Answer:
The z-component of the force is [tex]\= F_z = 0.00141 \ N[/tex]
Explanation:
From the question we are told that
The charge on the particle is [tex]q = 7.76 *0^{-8} \ C[/tex]
The magnitude of the magnetic field is [tex]B = 0.700\r i \ T[/tex]
The velocity of the particle toward the x-direction is [tex]v_x = -1.68*10^{4}\r i \ m/s[/tex]
The velocity of the particle toward the y-direction is
[tex]v_y = -2.61*10^{4}\ \r j \ m/s[/tex]
The velocity of the particle toward the z-direction is
[tex]v_y = -5.85*10^{4}\ \r k \ m/s[/tex]
Generally the force on this particle is mathematically represented as
[tex]\= F = q (\= v X \= B )[/tex]
So we have
[tex]\= F = q ( v_x \r i + v_y \r j + v_z \r k ) \ \ X \ ( \= B i)[/tex]
[tex]\= F = q (v_y B(-\r k) + v_z B\r j)[/tex]
substituting values
[tex]\= F = (7.7 *10^{-8})([ (-2.61*10^{4}) (0.700)](-\r z) + [(5.58*10^{4}) (0.700)]\r y)[/tex]
[tex]\= F= 0.00303\ \r j +0.00141\ \r k[/tex]
So the z-component of the force is [tex]\= F_z = 0.00141 \ N[/tex]
Note : The cross-multiplication template of unit vectors is shown on the first uploaded image ( From Wikibooks ).
An aging coyote cannot run fast enough to catch a roadrunner. He purchases on eBay a set of jet-powered roller skates, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts at rest 70.0 m from the edge of a cliff at the instant the roadrunner zips past in the direction of the cliff.
Required:
a. Determine the minimum constant speed the roadrunner must have to reach the cliff before the coyote. At the edge of the cliff, the roadrunner escapes by making a sudden turn, while the coyote continues straight ahead. The coyote’s skates remain horizontal and continue to operate while he is in flight.
b. The cliff is 100 m above the flat floor of the desert. Determine how far from the base of the cliff the coyote lands.
c. Determine the components of the coyote’s impact velocity
Answer:
a) v_correcaminos = 22.95 m / s , b) x = 512.4 m ,
c) v = (45.83 i ^ -109.56 j ^) m / s
Explanation:
We can solve this exercise using the kinematics equations
a) Let's find the time or the coyote takes to reach the cliff, let's start by finding the speed on the cliff
v² = v₀² + 2 a x
they tell us that the coyote starts from rest v₀ = 0 and its acceleration is a=15 m / s²
v = √ (2 15 70)
v = 45.83 m / s
with this value calculate the time it takes to arrive
v = v₀ + a t
t = v / a
t = 45.83 / 15
t = 3.05 s
having the distance to the cliff and the time, we can find the constant speed of the roadrunner
v_ roadrunner = x / t
v_correcaminos = 70 / 3,05
v_correcaminos = 22.95 m / s
b) if the coyote leaves the cliff with the horizontal velocity v₀ₓ = 45.83 m / s, they ask how far it reaches.
Let's start by looking for the time to reach the cliff floor
y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²
in this case y = 0 and the height of the cliff is y₀ = 100 m
0 = 100 + 45.83 t - ½ 9.8 t²
t² - 9,353 t - 20,408 = 0
we solve the quadratic equation
t = [9,353 ±√ (9,353² + 4 20,408)] / 2
t = [9,353 ± 13] / 2
t₁ = 11.18 s
t₂ = -1.8 s
Since time must be a positive quantity, the answer is t = 11.18 s
we calculate the horizontal distance traveled
x = v₀ₓ t
x = 45.83 11.18
x = 512.4 m
c) speed when it hits the ground
vₓ = v₀ₓ = 45.83 m / s
we look for vertical speed
v_{y} = [tex]v_{oy}[/tex] - gt
v_{y} = 0 - 9.8 11.18
v_{y} = - 109.56 m / s
v = (45.83 i ^ -109.56 j ^) m / s
g A change in the initial _____ of a projectile changes the range and maximum height of the projectile.
Answer:
Velocity.
Explanation:
Projectile motion is characterized as the motion that an object undergoes when it is thrown into the air and it is only exposed to acceleration due to gravity.
As per the question, 'any change in the initial velocity of the projectile(object having gravity as the only force) would lead to a change in the range as well as the maximum height of the projectile.' To illustrate numerically:
Horizontal range: As per expression:
R= ([tex]u^{2}[/tex]*sin2θ)/g
the range depending on the square of the initial velocity.
Maximum height: As per expression:
H= ([tex]u^{2}[/tex] * [tex]sin^{2}[/tex]θ )/2g
the maximum distance also depends upon square of the initial velocity.
A charge of 87.6 pC is uniformly distributed on the surface of a thin sheet of insulating material that has a total area of 65.2 cm^2. A Gaussian surface encloses a portion of the sheet of charge. If the flux through the Gaussian surface is 9.20 N⋅m^2/C, what area of the sheet is enclosed by the Gaussian surface?
Answer:
60.8 cm²
Explanation:
The charge density, σ on the surface is σ = Q/A where q = charge = 87.6 pC = 87.6 × 10⁻¹² C and A = area = 65.2 cm² = 65.2 × 10⁻⁴ m².
σ = Q/A = 87.6 × 10⁻¹² C/65.2 × 10⁻⁴ m² = 1.34 × 10⁻⁸ C/m²
Now, the charge through the Gaussian surface is q = σA' where A' is the charge in the Gaussian surface.
Since the flux, Ф = 9.20 Nm²/C and Ф = q/ε₀ for a closed Gaussian surface
So, q = ε₀Ф = σA'
ε₀Ф = σA'
making A' the area of the Gaussian surface the subject of the formula, we have
A' = ε₀Ф/σ
A' = 8.854 × 10⁻¹² F/m × 9.20 Nm²/C ÷ 1.34 × 10⁻⁸ C/m²
A' = 81.4568/1.34 × 10⁻⁴ m²
A' = 60.79 × 10⁻⁴ m²
A' ≅ 60.8 cm²
The flux through the Gaussian surface is 9.20 N⋅m^2/C then the surface area of the Gaussian Sheet is 60.76 square cm.
Charge and Charge DensityA certain amount of electrons in excess or defect is called a charge. Charge density is the amount of charge distributed over per unit of volume.
Given that, for a thin sheet of insulating material, the charge Q is 87.6 pC and surface area A is 65.2 square cm. Then the charge density for a thin sheet is given below.
[tex]\sigma = \dfrac {Q}{A}[/tex]
[tex]\sigma = \dfrac {87.6\times 10^{-12}}{65;.2\times 10^{-4}}[/tex]
[tex]\sigma = 1.34\times 10^{-8} \;\rm C/m^2[/tex]
Thus the charge density for a thin sheet of insulating material is [tex]1.34\times 10^{-8} \;\rm C/m^2[/tex].
Now, the flux through the Gaussian surface is 9.20 N⋅m^2/C. The charge over the Gaussian Surface is given as below.
[tex]Q' = \sigma A'[/tex]
Where Q' is the charge at the Gaussian Surface, A' is the surface area of the Gaussian surface and [tex]\sigma[/tex] is the charge density.
For the closed Gaussian Surface, Flux is given below.
[tex]\phi = \dfrac {Q'}{\epsilon_\circ}[/tex]
Hence the charge can be written as,
[tex]Q' = \phi\epsilon_\circ[/tex]
So the charge can be given as below.
[tex]Q' = \phi\epsilon_\circ = \sigma A'[/tex]
Then the surface area of the Gaussian surface is given below.
[tex]A' = \dfrac {\phi\epsilon_\circ}{\sigma}[/tex]
Substituting the values in the above equation,
[tex]A' = \dfrac {9.20 \times 8.85\times 10^{-12}}{1.38\times 10^{-8}}[/tex]
[tex]A' =0.006076\;\rm m^2[/tex]
[tex]A' = 60.76 \;\rm cm^2[/tex]
Hence we can conclude that the area of the Gaussian Surface is 60.76 square cm.
To know more about the charge and charge density, follow the link given below.
https://brainly.com/question/8532098.
When a particular wire is vibrating with a frequency of 6.3 Hz, a transverse wave of wavelength 53.3 cm is produced. Determine the speed of wave pulses along the wire.
Answer:
335.79cm/s
Explanation:
When a transverse wave of wavelength λ is produced during the vibration of a wire, the frequency(f), and the speed(v) of the wave pulses are related to the wavelength as follows;
v = fλ ------------------(ii)
From the question;
f = 6.3Hz
λ = 53.3cm
Substitute these values into equation (i) as follows;
v = 6.3 x 53.3
v = 335.79cm/s
Therefore, the speed of the wave pulses along the wire is 335.79cm/s
A force of 44 N will stretch a rubber band 88 cm (0.080.08 m). Assuming that Hooke's law applies, how far will aa 11-N force stretch the rubber band? How much work does it take to stretch the rubber band this far?
Answer:
The rubber band will be stretched 0.02 m.
The work done in stretching is 0.11 J.
Explanation:
Force 1 = 44 N
extension of rubber band = 0.080 m
Force 2 = 11 N
extension = ?
According to Hooke's Law, force applied is proportional to the extension provided elastic limit is not extended.
F = ke
where k = constant of elasticity
e = extension of the material
F = force applied.
For the first case,
44 = 0.080K
K = 44/0.080 = 550 N/m
For the second situation involving the same rubber band
Force = 11 N
e = 550 N/m
11 = 550e
extension e = 11/550 = 0.02 m
The work done to stretch the rubber band this far is equal to the potential energy stored within the rubber due to the stretch. This is in line with energy conservation.
potential energy stored = [tex]\frac{1}{2}ke^{2}[/tex]
==> [tex]\frac{1}{2}* 550* 0.02^{2}[/tex] = 0.11 J
An isolated capacitor with capacitance C = 1 µF has a charge Q = 45 µC on its plates.a) What is the energy stored in the capacitor?Now a conductor is inserted into the capacitor. The thickness of the conductor is 1/3 the distance between the plates of the capacitor and is centered inbetween the plates of the capacitor.b) What is the charge on the plates of the capacitor?c) What is the capacitance of the capacitor with the conductor in place?d) What is the energy stored in the capacitor with the conductor in place?
Answer:
a) Energy stored in the capacitor, [tex]E = 1.0125 *10^{-3} J[/tex]
b) Q = 45 µC
c) C' = 1.5 μF
d) [tex]E = 6.75 *10^{-4} J[/tex]
Explanation:
Capacitance, C = 1 µF
Charge on the plates, Q = 45 µC
a) Energy stored in the capacitor is given by the formula:
[tex]E = \frac{Q^2}{2C} \\\\E = \frac{(45 * 10^{-6})^2}{2* 1* 10^{-6}}\\\\E = \frac{2025 * 10^{-6}}{2}\\\\E = 1012.5 *10^{-6}\\\\E = 1.0125 *10^{-3} J[/tex]
b) The charge on the plates of the capacitor will not change
It will still remains, Q = 45 µC
c) Electric field is non zero over (1-1/3) = 2/3 of d
From the relation V = Ed,
The voltage has changed by a factor of 2/3
Since the capacitance is given as C = Q/V
The new capacitance with the conductor in place, C' = (3/2) C
C' = (3/2) * 1μF
C' = 1.5 μF
d) Energy stored in the capacitor with the conductor in place
[tex]E = \frac{Q^2}{2C} \\\\E = \frac{(45 * 10^{-6})^2}{2* 1.5* 10^{-6}}\\\\E = \frac{2025 * 10^{-6}}{3}\\\\E = 675 *10^{-6}\\\\E = 6.75 *10^{-4} J[/tex]
the density of gold is 19 300kg/m^3. what is the mass of gold cube with the length 0.2015m?
Answer:
The mass is [tex]157.87m^3[/tex]Explanation:
Given data
length of cube= 0.2015 m
density = 19300 kg/m^3.
But the volume of cube is given as [tex]l*l*l= l^3[/tex]
[tex]volume -of- cube= 0.2015*0.2015*0.2015= 0.00818 m^3[/tex]
The density is expressed as = mass/volume
[tex]mass=19300*0.00818= 157.87m^3[/tex]
A 0.500-kg mass suspended from a spring oscillates with a period of 1.50 s. How much mass must be added to the object to change the period to 2.00 s
Answer:
389 kg
Explanation:
The computation of mass is shown below:-
[tex]T = 2\pi \sqrt{\frac{m}{k} }[/tex]
Where K indicates spring constant
m indicates mass
For the new time period
[tex]T^' = 2\pi \sqrt{\frac{m'}{k} }[/tex]
Now, we will take 2 ratios of the time period
[tex]\frac{T}{T'} = \sqrt{\frac{m}{m'} }[/tex]
[tex]\frac{1.50}{2.00} = \sqrt{\frac{0.500}{m'} }[/tex]
[tex]0.5625 = \sqrt{\frac{0.500}{m'} }[/tex]
[tex]m' = \frac{0.500}{0.5625}[/tex]
= 0.889 kg
Since mass to be sum that is
= 0.889 - 0.500
0.389 kg
or
= 389 kg
Therefore for computing the mass we simply applied the above formula.
The mass added to the object to change the period to 2.00 s is 0.389 kg and this can be determined by using the formula of the time period.
Given :
A 0.500-kg mass suspended from a spring oscillates with a period of 1.50 s.
The formula of the time period is given by:
[tex]\rm T = 2\pi\sqrt{\dfrac{m}{K}}[/tex] ---- (1)
where m is the mass and K is the spring constant.
The new time period is given by:
[tex]\rm T'=2\pi\sqrt{\dfrac{m'}{K}}[/tex] ---- (2)
where m' is the total mass after the addition and K is the spring constant.
Now, divide equation (1) by equation (2).
[tex]\rm \dfrac{T}{T'}=\sqrt{\dfrac{m}{m'}}[/tex]
Now, substitute the known terms in the above expression.
[tex]\rm \dfrac{1.50}{2}=\sqrt{\dfrac{0.5}{m'}}[/tex]
Simplify the above expression in order to determine the value of m'.
[tex]\rm m'=\dfrac{0.5}{0.5625}[/tex]
m' = 0.889 Kg
Now, the mass added to the object to change the period to 2.00 s is given by:
m" = 0.889 - 0.500
m" = 0.389 Kg
For more information, refer to the link given below:
https://brainly.com/question/2144584
A skater on ice with arms extended and one leg out spins at 3 rev/s. After he draws his arms and the leg in, his moment of inertia is reduced to 1/2. What is his new angular speed
Answer:
The new angular speed is [tex]w = 6 \ rev/s[/tex]
Explanation:
From the question we are told that
The angular velocity of the spin is [tex]w_o = 3 \ rev/s[/tex]
The original moment of inertia is [tex]I_o[/tex]
The new moment of inertia is [tex]I =\frac{I_o}{2}[/tex]
Generally angular momentum is mathematically represented as
[tex]L = I * w[/tex]
Now according to the law of conservation of momentum, the initial momentum is equal to the final momentum hence the angular momentum is constant so
[tex]I * w = constant[/tex]
=> [tex]I_o * w _o = I * w[/tex]
where w is the new angular speed
So
[tex]I_o * 3 = \frac{I_o}{2} * w[/tex]
=> [tex]w = \frac{3 * I_o}{\frac{I_o}{2} }[/tex]
=> [tex]w = 6 \ rev/s[/tex]
A hot air balloon competition requires a balloonist to drop a ribbon onto a target on the ground. Initially the hot air balloon is 50 meters above the ground and 100 meters from the target. The wind is blowing the balloon at v = 15 meters/sec on a course to travel directly over the target. The ribbon is heavy enough that any effects of the air slowing the vertical velocity of the ribbon are negligible. How long should the balloonist wait to drop the ribbon so that it will hit the target?
time =
Answer:
The waiting time is [tex]t_w = 3 .47 \ s[/tex]
Explanation:
From the question we are told that
The height of the hot air balloon above the ground is [tex]d = 50 \ m[/tex]
The distance of the balloon from the target is [tex]l = 100 \ m[/tex]
The velocity of the balloon is [tex]v = 15 \ m/s[/tex]
Generally the time it will take to reach the ground is
[tex]t = \sqrt{2 * \frac{d}{g} }[/tex]
substituting values
[tex]t = \sqrt{2 * \frac{50}{9.8} }[/tex]
[tex]t = 3.2 \ s[/tex]
The distance that is covered at time with the given velocity is mathematically evaluated as
[tex]z = v * t[/tex]
substituting values
[tex]z = 15 * 3.2[/tex]
[tex]z = 48 \ m[/tex]
This implies that for the balloon moving at a velocity (v) to hit the target it must be dropped at this distance (z)
Now the distance the balloonist has to wait before dropping in order to hit the target is
[tex]A = d - z[/tex]
substituting values
[tex]A = 100 - 48[/tex]
[tex]A = 52 \ m[/tex]
This implies that the time the balloonist has to wait is
[tex]t_w = \frac{A}{v}[/tex]
substituting values
[tex]t_w = \frac{52}{15}[/tex]
[tex]t_w = 3 .47 \ s[/tex]
what is the value of the tropic of cancer
Answer: The latitudinal value of tropic of cancer is 23.5° N on June 21, when the sun is directly up above the head at noon. The Equator is the circle at which sun is straight above the head.
Explanation:
Observe the process by which the grey and the red spheres are charged using the electrophorus. After each sphere is first charged, what are their charges
Answer:
The gray spheres is negatively charged while the red is positively charged
Explanation:
This is because theelectrophorus becomes less positive once it pulls some electrons away from the red sphere, but, the electrophorus is replaced on the slab and recharged by grounding it before it proceeds to charge the grey sphere, thereby giving it electrons and making it negatively charged
Answer:
The gray sphere has a positive charge and the red sphere has a positive charge.
Use Coulomb’s law to derive the dimension for the permittivity of free space.
Answer:
Coulomb's law is:
[tex]F = \frac{1}{4*pi*e0} *(q1*q2)/r^2[/tex]
First, force has units of Newtons, the charges have units of Coulombs, and r, the distance, has units of meters, then, working only with the units we have:
N = (1/{e0})*C^2/m^2
then we have:
{e0} = C^2/(m^2*N)
And we know that N = kg*m/s^2
then the dimensions of e0 are:
{e0} = C^2*s^2/(m^3)
(current square per time square over cubed distance)
And knowing that a Faraday is:
F = C^2*S^2/m^2
The units of e0 are:
{e0} = F/m.
The rock and meterstick balance at the 25-cm mark, as shown in the sketch. The meterstick has a mass of 1 kg. What must be the mass of the rock? (Show work).
Answer:
1 kgExplanation:
Check the diagram attached below for the diagram.
Let the weight of the rock be W and the mass of the meter stick be M. Note that the mass of the meter stick will be placed at the middle of the meter stick i.e at the 50cm mark
Using the principle of moment to calculate the weight of the rock. It states that the sum of clockwise moments is equal to the sum of anti clockwise moment.
Moment = Force * perpendicular distance
The meterstick acts in the clockwise direction while the rock acys in the anti clockwise direction
Clockwise moment = 1kg * 25 = 25kg/cm
Anticlockwise moment = W * 25cm = 25W kg/cm
Equating both moments of forces
25W = 25
W = 25/23
W = 1 kg
The mass of the rock is also 1 kg
We learned that light travels more slowly in glass than in air. Does this contradict the theory of relativity?
Answer:
Yes.
Explanation:
Law of relativity in relation to light states that the speed of light in a vacuum does not depend on all the motion of the observers and that all motion must be defined relative to a frame of reference and that space and time are relative, rather than absolute concepts. This was formulated by Albert Einstein in 1905.
Light travels more slowly in gas than in air because it interacts with atoms of glass that made it way through it and the refractive index of glass is more than air. This does contradict the theory of relativity as the speed of lights travel slower in glass because it's motion is slow and it is not relative.
The objective lens of a microscope has a focal length of 5.5mm. Part A What eyepiece focal length will give the microscope an overall angular magnification of 300
Complete Question
The distance between the objective and eyepiece lenses in a microscope is 19 cm . The objective lens has a focal length of 5.5 mm .
What eyepiece focal length will give the microscope an overall angular magnification of 300?
Answer:
The eyepiece focal length is [tex]f_e = 0.027 \ m[/tex]
Explanation:
From the question we are told that
The focal length is [tex]f_o = 5.5 \ mm = -0.0055 \ m[/tex]
This negative sign shows the the microscope is diverging light
The angular magnification is [tex]m = 300[/tex]
The distance between the objective and the eyepieces lenses is [tex]Z = 19 \ cm = 0.19 \ m[/tex]
Generally the magnification is mathematically represented as
[tex]m = [\frac{Z - f_e }{f_e}] [\frac{0.25}{f_0} ][/tex]
Where [tex]f_e[/tex] is the eyepiece focal length of the microscope
Now making [tex]f_e[/tex] the subject of the formula
[tex]f_e = \frac{Z}{1 - [\frac{M * f_o }{0.25}] }[/tex]
substituting values
[tex]f_e = \frac{ 0.19 }{1 - [\frac{300 * -0.0055 }{0.25}] }[/tex]
[tex]f_e = 0.027 \ m[/tex]
A "laser cannon" of a spacecraft has a beam of cross-sectional area A. The maximum electric field in the beam is 2E. The beam is aimed at an asteroid that is initially moving in the direction of the spacecraft. What is the acceleration of the asteroid relative to the spacecraft if the laser beam strikes the asteroid perpendicularly to its surface, and the surface is not reflecting
Answer:
Acceleration of the asteroid relative to the spacecraft = 2ε[tex]E^{2}[/tex]A/m
Explanation:
The maximum electric field in the beam = 2E
cross-sectional area of beam = A
The intensity of an electromagnetic wave with electric field is
I = cε[tex]E_{0} ^{2}[/tex]/2
for [tex]E_{0}[/tex] = 2E
I = 2cε[tex]E^{2}[/tex] ....equ 1
where
I is the intensity
c is the speed of light
ε is the permeability of free space
[tex]E_{0}[/tex] is electric field
Radiation pressure of an electromagnetic wave on an absorbing surface is given as
P = I/c
substituting for I from above equ 1. we have
P = 2cε[tex]E^{2}[/tex]/c = 2ε[tex]E^{2}[/tex] ....equ 2
Also, pressure P = F/A
therefore,
F = PA ....equ 3
where
F is the force
P is pressure
A is cross-sectional area
substitute equ 2 into equ 3, we have
F = 2ε[tex]E^{2}[/tex]A
force on a body = mass x acceleration.
that is
F = ma
therefore,
a = F/m
acceleration of the asteroid will then be
a = 2ε[tex]E^{2}[/tex]A/m
where m is the mass of the asteroid.
A 150m race is run on a 300m circular track of circumference. Runners start running from the north and turn west until reaching the south. What is the magnitude of the displacement made by the runners?
Answer:
95.5 m
Explanation:
The displacement is the position of the ending point relative to the starting point.
In this case, the magnitude of the displacement is the diameter of the circular track.
d = 300 m / π
d ≈ 95.5 m
A 10 gauge copper wire carries a current of 23 A. Assuming one free electron per copper atom, calculate the magnitude of the drift velocity of the electrons.
Question:
A 10 gauge copper wire carries a current of 15 A. Assuming one free electron per copper atom, calculate the drift velocity of the electrons. (The cross-sectional area of a 10-gauge wire is 5.261 mm².)
Answer:
3.22 x 10⁻⁴ m/s
Explanation:
The drift velocity (v) of the electrons in a wire (copper wire in this case) carrying current (I) is given by;
v = [tex]\frac{I}{nqA}[/tex]
Where;
n = number of free electrons per cubic meter
q = electron charge
A = cross-sectional area of the wire
First let's calculate the number of free electrons per cubic meter (n)
Known constants:
density of copper, ρ = 8.95 x 10³kg/m³
molar mass of copper, M = 63.5 x 10⁻³kg/mol
Avogadro's number, Nₐ = 6.02 x 10²³ particles/mol
But;
The number of copper atoms, N, per cubic meter is given by;
N = (Nₐ x ρ / M) -------------(ii)
Substitute the values of Nₐ, ρ and M into equation (ii) as follows;
N = (6.02 x 10²³ x 8.95 x 10³) / 63.5 x 10⁻³
N = 8.49 x 10²⁸ atom/m³
Since there is one free electron per copper atom, the number of free electrons per cubic meter is simply;
n = 8.49 x 10²⁸ electrons/m³
Now let's calculate the drift electron
Known values from question:
A = 5.261 mm² = 5.261 x 10⁻⁶m²
I = 23A
q = 1.6 x 10⁻¹⁹C
Substitute these values into equation (i) as follows;
v = [tex]\frac{I}{nqA}[/tex]
v = [tex]\frac{23}{8.49*10^{28} * 1.6 *10^{-19} * 5.261*10^{-6}}[/tex]
v = 3.22 x 10⁻⁴ m/s
Therefore, the drift electron is 3.22 x 10⁻⁴ m/s
Consider a race between the following three objects: object 1, a disk; object 2, a solid sphere; and object 3, a hollow spherical shell. All objects have the same mass and radius.
Required:
a. Rank the three objects in the order in which they finish the race. To rank objects that tie, overlap them.
b. Rank the objects in order of increasing kinetic energy at the bottom of the ramp. Rank objects from largest to smallest. To rank items as equivalent, overlap them.
Answer:
Since the angular acceleration of the objects will be proportional to the torque (due to gravity) acting on them and they will all experience the same torque their accelerations will be inversely proportional to their moments of inertia:
I disk = 1/2 M R^2
I sphere = 2/5 M R^2
I shell = 2/3 M R^2
Thus the sphere will experience the greatest angular acceleration and reach the bottom first, and then be followed by the disk and the shell.
By conservation of energy they will all have the same kinetic energy when they reach the bottom of the ramp.
(a) The ranking of the objects in order of how they will finish the race is
solid sphere > disk > hollow spherical shell
(b) The ranking of the objects in order of kinetic energy is
solid sphere > disk > hollow spherical shell
The moment of inertia of each object is calculated as follows;
disk: [tex]I = \frac{1} {2} MR^2[/tex]solid sphere: I = [tex]\frac{2}{5} MR^2[/tex]hollow spherical shell: I = [tex]\frac{2}{3} MR^2[/tex]The angular momentum of the objects is calculated as follows;
[tex]L =I \omega \\\\\omega = \frac{L}{I}[/tex]
The object with the least moment of inertia is will have the highest speed.
The ranking of the objects in order of how they will finish the race;
solid sphere > disk > hollow
The kinetic energy of the objects is calculated as follows;
[tex]K.E = \frac{1}{2} I \omega ^2[/tex]
The ranking of the objects in order of kinetic energy;
solid sphere > disk > hollow
Learn more here:https://brainly.com/question/15076457
Two objects attract each other with a gravitational force of magnitude 1.02 10-8 N when separated by 19.7 cm. If the total mass of the two objects is 5.14 kg, what is the mass of each
Answer:
The two masses are 3.39 Kg and 1.75 Kg
Explanation:
The gravitational force of attraction between two bodies is given by the formula;
F = Gm₁m₂/d²
where G is the gravitational force constant = 6.67 * 10⁻¹¹ Nm²Kg⁻²
m₁ = mass of first object; m₂ = mass of second object; d = distance of separation between the objects
Further calculations are provided in the attachment below
Objects A and B are both positively charged. Both have a mass of 900 g, but A has twice the charge of B. When A and B are placed 30.0 cm apart, B experiences an electric force of 0.870 N.
How large is the force on A?
What is the charge on qA and qB?
If the objects are released, what is the initial acceleration of A?
Answer:
- Force on A = 0.870N
- charge of the object B = q = 2.1 μC
charge of the object A = 2q = 4.2 μC
- a = 0.966 m/s^2
Explanation:
- In order to determine the force on the object A, you take into account the third Newton law, which states that the force experienced by A has the same magnitude of the force experienced by B, but with an opposite direction.
Then, the force on A is 0.870N
- In order to calculate the charge of both objects, you use the following formula:
[tex]F_e=k\frac{q_Aq_B}{r^2}[/tex] (1)
k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
r: distance between the objects = 30.0cm = 0.30m
A has twice the charge of B. If the charge of B is qB=q, then the charge of A is qA=2qB = 2q.
You replace the expression for qA and qB into the equation (1), solve for q, and replace the values of the parameters.
[tex]F_e=k\frac{(2q)(q)}{r^2}=2k\frac{q^2}{r^2}\\\\q=\sqrt{\frac{r^2Fe}{2k}}\\\\q=\sqrt{\frac{(0.30m)^2(0.870N)}{2(8.98*10^9Nm^2/C^2)}}=2.1*10^{-6}C\\\\q=2.1\mu C[/tex]
Then, you have:
charge of the object B = q = 2.1 μC
charge of the object A = 2q = 4.2 μC
- In order to calculate the acceleration of A, you use the second Newton law with the electric force, as follow:
[tex]F_e=ma\\\\a=\frac{F_e}{m}[/tex]
m: mass of the object A = 900g = 0.900kg
[tex]a=\frac{0.870N}{0.900kg}=0.966\frac{m}{s^2}[/tex]
The acceleration of A is 0.966m/s^2
A skydiver falls toward the ground at a constant velocity. Which statement best applies Newton’s laws of motion to explain the skydiver’s motion?
Answer:
A: An upward force balances the downward force of gravity on the skydiver.
Explanation:
on edge! hope this helps!!~ (⌒▽⌒)☆
A dipole moment is placed in a uniform electric field oriented along an unknown direction. The maximum torque applied to the dipole is equal to 0.1 N.m. When the dipole reaches equilibrium its potential energy is equal to -0.2 J. What was the initial angle between the direction of the dipole moment and the direction of the electric field?
Answer:
θ = 180
Explanation:
When an electric dipole is placed in an electric field, there is a torque due to the electric force
τ = p x E
by rotating the dipole there is a change in potential energy
ΔU = ∫ τ dθ
ΔU = p E (cos θ₂ - cos θ₁)
when the dipole starts from an angle to the equilibrium position for θ = 0
ΔU = pE (cos θ - cos 0)
cos θ = 1 + DU / pE)
let's apply this expression to our case, the change in potential energy is ΔU = -0.2J
let's calculate
cos θ = 1 -0.2 / 0.1
cos θ = -1
θ = 180
1. As you pass a freight truck with a trailer on a highway, you notice that its trailer is bouncing up and down slowly. Is it more likely that the trailer is heavily loaded or nearly empty
Answer:
It's more likely that the trailer is heavily loaded
Explanation:
Due to the fact that the frequency is proportional to the square root of the force constant and inversely proportional to the square root of the mass, it is very likely that the truck would be heavily loaded because the force constant would be the same whether the truck is empty or heavily loaded.
A uniform crate C with mass mC is being transported to the left by a forklift with a constant speed v1. What is the magnitude of the angular momentum of the crate about point A, that is, the point of contact between the front tire of the forklift and the ground
Answer:
The angular momentum of the crate is [tex]M_{C} V_{1} d[/tex]
Explanation:
mass of the crate = [tex]M_{C}[/tex]
speed of forklift = [tex]V_{1}[/tex]
The distance between the center of the mass and the point A = d
Recall that the angular moment is the moment of the momentum.
[tex]L = P*d[/tex] ..... equ 1
where L is the angular momentum,
P is the momentum of the system,
d is the perpendicular distance between the crate and the point on the axis about which the momentum acts. It is equal to d from the image
Also, we know that the momentum P is the product of mass and velocity
P = mv ....equ 2
in this case, the mass = [tex]M_{C}[/tex]
the velocity = [tex]V_{1}[/tex]
therefore, the momentum P = [tex]M_{C}[/tex][tex]V_{1}[/tex]
we substitute equation 2 into equation 1 to give
[tex]L = M_{C} V_{1} d[/tex]
Two people push on a large gate as shown on the view from above in the diagram. If the moment of inertia of the gate is 90 kgm2, what is the resulting angular acceleration of the gate?
Answer:
1ft per second
Explanation:
Physics is on my side!!!!!!!!!!
The Law of Biot-Savart shows that the magnetic field of an infinitesimal current element decreases as 1/r2. Is there anyway you could put together a complete circuit (any closed path of current-carrying wire) whose field exhibits this same 1/r^2 decrease in magnetic field strength? Explain your reasoning.
Answer and Explanation:
There is no probability of obtaining such a circuit of closed track current carrying wire whose field of magnitude displays i.e. [tex]B \alpha \frac{1}{r^2}[/tex]
The magnetic field is a volume of vectors
And [tex]\phi\ bds = 0[/tex]. This ensures isolated magnetic poles or magnetic charges would not exit
Therefore for a closed path, we never received magnetic field that followed the [tex]B \alpha \frac{1}{r^2}[/tex] it is only for the simple current-carrying wire for both finite or infinite length.
A ball is thrown directly downward with an initial speed of 7.95 m/s, from a height of 29.0 m. After what time interval does it strike the ground?
Answer: after 1.75 seconds
Explanation:
The only force acting on the ball is the gravitational force, so the acceleration will be:
a = -9.8 m/s^2
the velocity can be obtained by integrating over time:
v = -9.8m/s^2*t + v0
where v0 is the initial velocity; v0 = -7.95 m/s.
v = -9.8m/s^2*t - 7.95 m/s.
For the position we integrate again:
p = -4.9m/s^2*t^2 - 7.95 m/s*t + p0
where p0 is the initial position: p0 = 29m
p = -4.9m/s^2*t^2 - 7.95 m/s*t + 29m
Now we want to find the time such that the position is equal to zero:
0 = -4.9m/s^2*t^2 - 7.95 m/s*t + 29m
Then we solve the Bhaskara's equation:
[tex]t = \frac{7.95 +- \sqrt{7.95^2 +4*4.9*29} }{-2*4.9} = \frac{7.95 +- 25.1}{9.8}[/tex]
Then the solutions are:
t = (7.95 + 25.1)/(-9.8) = -3.37s
t = (7.95 - 25.1)/(-9.8) = 1.75s
We need the positive time, then the correct answer is 1.75s
how do a proton and neutron compare?
Answer:
c.they have opposite charges.
Explanation:
because the protons have a positive charge and the neutrons have no charge.