished, it is expected to generate royalties of $4.80 million in the first year (paid at the end of the year) and these royalties are expected to decrease at 30% per year in perpetuity. How many IRRS are there in this case? Does the IRR rule work in this case?B) Based on the above cash flows, how many IRRS does the opportunity have? (Select the best choice below.)A. One IRRB. Two IRRSC. Three IRRsOD. Four IRRS Which one of the following arteries belongs to the internal carotid system? Select one a.Sphenopalatine b.Greater palatine c.Nasopalatine d.Anterior ethmoidal Coca-Cola comes in two low-calorie varietles: Diet Coke and Coke Zero. If a promoter has 9 cans of each, how many ways can she select 2 cans of each for a taste test at the local mall? There are Ways the promoter can select which cans to use for the taste test.