The position vector r(t) of the particle at time t is:
r(t) = 3t^2 i + (2/3)t^3 j
To determine the position vector r(t) of the particle at time t, we can integrate the velocity vector to obtain the position vector.
Initial position: r(0) = (x(0), y(0)) = (0, 0)
Velocity vector: v(t) = dx/dt i + dy/dt j = (6t)i + (2t^2)j
Integrating the velocity vector with respect to time, we get:
r(t) = ∫ v(t) dt = ∫ (6t)i + (2t^2)j dt
Integrating the x-component:
∫ 6t dt = 3t^2 + C1
Integrating the y-component:
∫ 2t^2 dt = (2/3)t^3 + C2
So the position vector r(t) is given by:
r(t) = (3t^2 + C1)i + ((2/3)t^3 + C2)j
Now, we need to determine the constants C1 and C2 using the initial conditions.
Given that r(0) = (0, 0), we substitute t = 0 into the position vector:
r(0) = (3(0)^2 + C1)i + ((2/3)(0)^3 + C2)j = (0, 0)
This implies C1 = 0 and C2 = 0.
Therefore, the position vector r(t) of the particle at time t is:
r(t) = 3t^2 i + (2/3)t^3 j
Learn more about Integration here
https://brainly.com/question/31744185
#SPJ11
The Foula for Force is F=ma, where F is the Force, m is the object's mass, and a is the object's acceleration. Rewrite the foula in tes of mass, then find the object's mass when it's acceleration is 14(m)/(s) and the total force is 126N
When the object's acceleration is 14 m/s and the total force is 126 N, the object's mass is approximately 9 kg.
To rewrite the formula F = ma in terms of mass (m), we can isolate the mass by dividing both sides of the equation by acceleration (a):
F = ma
Dividing both sides by a:
F/a = m
Therefore, the formula in terms of mass (m) is m = F/a.
Now, to find the object's mass when its acceleration is 14 m/s and the total force is 126 N, we can substitute the given values into the formula:
m = F/a
m = 126 N / 14 m/s
m ≈ 9 kg
Therefore, when the object's acceleration is 14 m/s and the total force is 126 N, the object's mass is approximately 9 kg.
To learn more about acceleration
https://brainly.com/question/16850867
#SPJ11
A rectangle has a length of x and a width of 3x^(3)+3-x^(2). Find the perimeter of the rectangle when the length is 6 feet.
Therefore, when the length is 6 feet, the perimeter of the rectangle is 1242 feet.
To find the perimeter of the rectangle, we need to add up the lengths of all four sides.
The length of the rectangle is given as x, and the width is given as [tex]3x^3 + 3 - x^2.[/tex]
When the length is 6 feet, we can substitute x = 6 into the expressions:
Length = x = 6
Width = [tex]3(6^3) + 3 - 6^2[/tex]
Simplifying the width:
Width = 3(216) + 3 - 36
= 648 + 3 - 36
= 615
Now, we can calculate the perimeter by adding up all four sides:
Perimeter = 2(Length + Width)
= 2(6 + 615)
= 2(621)
= 1242
To know more about perimeter,
https://brainly.com/question/22257686
#SPJ11
Solve for the input that corresponds to the given output value. (Round answers to three decimal places when appropriate. Enter your answers as a comma-separated list. Note: Even though the question may be completed without the use of technology, the authors intend for you to complete the activity using the technology you will be using in the remainder of the course so that you become familiar with the basic functions of that technology.)
r(x) = 6 ln(1.8)(1.8x); r(x) = 9.3, r(x) = 25
r(x) = 9.3 x = ____
r(x) = 25 x = _____
Therefore, the value of x for r(x) = 9.3 is 4.1296 and for r(x) = 25 is 18.881 (rounded to three decimal places).
Given that the function
r(x) = 6 ln(1.8)(1.8x)
We need to solve for the input that corresponds to the given output value.
To find r(x) = 9.3, we have to substitute the given value in the given function and solve for x as follows:
6 ln(1.8)(1.8x)
= 9.3ln(1.8)(1.8x)
= 9.3 / 6
= 1.55(1.8x)
= e^(1.55)
x = e^(1.55) / 1.8
x = 4.1296
Thus, x = 4.1296
To find r(x) = 25, we have to substitute the given value in the given function and solve for x as follows:
6 ln(1.8)(1.8x)
= 25ln(1.8)(1.8x)
= 25 / 6
= 4.1667(1.8x)
= e^(4.1667)
x = e^(4.1667) / 1.8
x = 18.881
Thus, x = 18.881
Know more about the function
https://brainly.com/question/11624077
#SPJ11
Belief in Haunted Places A random sample of 340 college students were asked if they believed that places could be haunted, and 133 responded yes. Estimate the true proportion of college students who believe in the possibility of haunted places with 95% confidence. According to Time magazine, 37% of Americans believe that places can be haunted. Round intermediate and final answers to at least three decimal places.
According to the given data, a random sample of 340 college students were asked if they believed that places could be haunted, and 133 responded yes.
The aim is to estimate the true proportion of college students who believe in the possibility of haunted places with 95% confidence. Also, it is given that according to Time magazine, 37% of Americans believe that places can be haunted.
The point estimate for the true proportion is:
P-hat = x/
nowhere x is the number of students who believe in the possibility of haunted places and n is the sample size.= 133/340
= 0.3912
The standard error of P-hat is:
[tex]SE = sqrt{[P-hat(1 - P-hat)]/n}SE
= sqrt{[0.3912(1 - 0.3912)]/340}SE
= 0.0307[/tex]
The margin of error for a 95% confidence interval is:
ME = z*SE
where z is the z-score associated with 95% confidence level. Since the sample size is greater than 30, we can use the standard normal distribution and look up the z-value using a z-table or calculator.
For a 95% confidence level, the z-value is 1.96.
ME = 1.96 * 0.0307ME = 0.0601
The 95% confidence interval is:
P-hat ± ME0.3912 ± 0.0601
The lower limit is 0.3311 and the upper limit is 0.4513.
Thus, we can estimate with 95% confidence that the true proportion of college students who believe in the possibility of haunted places is between 0.3311 and 0.4513.
To know more about college visit:
https://brainly.com/question/16942544
#SPJ11
Which situation could be described mathematically by a directed line segment? swimming the English Channel, walking 7 7 blocks north and 2 2 blocks east to your friend's house, shooting an arrow at a close target or hiking down a winding trail
Walking 7 blocks north and 2 blocks east to your friend's house could be described mathematically by a directed line segment.
A directed line segment is a line segment that has both magnitude (length) and direction, and is often used to represent a displacement or movement from one point to another. In the given situation of walking 7 blocks north and 2 blocks east to your friend's house, the starting point and ending point can be identified as two distinct points in a plane. A directed line segment can be drawn between these two points, with an arrow indicating the direction of movement from the starting point to the ending point. The length of the line segment would correspond to the distance traveled, which in this case is the square root of (7^2 + 2^2) blocks.
Swimming the English Channel, shooting an arrow at a close target, and hiking down a winding trail are not situations that can be accurately described by a directed line segment because they involve more complex movements and directions that cannot be easily represented by a simple line segment.
Learn more about mathematically from
https://brainly.com/question/1859113
#SPJ11
Assume, you want to cluster 8 observations into 3 clusters using
K-Means clustering algorithm. After the first iteration clusters
C1, C2, C3 have the following observations:
C1: {(2,3), (4,3), (6,6)}
After the first iteration of the K-Means clustering algorithm, the observations are divided into the following clusters:
C1: {(2,3), (4,3), (6,6)}
In K-Means clustering, the algorithm starts by randomly assigning each observation to one of the clusters. Then, it iteratively refines the cluster assignments by minimizing the within-cluster sum of squares.
Let's assume that we have 8 observations that we want to cluster into 3 clusters. After the first iteration, we have the following cluster assignments:
C1: {(2,3), (4,3), (6,6)}
These assignments indicate that observations (2,3), (4,3), and (6,6) belong to cluster C1.
After the first iteration of the K-Means clustering algorithm, we have three clusters: C1, C2, and C3. The observations (2,3), (4,3), and (6,6) are assigned to cluster C1.
To know more about algorithm , visit;
https://brainly.com/question/32274929
#SPJ11
Consider the following. 7x^2−y3=8
(a) Find y′ by implicit differentiation.
y′= (b) Solve the equation explictly for y and differentiate to get y ' in terms of x. y′=
(c) Check that your solutions to parts (a) and (b) are consistent by substituting the expression for y into your solution for part (a). y′=
(a) Find y′ by implicit differentiation.
y′= 14x/3y²
(b) Solve the equation explicitly for y and differentiate to get y ' in terms of x.
y′= 14x/3y²
(c) Check that your solutions to parts (a) and (b) are consistent by substituting the expression for y into your solution for part
(a). y′= 14x/3y²
(a) Find y′ by implicit differentiation.
7x^2 - y^3 = 8
Differentiate both sides with respect to x.
Differentiate 7x^2 with respect to x using power rule which states that if
y = xⁿ, then y' = nxⁿ⁻¹.
Differentiate y^3 with respect to x using chain rule which states that if
y = f(u) and u = g(x),
then y' = f'(u)g'(x).
Therefore,
y' = d/dx[7x²] - d/dx[y³]
= 14x - 3y² dy/dx
For dy/dx,
y' - 14x
= -3y² dy/dx
dy/dx = y' - 14x/-3y²
=14x/3y²
(b) Solve the equation explicitly for y and differentiate to get y ' in terms of x.
7x² - y³ = 8y³
= 7x² - 8y
= [7x² - 8]^(1/3)
Differentiate y with respect to x by using chain rule which states that if
y = f(u) and u = g(x), then
y' = f'(u)g'(x).
Therefore,
y' = d/dx[(7x² - 8)^(1/3)]
= 14x/3(7x² - 8)^(2/3)
(c) Check that your solutions to parts (a) and (b) are consistent by substituting the expression for y into your solution for part
(a).y' = 14x/3(7x² - 8)^(2/3)
y' = 14x/3y²
To know more about implicit differentiation visit:
https://brainly.com/question/11887805
#SPJ11
In a certain state, the sales tax T on the amount of taxable goods is 6% of the value of the goods purchased x, where both T and x are measured in dollars.
express T as a function of x.
T(x) =
Find T(150) and T(8.75).
The expression for sales tax T as a function of x is T(x) = 0.06x . Also, T(150) = $9 and T(8.75) = $0.525.
The given expression for sales tax T on the amount of taxable goods in a certain state is:
6% of the value of the goods purchased x.
T(x) = 6% of x
In decimal form, 6% is equal to 0.06.
Therefore, we can write the expression for sales tax T as:
T(x) = 0.06x
Now, let's calculate the value of T for
x = $150:
T(150) = 0.06 × 150
= $9
Therefore,
T(150) = $9.
Next, let's calculate the value of T for
x = $8.75:
T(8.75) = 0.06 × 8.75
= $0.525
Therefore,
T(8.75) = $0.525.
Hence, the expression for sales tax T as a function of x is:
T(x) = 0.06x
Also,
T(150) = $9
and
T(8.75) = $0.525.
Know more about the taxable goods
https://brainly.com/question/1160723
#SPJ11
Review questions. True or False? (R.1) 21 is a prime number. (R.2) 23 is a prime number. (R.3) ¬p→p is satisfiable. (R.4) p→p is a tautology. (R.5) p∨¬p is a tautology. (R.6) p∧¬p is a tautology. (R.7) (p→p)→p is a tautology. (R.8) p→(p→p) is a tautology. (R.9) p⊕q≡p↔¬q. (R.10) p→q≡¬(p∧¬q). (R.11) p→q≡q→p (R.12) p→q≡¬q→¬p. (R.13) (p→r)∨(q→r)≡(p∨q)→r (R.14)(p→r)∧(q→r)≡(p∧q)→r. (R.15) Every propositional formula is equivalent to a DNF. (R.16) To convert a formula in DNF into an equivalent formula in CNF, replace all ∨ 's with ∧ 's and all Λ 's with ∨ 's. (R.17) Every propositional formula which is a tautology is satisfiable. (R.18) If a propositional formula has n variables, then its truth table has 2n rows. (R.19) p∨(q∧r)≡(p∧q)∨(p∧r). (R.20) T∧p≡p and F∨p≡p are dual equivalences. (R.21) In base 2,111+11=1011 (R.22) Every propositional formula can be turned into a circuit. (R.23) If someone who is a knight or knave says "If I am a knight, then so are you", then both you and they are knights. (R.24) If someone who is a knight or knave says "If I am a knave, then so are you", then both you and they are knaves. (R.25) 2∈{2,3,4}. (R.26) 2⊆{2,3,4}. (R.27) {2}∈{2,3,4}. (R.28) {2}⊆{2,3,4}
Some of these are false and some are true.
R.1: False. 21 is not a prime number as it is divisible by 3.
R.2: True. 23 is a prime number as it is only divisible by 1 and itself.
R.3: False. The formula ¬p→p is not satisfiable because if p is false, then the implication is true, but if p is true, the implication is false.
R.4: True. The formula p→p is a tautology because it is always true, regardless of the truth value of p.
R.5: True. The formula p∨¬p is a tautology known as the Law of Excluded Middle.
R.6: False. The formula p∧¬p is a contradiction because it is always false, regardless of the truth value of p.
R.7: True. The formula (p→p)→p is a tautology known as the Law of Identity.
R.8: True. The formula p→(p→p) is a tautology known as the Law of Implication.
R.9: False. The formula p⊕q≡p↔¬q is not an equivalence; it is an exclusive disjunction.
R.10: True. The formula p→q≡¬(p∧¬q) is an equivalence known as the Law of Contrapositive.
R.11: False. The formula p→q≡q→p is not always true; it depends on the specific values of p and q.
R.12: True. The formula p→q≡¬q→¬p is an equivalence known as the Law of Contrapositive.
R.13: True. The formula (p→r)∨(q→r)≡(p∨q)→r is an equivalence known as the Law of Implication.
R.14: False. The formula (p→r)∧(q→r)≡(p∧q)→r is not an equivalence; it is not generally true.
R.15: False. Not every propositional formula is equivalent to a Disjunctive Normal Form (DNF).
R.16: True. To convert a formula in DNF to an equivalent formula in Conjunctive Normal Form (CNF), the operations are reversed.
R.17: True. Every propositional formula that is a tautology is also satisfiable.
R.18: True. A propositional formula with n variables has a truth table with 2^n rows.
R.19: True. The formula p∨(q∧r)≡(p∧q)∨(p∧r) is an equivalence known as the Distributive Law.
R.20: True. T∧p≡p and F∨p≡p are dual equivalences known as the Identity Laws.
R.21: False. In base 2, 111 + 11 equals 1010, not 1011.
R.22: True. Every propositional formula can be represented as a circuit using logic gates.
R.23: True. If someone who is a knight or knave says "If I am a knight, then so are you," both of them are knights.
R.24: False. If someone who is a knight or knave says "If I am a knave, then so are you," both of them are not necessarily knaves.
R.25: True. The number 2 is an element of the set {2, 3, 4}.
R.26: True. The set {2} is a subset of set.
To learn more about “ variable” refer to the https://brainly.com/question/28248724
#SPJ11
Find f'(x), f'(x), and f'''(x).
f(x) = 9x² (3-x-3)
The function given is f(x) = 9x² (3-x-3).To find f'(x), f''(x), and f'''(x), we will have to find the first, second, and third derivatives of the function, respectively.
Given, f(x) = 9x² (3-x-3)We need to find the first derivative of the function f(x) = 9x² (3-x-3). Using the product rule of differentiation, we can find the first derivative of the function as follows: f'(x) = 9x² (-1) + (2 * 9x * (3-x-3))
= -9x² + 54x - 54
Now, we need to find the second derivative of the function f(x) = 9x² (3-x-3). Using the product rule of differentiation, we can find the second derivative of the function as follows: f''(x) = (-9x² + 54x - 54)'
= -18x + 54
Now, we need to find the third derivative of the function f(x) = 9x² (3-x-3).Using the product rule of differentiation, we can find the third derivative of the function as follows:f'''(x) = (-18x + 54)'= -18
Therefore, the first, second, and third derivatives of the function f(x) = 9x² (3-x-3) are as follows:
f'(x) = -9x² + 54x
f''(x) = -18x + 54
f'''(x) = -18
To know more about function visit:
https://brainly.com/question/30721594
#SPJ11
the test to detect the presence of a certain protein is 98 ccurate for corn plants that have the protein and 97 ccurate for corn plants that do not have the protein. do not round your answer.
The probability that a randomly chosen plant is detected incorrectly is 0.02965 = 2.965%.
How to determine the probabilityFrom the question, we have the following parameters that can be used in our computation:
2% of 3.5% have the protein3% of 96.5% do not have the proteinUsing the above as a guide, we have the following:
Probability = 2% * 3.5% + 3% * 96.5%
Evaluate
Probability = 0.02965
Rewrite as
Probability = 2.965%
Hence, the probability is 2.965%.
Read more about probabilities at
https://brainly.com/question/31649379
#SPJ4
Question
The test to detect the presence of a certain protein is 98% accurate for corn plants that have the protein and 97% accurate for corn plants that do not have the protein.
If 3.5% of the corn plants in a given population actually have the protein, the probability that a randomly chosen plant is detected incorrectly is
Let A={0,2,3},B={2,3},C={1,4}, and let the universal set be U={0,1,2,3,4}. List the elements of (a) A×B (e) A×A c
(b) B×A (f) B 2
(c) A×B×C (g) B 3
(d) U×∅ (h) B×P(B) Let A={+,−} and B={00,01,10,11}. (a) List the elements of A×B (b) How many elements do A 4and (A×B) 3 have? What can you say about A if U={1,2,3,4,5},B={2,3}, and (separately) (a) A∪B={1,2,3,4} (b) A∩B={2} (c) A⊕B={3,4,5}(separately) (a) A∪B={1,2,3,4} (b) A∩B={2} (c) A⊕={3,4,5}
let the list of element
(a) A×B: {(0, 2), (0, 3), (2, 2), (2, 3), (3, 2), (3, 3)}
(b) B×A: {(2, 0), (2, 2), (2, 3), (3, 0), (3, 2), (3, 3)}
(c) A×B×C: {(0, 2, 1), (0, 2, 4), (0, 3, 1), (0, 3, 4), (2, 2, 1), (2, 2, 4), (2, 3, 1), (2, 3, 4), (3, 2, 1), (3, 2, 4), (3, 3, 1), (3, 3, 4)}
(d) U×∅: ∅ (empty set)
(e) A×A: {(0, 0), (0, 2), (0, 3), (2, 0), (2, 2), (2, 3), (3, 0), (3, 2), (3, 3)}
(f) B^2: {(2, 2), (2, 3), (3, 2), (3, 3)}
(g) B^3: {(2, 2, 2), (2, 2, 3), (2, 3, 2), (2, 3, 3), (3, 2, 2), (3, 2, 3), (3, 3, 2), (3, 3, 3)} (h) B×P(B): {(2, ∅), (2, {2}), (2, {3}), (2, {2, 3}), (3, ∅), (3, {2}), (3, {3}), (3, {2,
(a) A×B: {(+, 00), (+, 01), (+, 10), (+, 11), (-, 00), (-, 01), (-, 10), (-, 11)}
(b) A^4: A×A×A×A, which has 16 elements.
(A×B)^3: (A×B)×(A×B)×(A×B), which also has 16 elements.
If A∪B = {1, 2, 3, 4}:
(a) A = {1, 2, 3, 4} or A = {1, 3, 4}
(b) A∩B = {2}
(c) A⊕B = {1, 3, 4}
If A∪B = {1, 2, 3, 4}:
(a) A = {1, 2, 3, 4}
(b) A∩B = {2}
(c) A⊕ = {3, 4, 5}
Learn more about element here
https://brainly.com/question/31950312
#SPJ11
suppose you have a large box of pennies of various ages and plan to take a sample of 10 pennies. explain how you can estimate that probability that the range of ages is greater than 15 years.
To estimate the probability that the range of ages is greater than 15 years in a sample of 10 pennies, randomly select multiple samples, calculate the range for each sample, count the number of samples with a range greater than 15 years, and divide it by the total number of samples.
To estimate the probability that the range of ages among a sample of 10 pennies is greater than 15 years, you can follow these steps:
1. Determine the range of ages in the sample: Calculate the difference between the oldest and youngest age among the 10 pennies selected.
2. Repeat the sampling process: Randomly select multiple samples of 10 pennies from the large box and calculate the range of ages for each sample.
3. Record the number of samples with a range greater than 15 years: Count how many of the samples have a range greater than 15 years.
4. Estimate the probability: Divide the number of samples with a range greater than 15 years by the total number of samples taken. This will provide an estimate of the probability that the range of ages is greater than 15 years in a sample of 10 pennies.
Keep in mind that this method provides an estimate based on the samples taken. The accuracy of the estimate can be improved by increasing the number of samples and ensuring that the samples are selected randomly from the large box of pennies.
To know more about probability, refer here:
https://brainly.com/question/33147173
#SPJ4
Dell Eatery employs one worker whose job it is to load apple pies on outgoing company cars. Cars arrive at the loading gate at an average of 48 per day, or 6 per hour, according to a Poisson distribution. The worker loads them at a rate of 8 per hour, following approximately the exponential distribution in service times. a. Determine the operating characteristics of this loading gate problem. [6 Marks] b. What is the probability that there will be more than six cars either being loaded or waiting? [2 Marks] Formulae L= μ−λ
λ
W= μ−λ
1
L q
W q
rho
P 0
= μ(μ−λ)
λ 2
= μ(μ−λ)
λ
= μ
λ
=1− μ
λ
P n>k
=( μ
λ
) k+1
The required probability is 0.4408.
The operating characteristics of the loading gate problem are:
L = λ/ (μ - λ)
W = 1/ (μ - λ)
Lq = λ^2 / μ (μ - λ)
Wq = λ / μ (μ - λ)
ρ = λ / μ
P0 = 1 - λ / μ
Where, L represents the average number of cars either being loaded or waiting.
W represents the average time a car spends either being loaded or waiting.
Lq represents the average number of cars waiting.
Wq represents the average waiting time of a car.
ρ represents the utilization factor.
ρ = λ / μ represents the ratio of time the worker spends loading cars to the total time the system is busy.
P0 represents the probability that the system is empty.
The probability that there will be more than six cars either being loaded or waiting is to be determined. That is,
P (n > 6) = 1 - P (n ≤ 6)
Now, the probability of having less than or equal to six cars in the system at a given time,
P (n ≤ 6) = Σn = 0^6 [λ^n / n! * (μ - λ)^n]
Putting the values of λ and μ, we get,
P (n ≤ 6) = Σn = 0^6 [(6/ 48)^n / n! * (8/ 48)^n]
P (n ≤ 6) = [(6/ 48)^0 / 0! * (8/ 48)^0] + [(6/ 48)^1 / 1! * (8/ 48)^1] + [(6/ 48)^2 / 2! * (8/ 48)^2] + [(6/ 48)^3 / 3! * (8/ 48)^3] + [(6/ 48)^4 / 4! * (8/ 48)^4] + [(6/ 48)^5 / 5! * (8/ 48)^5] + [(6/ 48)^6 / 6! * (8/ 48)^6]P (n ≤ 6) = 0.5592
Now, P (n > 6) = 1 - P (n ≤ 6) = 1 - 0.5592 = 0.4408
Therefore, the required probability is 0.4408.
Learn more about loading gate visit:
brainly.com/question/33562503
#SPJ11
The population of a country dropped from 52.4 million in 1995 to 44.6 million in 2009. Assume that P(t), the population, in millions, 1 years after 1995, is decreasing according to the exponential decay
model
a) Find the value of k, and write the equation.
b) Estimate the population of the country in 2019.
e) After how many years wil the population of the country be 1 million, according to this model?
Assume that P(t), the population, in millions, 1 years after 1995, is decreasing according to the exponential decay model. A) The value of k = e^(14k). B) Tthe population of the country in 2019 = 33.6 million. E) After about 116 years (since 1995), the population of the country will be 1 million according to this model.
a) We need to find the value of k, and write the equation.
Given that the population of a country dropped from 52.4 million in 1995 to 44.6 million in 2009.
Assume that P(t), the population, in millions, 1 years after 1995, is decreasing according to the exponential decay model.
To find k, we use the formula:
P(t) = P₀e^kt
Where: P₀
= 52.4 (Population in 1995)P(t)
= 44.6 (Population in 2009, 14 years later)
Putting these values in the formula:
P₀ = 52.4P(t)
= 44.6t
= 14P(t)
= P₀e^kt44.6
= 52.4e^(k * 14)44.6/52.4
= e^(14k)0.8506
= e^(14k)
Taking natural logarithm on both sides:
ln(0.8506) = ln(e^(14k))
ln(0.8506) = 14k * ln(e)
ln(e) = 1 (since logarithmic and exponential functions are inverse functions)
So, 14k = ln(0.8506)k = (ln(0.8506))/14k ≈ -0.02413
The equation for P(t) is given by:
P(t) = P₀e^kt
P(t) = 52.4e^(-0.02413t)
b) We need to estimate the population of the country in 2019.
1 year after 2009, i.e., in 2010,
t = 15.P(15)
= 52.4e^(-0.02413 * 15)P(15)
≈ 41.7 million
In 2019,
t = 24.P(24)
= 52.4e^(-0.02413 * 24)P(24)
≈ 33.6 million
So, the estimated population of the country in 2019 is 33.6 million.
e) We need to find after how many years will the population of the country be 1 million, according to this model.
P(t) = 1P₀ = 52.4
Putting these values in the formula:
P(t) = P₀e^kt1
= 52.4e^(-0.02413t)1/52.4
= e^(-0.02413t)
Taking natural logarithm on both sides:
ln(1/52.4) = ln(e^(-0.02413t))
ln(1/52.4) = -0.02413t * ln(e)
ln(e) = 1 (since logarithmic and exponential functions are inverse functions)
So, -0.02413t
= ln(1/52.4)t
= -(ln(1/52.4))/(-0.02413)t
≈ 115.73
Therefore, after about 116 years (since 1995), the population of the country will be 1 million according to this model.
To know more about exponential visit:
https://brainly.com/question/29160729
#SPJ11
Find, correct to the nearest degree, the three angles of the triangle with the given vertices. A(1,0,−1),B(5,−3,0),C(1,2,5) ∠CAB= ∠ABC= ∠BCA=
The angles of the triangle with the given vertices are approximately: ∠CAB ≈ 90 degrees ∠ABC ≈ 153 degrees ∠BCA ≈ 44 degrees.
To find the angles of the triangle with the given vertices, we can use the dot product and the arccosine function.
Let's first find the vectors AB, AC, and BC:
AB = B - A
= (5, -3, 0) - (1, 0, -1)
= (4, -3, 1)
AC = C - A
= (1, 2, 5) - (1, 0, -1)
= (0, 2, 6)
BC = C - B
= (1, 2, 5) - (5, -3, 0)
= (-4, 5, 5)
Next, let's find the lengths of the vectors AB, AC, and BC:
|AB| = √[tex](4^2 + (-3)^2 + 1^2)[/tex]
= √26
|AC| = √[tex](0^2 + 2^2 + 6^2)[/tex]
= √40
|BC| = √[tex]((-4)^2 + 5^2 + 5^2)[/tex]
= √66
Now, let's find the dot products of the vectors:
AB · AC = (4, -3, 1) · (0, 2, 6)
= 4(0) + (-3)(2) + 1(6)
= 0 - 6 + 6
= 0
AB · BC = (4, -3, 1) · (-4, 5, 5)
= 4(-4) + (-3)(5) + 1(5)
= -16 - 15 + 5
= -26
AC · BC = (0, 2, 6) · (-4, 5, 5)
= 0(-4) + 2(5) + 6(5)
= 0 + 10 + 30
= 40
Now, let's find the angles:
∠CAB = cos⁻¹(AB · AC / (|AB| |AC|))
= cos⁻¹(0 / (√26 √40))
≈ 90 degrees
∠ABC = cos⁻¹(AB · BC / (|AB| |BC|))
= cos⁻¹(-26 / (√26 √66))
≈ 153 degrees
∠BCA = cos⁻¹(AC · BC / (|AC| |BC|))
= cos⁻¹(40 / (√40 √66))
≈ 44 degrees
To know more about triangle,
https://brainly.com/question/33150747
#SPJ11
\[ p=\frac{A\left(\frac{r}{n}\right]^{n}}{\left(1+\frac{r}{n}\right)^{\text {th }}-1} \] The montły invesied payment is 1 (Round up to the nearest cent.)
The monthly investment payment is $1.28. This is based on a formula that calculates the monthly payment needed to reach a specific savings goal over a certain period of time.
The given formula to calculate the monthly investment payment is: p = A(r/n)/[1 + (r/n)^nt - 1]
Here, A = $1, r = 0.03 (3%), n = 12 (monthly investment), and t = 15 years.
So, by substituting the values in the formula, we get:p = 1(0.03/12)/[1 + (0.03/12)^(12*15) - 1]p = 0.00025/[1.5418 - 1]p = 0.00025/0.5418p = 0.4614
8Round up the result to the nearest cent, so the monthly investment payment is $1.28 (approximate value).
Therefore, "The monthly investment payment is $1.28."
The term "Investment Payment" refers to a milestone-based repayment of the Contractor's investments, including any interest that has accrued on those investments.
Know more about investment payment, here:
https://brainly.com/question/32223559
#SPJ11
Plot the intercepts to graph the equation. 6x-3y=6 Use the graphing tool to graph the equation. Use the intercep intercept exists, use it and another point to draw the line. Click to enlarge graph
For the equation 6x - 3y = 6, the x- intercept is (1,0) and the y-intercept is(0,-2). The graph of the equation can be plotted by joining these two points as shown below.
To find the intercepts of the equation, follow these steps:
The x-intercept is the point at which y=0 and the y-intercept is the point at which x=0.So, the x-intercept can be calculated as follows: 6x= 6⇒ x=1. So, the x-intercept is (1, 0)The y-intercept can be calculated as follows: -3y= 6 ⇒y= -2. So, the y-intercept is (0, -2).Joining the two intercepts, we can plot the graph as shown below.Learn more about intercept:
brainly.com/question/3951754
#SPJ11
which of the following scenarios represents a non-biased sample?select all that apply.select all that apply:a radio station asks listeners to phone in their favorite radio station.a substitute teacher wants to know how students in the class did on their last test. the teacher asks the 5 students sitting in the front row to state their latest test score.a study is conducted to study the eating habits of the students in a school. to do so, every tenth student on the school roster is surveyed. a total of 419 students were surveyed.a study was done by a chewing gum company, which found that chewing gum significantly improves test scores. a study was done to find the average gpa of anytown high school, where the number of students is 2100. data was collected from 500 students who visited the library.a study was conducted to determine public support of a new transportation tax. there were 650 people surveyed, from a randomly selected list of names on the local census.
The non-biased samples among the given scenarios are:
a) A study is conducted to study the eating habits of the students in a school. To do so, every tenth student on the school roster is surveyed. A total of 419 students were surveyed.
b) A study was conducted to determine public support of a new transportation tax. There were 650 people surveyed, from a randomly selected list of names on the local census.
A non-biased sample is one that accurately represents the larger population without any systematic favoritism or exclusion. Based on this understanding, the scenarios that represent non-biased samples are:
A study is conducted to study the eating habits of the students in a school. Every tenth student on the school roster is surveyed. This scenario ensures that every tenth student is included in the survey, regardless of any other factors. This random selection helps reduce bias and provides a representative sample of the entire student population.
A study was conducted to determine public support for a new transportation tax. The researchers surveyed 650 people from a randomly selected list of names on the local census. By using a randomly selected list of names, the researchers are more likely to obtain a sample that reflects the diverse population. This approach helps minimize bias and ensures a more representative sample for assessing public support.
The other scenarios mentioned do not represent non-biased samples:
The radio station asking listeners to phone in their favorite radio station relies on self-selection, as it only includes people who choose to participate. This may introduce bias as certain groups of listeners may be more likely to call in, leading to an unrepresentative sample.
The substitute teacher asking the 5 students sitting in the front row about their test scores introduces bias since it excludes the rest of the class. The front row students may not be representative of the entire class's performance.
The study conducted by a chewing gum company that found chewing gum improves test scores is biased because it was conducted by a company with a vested interest in proving the benefits of their product. This conflict of interest may influence the study's methodology or analysis, leading to biased results.
The study conducted to find the average GPA of Anytown High School, where the number of students is 2,100, collected data from only 500 students who visited the library. This approach may introduce bias as it excludes students who do not visit the library, potentially leading to an unrepresentative sample.
Learn more about Non-biased sample click;
https://brainly.com/question/32699093
#SPJ4
The sum of the forces acting on an object is called the resultant or net force. An object is said to be in static equilibrium if the resultant force of the forces that act on it is zero. Let F 1 =⟨10,6,3⟩,F 2 =⟨0,4,9⟩, and F 3 =⟨10,−3,−9⟩ be three forces acting on a box. Find the force F 4 acting on the box such that the box is in static equilibrium. Express the answer in component form.
Therefore, the force F4 acting on the box such that the box is in static equilibrium is F4 = ⟨-20,-7,-3⟩.
We are given the forces acting on a box as follows:
F1 = ⟨10,6,3⟩
F2 = ⟨0,4,9⟩
F3 = ⟨10,−3,−9⟩
We are to find the force F4 acting on the box such that the box is in static equilibrium.
For the box to be in static equilibrium, the resultant force of the forces that act on it must be zero.
This means that
F1+F2+F3+F4 = 0 or
F4 = -F1 -F2 -F3
We have:
F1 = ⟨10,6,3⟩
F2 = ⟨0,4,9⟩
F3 = ⟨10,−3,−9⟩
We have to negate the sum of the three vectors to find F4.
F4 = -F1 -F2 -F3
= -⟨10,6,3⟩ -⟨0,4,9⟩ -⟨10,-3,-9⟩
=⟨-20,-7,-3⟩
Know more about the resultant force
https://brainly.com/question/25239010
#SPJ11
Any partition under what condition produces the best-case running time of O(nlg(n)) ? 2. Using a recurrence tree, prove question 2∣ for the recurrence T(n)=T(4n/5)+T(n/5)+cn
To achieve the best-case running time of O(n log n) in a sorting algorithm, such as QuickSort, the partition should evenly divide the input array into two parts. The proof using a recurrence tree shows that the given recurrence relation T(n) = T(4n/5) + T(n/5) + cn has a solution of T(n) = (5/3) * n * cn. Therefore, the running time in this case is O(n) rather than O(n log n).
To achieve the best-case running time of O(n log n) for a partition in a sorting algorithm like QuickSort, the partition should divide the input array into two equal-sized partitions. In other words, each recursive call should result in splitting the array into two parts of roughly equal sizes.
When the input array is evenly divided into two parts, the QuickSort algorithm achieves its best-case running time. This occurs because the partition step evenly distributes the elements, leading to balanced recursive calls. Consequently, the depth of the recursion tree will be approximately log₂(n), and each level will have a total work of O(n). Thus, the overall time complexity will be O(n log n).
Regarding question 2, let's use a recurrence tree to prove the given recurrence relation T(n) = T(4n/5) + T(n/5) + cn:
At each level of the recurrence tree, we have two recursive calls: T(4n/5) and T(n/5). The total work done at each level is the sum of the work done by these recursive calls plus the additional work done at that level, which is represented by cn.
```
T(n)
/ \
T(4n/5) T(n/5)
```
Expanding further, we get:
```
T(n)
/ | \
T(16n/25) T(4n/25) T(4n/25) T(n/25)
```
Continuing this process, we have:
```
T(n)
/ | \
T(16n/25) T(4n/25) T(4n/25) T(n/25)
/ | \
... ... ...
```
We can observe that at each level, the total work done is cn multiplied by the number of nodes at that level. In this case, the number of nodes at each level is a geometric progression, with a common ratio of 2/5, since we are splitting the array into 4/5 and 1/5 sizes at each recursive call.
Using the sum of a geometric series formula, the number of nodes at the kth level is (2/5)^k * n. Thus, the total work at the kth level is (2/5)^k * n * cn.
Summing up the work done at each level from 0 to log₅(4/5)n, we get:
T(n) = ∑(k=0 to log₅(4/5)n) (2/5)^k * n * cn
Simplifying the summation, we have:
T(n) = n * cn * (∑(k=0 to log₅(4/5)n) (2/5)^k)
The sum of the geometric series ∑(k=0 to log₅(4/5)n) (2/5)^k can be simplified as:
∑(k=0 to log₅(4/5)n) (2/5)^k = (1 - (2/5)^(log₅(4/5)n+1)) / (1 - 2/5)
Since (2/5)^(log₅(4/5)n+1) approaches 0 as n increases, we can simplify the above expression to:
T(n) = n * cn * (1 / (1 - 2/5))
T(n) = 5n * cn / 3
Therefore, we have proved that the given recurrence relation T(n) = T(4n/5) + T(n/5) + cn has a solution of T(n) = (5/3) * n * cn.
In conclusion, under the given recurrence relation and assumptions, the running time is O(n) rather than O(n log n).
To know more about sorting algorithm, refer to the link below:
https://brainly.com/question/13155236#
#SPJ11
Insert ∪ or ∩ to make the following statement true. {8,12,16,18}−∅=∅ Fill in the blank to complete the statement below.
The correct symbol to fill in the blank is ∩. To understand why the correct symbol is ∩, let's break down the statement: {8, 12, 16, 18} - ∅ = ∅
The expression on the left-hand side of the equation is {8, 12, 16, 18} - ∅, which means we are subtracting the empty set (∅) from the set {8, 12, 16, 18}.
When we subtract an empty set from any set, the result is always the original set itself. In this case, the set {8, 12, 16, 18} doesn't change when we subtract the empty set, so the result is still {8, 12, 16, 18}.
On the right-hand side of the equation, we have ∅, which represents the empty set.
Since the left-hand side of the equation is equal to the right-hand side, the correct symbol to fill in the blank to complete the statement is ∩, which denotes intersection. This indicates that the set {8, 12, 16, 18} and the empty set have an intersection resulting in an empty set.
By using the symbol ∩, we can complete the statement as {8, 12, 16, 18} - ∅ = ∅. This indicates that the intersection of the set {8, 12, 16, 18} with the empty set (∅) results in an empty set (∅).
To know more about symbol, visit;
https://brainly.com/question/28748220
#SPJ11
Sketch the level curve of f(x, y) = x² - y² that passes through P = (-2, -1) and draw the gradient vector at P. Draw to scale.
The gradient vector (-4, 2) at P = (-2, -1).
To sketch the level curve of f(x, y) = x² - y² that passes through P = (-2, -1) and draw the gradient vector at P, follow these steps;
Step 1: Find the value of cThe equation of level curve is f(x, y) = c and since the curve passes through P(-2, -1),c = f(-2, -1) = (-2)² - (-1)² = 3.
Step 2: Sketch the level curve of f(x, y) = x² - y² that passes through P = (-2, -1)
To sketch the level curve of f(x, y) = x² - y² that passes through P = (-2, -1), we plot the points that satisfy f(x, y) = 3 on the plane (as seen in the figure).y² = x² - 3.
We can plot this by finding the intercepts, the vertices and the asymptotes.
Step 3: Draw the gradient vector at P
The gradient vector, denoted by ∇f(x, y), at P = (-2, -1) is given by;
∇f(x, y) = (df/dx, df/dy)⇒ (2x, -2y)At P = (-2, -1),∇f(-2, -1) = (2(-2), -2(-1)) = (-4, 2).
Finally, we draw the gradient vector (-4, 2) at P = (-2, -1) as shown in the figure.
To know more about gradient visit:
brainly.com/question/6212480
#SPJ11
At a plant, 30% of all the produced parts are subject to a special electronic inspection. It is known that any produced part which was inspected electronically has no defects with probability 0.90. For a part that was not inspected electronically this probability is only 0.7. A customer receives a part and finds defects in it. Answer the following questions to determine what the probability is that the part went through electronic inspection. Let E represent the event that the part went through electronic inspection and Y represent the part is defective. Write all answers as numbers between 0 and 1. Do not round your answers. P(E C
∩Y)=
To find the probability that the part went through electronic inspection given that it is defective, we can use Bayes' theorem.
Let's break down the information given:
- The probability of a part being inspected electronically is 30% or 0.30 (P(E) = 0.30).
- The probability of a part being defective given that it was inspected electronically is 0.90 (P(Y|E) = 0.90).
- The probability of a part being defective given that it was not inspected electronically is 0.70 (P(Y|E') = 0.70).
We want to find P(E|Y), the probability that the part went through electronic inspection given that it is defective.
Using Bayes' theorem:
P(E|Y) = (P(Y|E) * P(E)) / P(Y)
P(Y) can be calculated using the law of total probability:
P(Y) = P(Y|E) * P(E) + P(Y|E') * P(E')
Substituting the given values:
P(Y) = (0.90 * 0.30) + (0.70 * 0.70)
Now we can substitute the values into the equation for P(E|Y):
P(E|Y) = (0.90 * 0.30) / ((0.90 * 0.30) + (0.70 * 0.70))
Calculating this equation will give you the probability that the part went through electronic inspection given that it is defective. Please note that the specific numerical value cannot be determined without the actual calculations.
To know more about Bayes' theorem visit
https://brainly.com/question/29598596
#SPJ11
A car rental agency currently has 42 cars available, 29 of which have a GPS navigation system. Two cars are selected at random from these 42 cars. Find the probability that both of these cars have GPS navigation systems. Round your answer to four decimal places.
When two cars are selected at random from 42 cars available with a car rental agency, the probability that both of these cars have GPS navigation systems is 0.4714.
The probability of the first car having GPS is 29/42 and the probability of the second car having GPS is 28/41 (since there are now only 28 cars with GPS remaining and 41 total cars remaining). Therefore, the probability of both cars having GPS is:29/42 * 28/41 = 0.3726 (rounded to four decimal places).
That the car rental agency has 42 cars available, 29 of which have a GPS navigation system. And two cars are selected at random from these 42 cars. Now we need to find the probability that both of these cars have GPS navigation systems.
The probability of selecting the first car with a GPS navigation system is 29/42. Since one car has been selected with GPS, the probability of selecting the second car with GPS is 28/41. Now, the probability of selecting both cars with GPS navigation systems is the product of these probabilities:P (both cars have GPS navigation systems) = P (first car has GPS) * P (second car has GPS) = 29/42 * 28/41 = 406 / 861 = 0.4714 (approx.)Therefore, the probability that both of these cars have GPS navigation systems is 0.4714. And it is calculated as follows. Hence, the answer to the given problem is 0.4714.
When two cars are selected at random from 42 cars available with a car rental agency, the probability that both of these cars have GPS navigation systems is 0.4714.
To know more about probability visit
brainly.com/question/31828911
#SPJ11
10. The general solution of dxdy=xy2x3+y3 is: (a) y3=x3lnCx3 (b) y2=x2lnCx2 (c) y3=xlnCx3 (d) y2=x2lnx3+Cx2 (e) None of the above. 11. The general solution of xey/xdxdy=x+yey/x is (a) y=xln(Cx) (b) y=xlnx+Cx (c) y=xln(lnx)+Cx (d) y=xln(lnx+C) (e) None of the above. 12. The general solution of 2ydxdy=2xy2+2x−y2−1 is: (a) y2=ex2−x+C (b) y2=Cex2−x−1 (c) y2=Cex−1−1 (d) y2=Cex2−x+C (e) None of the above.
10.(e) None of the above.
11. (e) None of the above.
12. (e) None of the above.
For the given differential equations:
dx/dy = x(y^2/x^3 + y^3)
To solve this equation, we can rewrite it as x^3 dx = (xy^2 + y^3) dy and integrate both sides. The correct option is (e) None of the above, as none of the given options match the general solution of the equation.
(xey/x) dx + (-1) dy = 0
Rearranging the equation, we get dy/dx = -xey/(xey + x^2). This is a separable equation, and by separating variables and integrating, we can find the general solution. The correct option is (e) None of the above, as none of the given options match the general solution of the equation.
2y dy = (2xy^2 + 2x - y^2 - 1) dx
This is a linear equation, and we can solve it by separating variables and integrating. The correct option is (e) None of the above, as none of the given options match the general solution of the equation.
Learn more about Differential equations here
https://brainly.com/question/32645495
#SPJ11
Use separation of variables to find the solution to the following equations. y' + 3y(y+1) sin 2x = 0, y(0) = 1 y' = ex+2y, y(0) = 1
Let's solve each equation using separation of variables.
1. Equation: y' + 3y(y+1) sin(2x) = 0
To solve this equation, we'll separate the variables and integrate:
dy / (y(y+1)) = -3 sin(2x) dx
First, let's integrate the left side:
∫ dy / (y(y+1)) = ∫ -3 sin(2x) dx
To integrate the left side, we can use partial fractions. Let's express the integrand as a sum of partial fractions:
1 / (y(y+1)) = A / y + B / (y+1)
Multiplying through by y(y+1), we get:
1 = A(y+1) + By
Expanding and equating coefficients, we have:
A + B = 0 => B = -A
A + A(y+1) = 1 => 2A + Ay = 1 => A(2+y) = 1
From here, we can take A = 1 and B = -1.
Now, we can rewrite the integral as:
∫ (1/y - 1/(y+1)) dy = ∫ -3 sin(2x) dx
Integrating each term separately:
∫ (1/y - 1/(y+1)) dy = -3 ∫ sin(2x) dx
ln|y| - ln|y+1| = -3(-1/2) cos(2x) + C1
ln|y / (y+1)| = (3/2) cos(2x) + C1
Now, we'll exponentiate both sides:
|y / (y+1)| = e^((3/2) cos(2x) + C1)
Since we have an absolute value, we'll consider both positive and negative cases:
1) y / (y+1) = e^((3/2) cos(2x) + C1)
2) y / (y+1) = -e^((3/2) cos(2x) + C1)
Solving for y in each case:
1) y = (e^((3/2) cos(2x) + C1)) / (1 - e^((3/2) cos(2x) + C1))
2) y = (-e^((3/2) cos(2x) + C1)) / (1 + e^((3/2) cos(2x) + C1))
These are the solutions to the given differential equation.
2. Equation: y' = e^x + 2y
Let's separate the variables and integrate:
dy / (e^x + 2y) = dx
Now, let's integrate both sides:
∫ dy / (e^x + 2y) = ∫ dx
To integrate the left side, we can use the substitution method. Let u = e^x + 2y, then du = e^x dx.
Learn more about Partial Fraction here :
https://brainly.com/question/30763571
#SPJ11
what is the sum of the first 33 terms of the arithmetic series -9+(-5)+(-1)
The sum of the first 33 terms of the arithmetic series -9, -5, -1 can be found using the formula for the sum of an arithmetic series. The sum is equal to (33/2) * (-9 + (-1)) = -594.
To find the sum of the first 33 terms of the arithmetic series -9, -5, -1, we can use the formula for the sum of an arithmetic series:
Sum = (n/2) * (2a + (n-1)d)
In this case, the first term (a) is -9, the common difference (d) is (-5 - (-9)) = 4, and the number of terms (n) is 33.
Plugging these values into the formula, we get:
Sum = (33/2) * (2(-9) + (33-1)4)
= (33/2) * (-18 + 32)
= (33/2) * 14
= 231 * 14
= -594
Therefore, the sum of the first 33 terms of the given arithmetic series is -594.
To know more about arithmetic series refer here:
https://brainly.com/question/30214265?referrer=searchResults
#SPJ11
Given the polynomial function p(x)=12+4x-3x^(2)-x^(3), Find the leading coefficient
The leading coefficient of a polynomial is the coefficient of the term with the highest degree. In this polynomial function p(x) = 12 + 4x - 3x² - x³, the leading coefficient is -1.
The degree of a polynomial is the highest power of the variable present in the polynomial. In this case, the highest power of x is 3, so the degree of the polynomial is 3. The leading term is the term with the highest degree, which in this case is -x³. The leading coefficient is the coefficient of the leading term, which is -1. Therefore, the leading coefficient of the polynomial function p(x) = 12 + 4x - 3x² - x³ is -1.
In general, the leading coefficient of a polynomial function is important because it affects the behavior of the function as x approaches infinity or negative infinity. If the leading coefficient is positive, the function will increase without bound as x approaches infinity and decrease without bound as x approaches negative infinity. If the leading coefficient is negative, the function will decrease without bound as x approaches infinity and increase without bound as x approaches negative infinity.
To know more about leading coefficient refer here:
https://brainly.com/question/29116840
#SPJ11
Example 2: Assume the demand for widgets is linear. Suppose we know the demand is q = 100 widgets when the price is p= $3 per widget but the demand DECREASES by 20 widgets for EVERY $1 increase in price.
(a) Find an expression for the demand function. (Hint: This means write p = D(q) = mq + b.)
The expression for the demand function is D(q) = -20q + 700.
We are given that the demand for widgets is linear and that the demand decreases by 20 widgets for every $1 increase in price. We are also given that when the price is $3 per widget, the demand is 100 widgets.
To find the equation of the demand function, we can use the slope-intercept form of a linear equation, y = mx + b, where y represents the dependent variable (demand), x represents the independent variable (price), m represents the slope, and b represents the y-intercept.
From the given information, we know that the demand decreases by 20 widgets for every $1 increase in price, which means the slope of the demand function is -20. We also know that when the price is $3, the demand is 100 widgets.
Substituting these values into the slope-intercept form, we have:
100 = -20(3) + b
Simplifying the equation, we find:
100 = -60 + b
By solving for b, we get:
b = 160
Therefore, the demand function is D(q) = -20q + 700, where q represents the quantity (demand) of widgets.
To learn more about function click here
brainly.com/question/30721594
#SPJ11