Sketch for PON network design for 64 householdsAll households are assumed to have the longest drop fiber in the worst-case scenario. So, the feeder fiber length would be 12 km (given) and the drop fiber length would be 4 km (given).
Hence, the total length for this network design would be: 64 households × 4 km per household = 256 km. The PON network design sketch is as follows:b. Bit rate per householdThe bit rate per household is 10 Gb/s (given).c. Link power budget calculations and choice of receiverFor link power budget calculations, we need to know the total link loss, which is the sum of the losses in the feeder fiber, splitter(s), and the drop fiber.
The table below summarizes the loss calculation for 1:32 and 1:2 splitter(s) used for this network design:From the above table, we can calculate the total link loss for the network design. For 1:32 splitters:Total loss = Feeder loss + (Splitter loss × Number of splitters) + (Drop loss × Number of households) + Connector loss at receiverTotal loss = 15 + (15 × 2) + (15 × 64) + 1Total loss = 1006 dBF.
To know more about network visit:
https://brainly.com/question/29350844
#SPJ11
a single cylinder IC engine generates an output power of 10KW when operating at 2000rpm. the engine consumes 2cc/s of petrol and had a compression ratio of 10. the engine is capable of converting 40% of combustion heat energy into power stroke. the volume of charge inside the cylinder at the end of compression stroke is 0.2 litre. if the engine is designed such that the power is developed for every two revolution of crankshaft in a given cycle of operation,
(i) what will be brake torque,
(ii) what is mean effective pressure,
(iii) what is brake specific fuel consumption in kg/kWh? assume calorific value of fuel ad 22000 kj/kg and specific gravity of fuel as 0.7 and density of water as 1000kg/m cube
Answer:
Explanation:
To calculate the brake torque, mean effective pressure, and brake specific fuel consumption, we need to use the given information and apply relevant formulas. Let's calculate each parameter step by step:
Given:
Output power (P) = 10 kW
Engine speed (N) = 2000 rpm
Fuel consumption rate (Vdot) = 2 cc/s
Compression ratio (r) = 10
Combustion heat energy to power conversion efficiency (η) = 40%
Volume of charge at the end of compression stroke (Vc) = 0.2 liters
Calorific value of fuel (CV) = 22000 kJ/kg
Specific gravity of fuel (SG) = 0.7
Density of water (ρw) = 1000 kg/m³
(i) Brake Torque (Tb):
Brake power (Pb) = P
Pb = Tb * 2π * N / 60 (60 is used to convert rpm to seconds)
Tb = Pb * 60 / (2π * N)
Substituting the given values:
Tb = (10 kW * 60) / (2π * 2000) = 0.954 kNm
(ii) Mean Effective Pressure (MEP):
MEP = (P * 2 * π * N) / (4 * Vc * r * η)
Note: The factor 2 is used because the power is developed for every two revolutions of the crankshaft in a given cycle.
Substituting the given values:
MEP = (10 kW * 2 * π * 2000) / (4 * 0.2 liters * 10 * 0.4)
MEP = 49.348 kPa
(iii) Brake Specific Fuel Consumption (BSFC):
BSFC = (Vdot / Pb) * 3600
Note: The factor 3600 is used to convert seconds to hours.
First, we need to convert the fuel consumption rate from cc/s to liters/hour:
Vdot_liters_hour = Vdot * 3600 / 1000
Substituting the given values:
BSFC = (2 liters/hour / 10 kW) * 3600
BSFC = 0.72 kg/kWh
Therefore, the brake torque is approximately 0.954 kNm, the mean effective pressure is approximately 49.348 kPa, and the brake specific fuel consumption is approximately 0.72 kg/kWh.
know more about parameter: brainly.com/question/29911057
#SPJ11
Answer:
The brake torque is approximately 0.954 kNm, the mean effective pressure is approximately 49.348 kPa, and the brake specific fuel consumption is approximately 0.72 kg/kWh.
Explanation:
To calculate the brake torque, mean effective pressure, and brake specific fuel consumption, we need to use the given information and apply relevant formulas. Let's calculate each parameter step by step:
Given:
Output power (P) = 10 kW
Engine speed (N) = 2000 rpm
Fuel consumption rate (Vdot) = 2 cc/s
Compression ratio (r) = 10
Combustion heat energy to power conversion efficiency (η) = 40%
Volume of charge at the end of compression stroke (Vc) = 0.2 liters
Calorific value of fuel (CV) = 22000 kJ/kg
Specific gravity of fuel (SG) = 0.7
Density of water (ρw) = 1000 kg/m³
(i) Brake Torque (Tb):
Brake power (Pb) = P
Pb = Tb * 2π * N / 60 (60 is used to convert rpm to seconds)
Tb = Pb * 60 / (2π * N)
Substituting the given values:
Tb = (10 kW * 60) / (2π * 2000) = 0.954 kNm
(ii) Mean Effective Pressure (MEP):
MEP = (P * 2 * π * N) / (4 * Vc * r * η)
Note: The factor 2 is used because the power is developed for every two revolutions of the crankshaft in a given cycle.
Substituting the given values:
MEP = (10 kW * 2 * π * 2000) / (4 * 0.2 liters * 10 * 0.4)
MEP = 49.348 kPa
(iii) Brake Specific Fuel Consumption (BSFC):
BSFC = (Vdot / Pb) * 3600
Note: The factor 3600 is used to convert seconds to hours.
First, we need to convert the fuel consumption rate from cc/s to liters/hour:
Vdot_liters_hour = Vdot * 3600 / 1000
Substituting the given values:
BSFC = (2 liters/hour / 10 kW) * 3600
BSFC = 0.72 kg/kWh
know more about parameter: brainly.com/question/29911057
#SPJ11
A machine of mass 100 kg sits on a floor that moves vertically with amplitude of 5 cm at frequency of 400 rpm. Undamped isolator / vibration absorber are designed for this machine to fit different transmissibility requirement. To achieve 80% vibration isolation, the machine is to be mounted on an undamped isolator. Please answer (a)-(d). (a) Calculate the frequency ratio and fill the value in the following blank. (b) Determine the natural frequency (rad/s) of this system. (c) Design the undamped vibration isolator (find its spring stiffness in N/m). (d) Find out the transmitted displacement (m) of the machine with undamped isolator. To achieve 85% vibration isolation, the machine is to be mounted on a damped shock absorber with a damping ratio of 0.2. Please answer (e)-(h). (e) Calculate the frequency ratio and fill the value in the following blank. (f) Determine the natural frequency (rad/s) of this system. (g) Determine the stiffness (N/m) of the vibration absorber. (h) Determine the damping constant (N.s/m) of the vibration absorber.
Given, mass of machine, m = 100 kgAmplitude, A = 5 cm = 0.05 m Frequency, f = 400 rpm= 400/60 Hz = 20/3 HzPercentage of vibration isolation, η = 80% = 0.8
(a) Frequency ratio,ωn= 2πfnωn = (2π × 20/3) = 41.89 rad/s(b) Natural frequency,ωd=ωn(1−η2)ωd=ωn(1−η2)ωd= 41.89 (1-0.82)ωd= 21.07 rad/s(c) Spring stiffness, k = mωd2k = mωd2= 100 × (21.07)2k = 4.45 × 10^4 N/m(d) Transmitted displacement, x = Aηx = Aη= 0.05 × 0.8x = 0.04 mPercentage of vibration isolation, η = 85% = 0.85(e) Frequency ratio,ωn= 2πfnωn= (2π × 20/3) = 41.89 rad/s(f) Natural frequency,ωd=ωn(1−η2)ωd=ωn(1−η2)ωd= 41.89 (1-0.852)ωd= 33.60 rad/s(g) Stiffness of vibration absorber,k= mωd2 (1−η2)k= mωd2 (1−η2)= 100 × (33.60)2 / [1 - (0.85)2]k = 3.32 × 105 N/m(h) Damping constant, c = 2ηωdmc= 2ηωdm= 2 × 0.2 × 33.60 × 100c = 1344 N.s/mTherefore, the main answer for the given question is as follows
:(a) Frequency ratio, ωn = 41.89 rad/s(b) Natural frequency, ωd = 21.07 rad/s(c) Spring stiffness, k = 4.45 × 104 N/m(d) Transmitted displacement, x = 0.04 m(e) Frequency ratio, ωn = 41.89 rad/s(f) Natural frequency, ωd = 33.60 rad/s(g) Stiffness of vibration absorber, k = 3.32 × 105 N/m(h) Damping constant, c = 1344 N.s/m
Learn more about frequency here :
brainly.com/question/4290297
#SPJ11
QUESTION 6 12 points Save Answer A compressor used to deliver 2. 10 kg/min of high pressure air requires 8.204 kW to operate. At the compressor inlet, the air is at 100 kPa and 26.85°C. The air exits the compressor at 607 kPa and 256.85°C. Heat transfer to the surroundings occurs where the outer surface (boundary) temperature is at 348.5°C. Determine the rate of entropy production (kW/K) within the compressor if the air is modeled as an ideal gas with variable specific heats. Note: Give your answer to six decimal places.
The rate of entropy production (kW/K) within the compressor if the air is modeled as an ideal gas with variable specific heats is -0.570737 kW/K.
The entropy production rate of a compressor (or any other thermodynamic device) can be calculated using the following equation,
Entropy production rate (kW/K) = (Compressor Power — Heat Transfer) / (Entropy Change in the Fluid).
For an ideal gas with variable specific heats, the entropy change can be calculated as,
Entropy Change in the Fluid = m (cp ln(T₂/T₁) — R ln(P₂/P₁))
Where,
m = mass flow rate of gas in kg/s;
cp = specific heat capacity of gas in kJ/kg K;
T₁ = Inlet temperature of the gas in K;
T₂ = Exit temperature of the gas in K;
R = Gas constant in kJ/kg K; and,
P₁ = Inlet pressure of the gas in kPa; and
P₂ = Exit pressure of the gas in kPa.
Therefore, the rate of entropy production for the compressor in the given problem can be calculated as,
Entropy production rate (kW/K) = (8.204 kW - Heat Transfer) / [10 kg/min (cp ln(256.85/26.85) - R ln(607/100))]
Where,
cp = 1.013 kJ/kg K,
R = 0.287 kJ/kg K.
Therefore,
Entropy production rate (kW/K) = (8.204 kW - Heat Transfer) / 469.79
Heat Transfer = m (cp (T₂ - T₁)) where,
m = 10 kg/min and
T2 = 348.5°C = 621.65 K.
Heat Transfer = 10 kg/min (1.013 kJ/kg K) (621.65 K - 256.85 K).
Heat Transfer = 285.354 kW
Entropy production rate (kW/K) = (8.204 kW - 285.354 kW) / 469.79 = -0.570737 kW/K (six decimal places).
Therefore, the rate of entropy production (kW/K) within the compressor if the air is modeled as an ideal gas with variable specific heats is -0.570737 kW/K.
Learn more about the entropy production here:
https://brainly.com/question/31966522.
#SPJ4
As an environmental consultant, you have been assigned by your client to design effective wastewater treatment for 500 dairy cows. -Calculate wastewater produce (m³/day), if 378 L/cow is generated every day.
-Calculate the suitable dimension for anaerobic pond, facultative pond and aerobic pond if safety factor 1.2 (20%). -Sketch the design of the ponds as per suggested in series or parallel and label properly.
As an environmental consultant, the effective wastewater treatment designed for 500 dairy cows is calculated as follows.
Calculation of wastewater produced (m³/day)Daily amount of wastewater produced by 1 cow = 378 L/cow1 L = 0.001 m³Amount of wastewater produced by 1 cow = 0.378 m³/day. Amount of wastewater produced by 500 cows = 0.378 m³/day x 500 cows Amount of wastewater produced by 500 cows = 189 m³/day.
Calculation of the suitable dimension for anaerobic pond, facultative pond, and aerobic pond. The total volume of the ponds is based on the organic loading rate (OLR), hydraulic retention time (HRT), and volumetric loading rate (VLR). For instance, if the OLR is 0.25-0.4 kg BOD/m³/day, HRT is 10-15 days, and VLR is 20-40 kg BOD/ha/day.
To know more about environmental visit:
https://brainly.com/question/21976584
#SPJ11
A huge redevelopment project on heritage museum was undertaken by a construction company Z. Through close site supervision, signs of sluggish progress and under- performance in the three sites were detected as soon as they began to emerge. State ANY SIX ways that the construction company Z can prevent any slippage in supervision while ensuring that the construction works are progressing on schedule and meet the quality requirements as stipulated in the contracts
In a huge redevelopment project undertaken by a construction company Z on a heritage museum, some signs of sluggish progress and underperformance were detected during the early stages of the project.
There are a lot of ways in which the construction company can prevent slippage in supervision while ensuring that the project is progressing on schedule and the quality requirements of the contract are met. The following are six such ways:It is important to keep a check on the workforce employed on the construction site.
It is necessary to ensure that the laborers and workers are qualified and trained to handle the tools and materials used in the construction process.The construction company can set up benchmarks and progress goals at different stages of the project. These goals can be set according to the project timeline. It is important to monitor the progress regularly and make necessary changes and adjustments to ensure that the project meets the deadlines.
To know more about redevelopment visit:
https://brainly.com/question/30407297
#SPJ11
A centrifugal flow air compressor has a total temperature rise across the stage of 180 K. There is no swirl at inlet and the impeller has radial outlet blading. The impeller outlet diameter is 45 mm. Assuming no slip, calculate the rotational speed of the compressor impeller.
In a centrifugal flow air compressor, there is a total temperature rise across the stage of 180K. Therefore, it is necessary to calculate the rotational speed of the compressor impeller, assuming no slip. Impeller outlet velocity: where, $N$ is the speed of rotation in rpm.
Where, $b$ is blade angle at outlet in radian. Delta T_{total} = T_{02} - T_{01}$$ where, $T_{02}$ is stagnation temperature at the outlet, and $T_{01}$ is stagnation temperature at the inlet. The stagnation temperature at the inlet and outlet of a compressor stage can be assumed to be constant.
Thus, for a stage of a compressor: is the specific heat at constant pressure. Solving the above equation for $u_2$, we get:$$u_2 = \sqrt{2C_p\Delta T_{total}}$$ By substituting the value of $u_2$ in the equation derived earlier, we can write:$$\sqrt{2C_p\Delta T_{total}} = \frac{\pi \times 0.045 \times N}{60} - \frac{\pi \times 0.045 \times bN}{60}$$ By simplifying the above equation,
To know more about compressor visit:
https://brainly.com/question/31672001
#SPJ11
QUESTION 1 Which of the followings is true? For the generic FM carrier signal, the frequency deviation is defined as a function of the A. message because the instantaneous frequency is a function of the message frequency. B. message because it resembles the same principle of PM. C. message frequency. D. message. QUESTION 2 Which of the followings is true? The concept of "power efficiency may be useful for A. linear modulation. B. non-linear modulation. C. multiplexing. D. convoluted multiplexing. QUESTION 3 Which of the followings is true? A. Adding a pair of complex conjugates gives double the real part. B. Electrical components are typically not deployed under wireless systems as transmissions are always through the air channel. C. Adding a pair of complex conjugates gives the real part. D. Complex conjugating is a process of keeping the real part and changing the complex part. QUESTION 4 Which of the followings is true? A. For a ratio of two complex numbers, the Cartesian coordinates are typically useful. B. For a given series resister-capacitor circuit, the capacitor voltage is typically computed using its across current. C. For a given series resistor-capacitor circuit, the capacitor current is typically computed using its across voltage. D. For a ratio of two complex numbers, the polar coordinates are typically not useful.
For the generic FM carrier signal, the frequency deviation is defined as a function of the message frequency. The instantaneous frequency in a frequency modulation (FM) system is a function of the message frequency.
The frequency deviation is directly proportional to the message signal in FM. The frequency deviation is directly proportional to the amplitude of the message signal in phase modulation (PM). The instantaneous frequency of an FM signal is directly proportional to the amplitude of the modulating signal.
As a result, the frequency deviation is proportional to the message signal's amplitude
The concept of "power efficiency" may be useful for linear modulation. The power efficiency of a linear modulator refers to the ratio of the average power of the modulated signal to the average power of the modulating signal. The efficiency of power in a linear modulation system is given by the relationship Pout/Pin, where Pout is the power of the modulated signal, and Pin is the power of the modulating signal.
Adding a pair of complex conjugates gives the real part. Complex conjugation is a mathematical operation that involves keeping the real part and changing the sign of the complex part of a complex number. When two complex conjugates are added, the real part of the resulting sum is twice the real part of either of the two complex numbers, and the imaginary parts cancel each other out.
For a given series resistor-capacitor circuit, the capacitor voltage is typically computed using its across voltage. In a given series resistor-capacitor circuit, the voltage across the capacitor can be computed using the circuit's current and impedance. In contrast, the capacitor's current is computed using the voltage across it and the circuit's impedance.
The voltage across the capacitor in a series RC circuit is related to the current through the resistor and capacitor by the differential equation Vc(t)/R = C dVc(t)/dt.
To know more about message visit;
brainly.com/question/28267760
#SPJ11
The manufacturer of a component that will be subjected to fatigue from -0 MPa to 50 MPa, specifies that it must be changed when it has been detected that the crack has advanced up to 40% of its critical value. The manufacturing process of the component leaves cracks on the surface of 0.1mm. The material has the following properties: KIC = 70MPam1/2 and crack growth is characterized by n=3.1 and C= 10E-11. Assume f=1.12.
How many life cycles did the component have left after it had been removed as directed by the manufacturer?
Indicate your answer without decimals.
Fatigue is the weakening of a material caused by cyclic loading, resulting in the formation and propagation of cracks.
Fatigue fracture failure is a type of failure that is caused by cyclic loading, which is the progressive growth of an initial crack until it reaches a critical size and a fracture occurs. In this question, we are given the following information.
The manufacturing process of the component leaves cracks on the surface of 0.1mm.The material has the following properties: [tex]KIC = 70 MPam1/2[/tex], and crack growth is characterized by n = 3.1 and C = 10E-11. Assume f = 1.12.Calculations:In this question.
To know more about propagation visit:
https://brainly.com/question/33454861
#SPJ11
Each cell of an automobile 12 volt battery can produce about volts. A) 4.2 B) 4 C) 1.2 D) 2.1
The correct answer is D) 2.1 volts. Each cell of an automobile 12-volt battery typically produces around 2.1 volts.
Automobile batteries are composed of six individual cells, each generating approximately 2.1 volts. When these cells are connected in series, their voltages add up to form the total voltage of the battery. Therefore, a fully charged 12-volt automobile battery consists of six cells, each producing 2.1 volts, resulting in a total voltage of 12.6 volts (2.1 volts x 6 cells).
This voltage level is suitable for powering various electrical components and starting the engine of a typical automobile. It is important to note that the actual voltage may vary slightly depending on factors such as the battery's state of charge and temperature.
learn more about battery here : brainly.com/question/19225854
#SPJ11
A cylindrical rod of copper is received at a factory with no amount of cold work. This copper, originally 10 mm in diameter, is to be cold worked by drawing. The circular cross section will be maintained during deformation. After cold work, a yield strength in excess of 200 MPa and a ductility of at least 10 %EL (ductility) are desired. Furthermore, the final diameter must be 8 mm. Explain how this may be accomplished. Provide detailed procedures and calculations.
The percentage reduction in cross-sectional area due to cold work is: 35.88%. The percentage reduction determines the increase in strength and hardness that the copper rod will experience after cold work. A greater percentage reduction will result in a stronger and harder copper rod, but it will also reduce its ductility.
The deformation of metal's microstructure by using mechanical forces is known as cold working. When metals are cold worked, their properties such as yield strength and hardness improve while their ductility decreases.
The given cylindrical rod of copper is to be cold worked by drawing. The circular cross-section of the rod will be preserved throughout the deformation.
A yield strength of more than 200 MPa and a ductility of at least 10 % EL are desired after cold work, as well as a final diameter of 8 mm.The drawing method is used to cold work the rod. During this process, a metal rod is pulled through a die's orifice, which decreases its diameter.
As the rod is drawn through the die, its length and cross-sectional area decrease. A single reduction in the diameter of the copper rod from 10 mm to 8 mm can be accomplished in a single pass. The cross-sectional area of the copper rod before and after cold work can be determined using the following equation:
A = π r² Where A is the cross-sectional area, and r is the radius of the copper rod.
The cross-sectional area of the rod before cold work is given as:
A = π (diameter of copper rod before cold work/2)² = π (10 mm/2)² = 78.54 mm²
The cross-sectional area of the rod after cold work is given as:
A = π (diameter of copper rod after cold work/2)² = π (8 mm/2)² = 50.27 mm²
Percentage Reduction = ((Initial Area - Final Area)/Initial Area) x 100%
Therefore, the percentage reduction in cross-sectional area due to cold work is:
(78.54 - 50.27)/78.54 x 100 = 35.88%
The degree of deformation or percentage reduction can be calculated using the percentage reduction in cross-sectional area.
The percentage reduction determines the increase in strength and hardness that the copper rod will experience after cold work. A greater percentage reduction will result in a stronger and harder copper rod, but it will also reduce its ductility.
In order to achieve a yield strength of more than 200 MPa, the degree of deformation required can be determined using empirical equations and table values.
For more such questions on cross-sectional area, click on:
https://brainly.com/question/31248718
#SPJ8
An insulated, rigid tank whose volume is 0.5 m³ is connected by a valve to a large vesset holding steam at 40 bar, 400°C. The tank is initially evacuated. The valve is opened only as long as required to fill the tank with steam to a pressure of 30 bar Determine the final temperature of the steams in the tank, in °C, and the final mass of the steam in the tank, in kg
The final temperature of steam in the tank is 375/V1°C, and the final mass of steam in the tank is 1041.26 V1 kg.
The given problem is related to the thermodynamics of a closed system. Here, we are given an insulated, rigid tank whose volume is 0.5 m³, and it is connected to a large vessel holding steam at 40 bar and 400°C. The tank is initially evacuated. The valve is opened only as long as required to fill the tank with steam to a pressure of 30 bar. Our objective is to determine the final temperature of the steam in the tank and the final mass of the steam in the tank. We will use the following formula to solve the problem:
PV = mRT
where P is the pressure, V is the volume, m is the mass, R is the gas constant, and T is the temperature.
The gas constant R = 0.287 kJ/kg K for dry air. Here, we assume steam to behave as an ideal gas because it is at high temperature and pressure. Since the tank is initially evacuated, the initial pressure and temperature of the tank are 0 bar and 0°C, respectively. The final pressure of the steam in the tank is 30 bar. Let's find the final temperature of the steam in the tank as follows:
P1V1/T1 = P2V2/T2
whereP1 = 40 bar, V1 = ?, T1 = 400°CP2 = 30 bar, V2 = 0.5 m³, T2 = ?
Rearranging the above formula, we get:
T2 = P2V2T1/P1V1T2 = 30 × 0.5 × 400/(40 × V1)
T2 = 375/V1
The final temperature of steam in the tank is 375/V1°C.
Now let's find the final mass of the steam in the tank as follows:
m = PV/RT
where P = 30 bar, V = 0.5 m³, T = 375/V1R = 0.287 kJ/kg K for dry air
We know that the mass of steam is equal to the mass of water in the tank since all the water in the tank has converted into steam. The density of water at 30 bar is 30.56 kg/m³. Let's find the volume of water required to fill the tank as follows:
V_water = m_water/density = 0.5/30.56 = 0.0164 m³
where m_water is the mass of water required to fill the tank. Since all the water in the tank has converted into steam, the final mass of steam in the tank is equal to m_water. Let's find the final mass of steam in the tank as follows:
m = PV/RT = 30 × 10^5 × 0.5/(0.287 × 375/V1) = 1041.26 V1 kg
The final mass of steam in the tank is 1041.26 V1 kg.
Therefore, the final temperature of steam in the tank is 375/V1°C, and the final mass of steam in the tank is 1041.26 V1 kg.
Learn more about thermodynamics visit:
brainly.com/question/1368306
#SPJ11
A particle is moving along a straight line through a fluid medium such that its speed is measured as v = (80 m/s, where t is in seconds. If it is released from rest at determine its positions and acceleration when 2 s.
To determine the position and acceleration of the particle at t = 2 s, we need to integrate the velocity function with respect to time.
Given:
Velocity function: v = 80 m/s
Initial condition: v₀ = 0 (particle released from rest)
To find the position function, we integrate the velocity function:
x(t) = ∫v(t) dt
= ∫(80) dt
= 80t + C
To find the value of the constant C, we use the initial condition x₀ = 0 (particle released from rest):
x₀ = 80(0) + C
C = 0
So, the position function becomes:
x(t) = 80t
To find the acceleration, we differentiate the velocity function with respect to time:
a(t) = d(v(t))/dt
= d(80)/dt
= 0
Therefore, the position of the particle at t = 2 s is x(2) = 80(2) = 160 m, and the acceleration at t = 2 s is a(2) = 0 m/s².
To know more about acceleration visit:-
brainly.com/question/12550364
#SPJ11
Example 20kw, 250V, 1000rpm shunt de motor how armature and field. resistances of 0,22 and 2402. When the HOA rated current at motor takes raded conditions. a) The rated input power, rated output power, and efficiency. Generated vo Hagl <) Induced torque. d) Total resistance arent to current. of 1,2 times Ox. 1200rpm. to limit the starting the full load
Example 20kw, 250V, 1000rpm shunt de motor how armature and field. resistances of 0,22 and 2402. When the HOA rated current at motor takes raded conditions. a) The rated input power, rated output power, and efficiency. Generated vo Hagl <) Induced torque. d) Total resistance arent to current. of 1,2 times Ox. 1200rpm. to limit the starting the full load
(a) The rated input power is 20 kW, the rated output power is 20 kW, and the efficiency is 100%.
(b) The generated voltage is 250 V.
(c) The induced torque depends on the motor's characteristics and operating conditions.
(d) The total resistance is not specified in the given information.
(a) The rated input power of the motor is given as 20 kW, which represents the electrical power supplied to the motor. Since the motor is a shunt DC motor, the rated output power is also 20 kW, as it is equal to the input power. Efficiency is calculated as the ratio of output power to input power, so in this case, the efficiency is 100%.
(b) The generated voltage of the motor is given as 250 V. This voltage is generated by the interaction of the magnetic field produced by the field winding and the rotational movement of the armature.
(c) The induced torque in the motor depends on various factors such as the armature current, magnetic field strength, and motor characteristics. The specific information regarding the induced torque is not provided in the given question.
(d) The total resistance mentioned in the question is not specified. It is important to note that the total resistance of a motor includes both the armature resistance and the field resistance. Without the given values for the total resistance or additional information, we cannot determine the relationship between resistance and current.
Learn more about power
brainly.com/question/29575208
#SPJ11
Two synchronous generators need to be connected in parallel to supply a load of 10 MW. The first generator supplies three times the amount of the second generator. If the load is supplied at 50 Hz and both generators have a power drooping slope of 1.25 MW per Hz. a. (4) Determine the set-point frequency of the first generator Determine the set-point frequency of the second generator.
In this problem, the load of 10 MW is to be supplied at a of 50 Hz. Two synchronous generators need to be connected in parallel to supply this load.
Let's assume the rating of the second generator as G2. Then the rating of the first generator, G1 = 3G2.From the problem statement, we know that the power drooping slope is 1.25 MW/Hz. The frequency decreases by 1 Hz when the load increases by 1.25 MW. At the set-point frequency, the generators will share the load equally.
Let's assume that the frequency of G1 is f1 and the frequency of G2 is f2. Therefore, the set-point frequency of the first generator (G1) is 53.33 Hz and that of the second generator (G2) is 51.11 Hz.
To know more about synchronous visit:
https://brainly.com/question/27189278
#SPJ11
If the normalization values per person per year for the US in the year 2008 for each impact category is shown in the table below. Calculate the externally normalized impacts of each of the four refrigerators with this normalization data.
Normalization is the process of developing a standardized way of comparing different environmental impacts to better comprehend the actual significance of each.
This is accomplished by categorizing and establishing standards for a variety of environmental impacts so that they may be more easily compared to one another.
The normalization values per person per year for the US in the year 2008 for each impact category are provided in the table.
The following is a list of externally normalized impacts for each of the four refrigerators based on this normalization data:
We need to take the sum of the product of the normalization values and the value of each category of the impact for every refrigerator.
The results are listed below:
For refrigerator A: 4.3*100 + 2.2*150 + 2.7*200 + 5.2*80 = 430 + 330 + 540 + 416 = 1716.
For refrigerator B: 4.3*130 + 2.2*140 + 2.7*210 + 5.2*70 = 559 + 308 + 567 + 364 = 1798.
For refrigerator C: 4.3*110 + 2.2*130 + 2.7*190 + 5.2*100 = 473 + 286 + 513 + 520 = 1792.
For refrigerator D: 4.3*100 + 2.2*160 + 2.7*180 + 5.2*90 = 430 + 352 + 486 + 468 = 1736.
Thus, the externally normalized impacts of each of the four refrigerators are as follows:
Refrigerator A: 1716 Refrigerator B: 1798 Refrigerator C: 1792 Refrigerator D: 1736.
To know more about Normalization visit:
https://brainly.com/question/31038656
#SPJ11
1. The adiabatic turbine of a gas turbine engine operates at steady state. a) Working from first principles, using an appropriate property diagram and explaining each stage in the derivation, show that the power output is given by: W = mc₂n, T. (1-(1/r₂Y₁-1) P where m is the mass flowrate of a (perfect) gas through the turbine; c, and y are the specific heat at constant pressure and ratio of specific heats of that gas; ns, and are the turbine isentropic efficiency and expansion pressure ratio, respectively; Te is the turbine entry temperature. Gas velocity may be assumed to be low throughout. Assume universal gas constant R = 8.3145 J.K-1.mol-¹ [15 Marks] b) For a turbine entry temperature of 1500 K, an isentropic efficiency of 85 % and an expansion pressure ratio of 8, estimate the turbine exit temperature if the gas has a mean molar mass (M) of 28.6 kg/kmol and a mean specific heat at constant pressure of 1.23 kJ/kgK. [10 Marks]
The equation will involve parameters such as mass flow rate, specific heat at constant pressure, ratio of specific heats, turbine isentropic efficiency, expansion pressure ratio, and turbine entry temperature.
a) To derive the power output equation for the adiabatic turbine, we start by considering the first law of thermodynamics applied to a control volume around the turbine. By assuming steady state and adiabatic conditions, we can simplify the equation and express the work output (W) as a function of the given parameters. This derivation can be done using an appropriate property diagram, such as the T-s diagram.
Each stage in the derivation involves manipulating the equation, substituting appropriate values, and applying thermodynamic principles. The specific heat at constant pressure (cₚ) and the ratio of specific heats (γ) are properties of the gas, while the isentropic efficiency (ηs) and expansion pressure ratio (r₂) represent the performance characteristics of the turbine. The turbine entry temperature (Te) is the initial temperature of the gas entering the turbine.
b) Using the derived power output equation and the given values of turbine entry temperature (Te), isentropic efficiency (ηs), expansion pressure ratio (r₂), molar mass (M), and specific heat at constant pressure (cₚ), we can substitute these values to calculate the turbine exit temperature. The calculation involves manipulating the equation algebraically and using the given values to obtain the desired result.
By evaluating the turbine exit temperature, we can assess the performance of the turbine under the given conditions and understand the thermodynamic behavior of the gas as it passes through the turbine stages.
Learn more about isentropic efficiency here:
https://brainly.com/question/32571811
#SPJ11
true false
If the thickness t≤10/D,it is called thin walled vessels.
The statement that "If the thickness t ≤ 10/D, it is called thin-walled vessels" is True. When designing a pressure vessel, engineers have to specify the wall thickness to ensure that the stresses in the wall do not exceed the allowable stress of the material used.
Thin-walled vessels are generally used to store gases or liquids under high pressure. The most commonly used thin-walled vessels are pipes and tubes, boilers, pressure vessels, and storage tanks. These types of vessels are used in various industries, such as the chemical, pharmaceutical, and petrochemical industries.
Thin-walled vessels have many advantages over thick-walled vessels. For instance, they require less material, which makes them less expensive. Additionally, thin-walled vessels have lower thermal inertia, which means that they can heat up or cool down quickly. However, there are also disadvantages to using thin-walled vessels. They can be more prone to buckling, and they are less resistant to corrosion than thick-walled vessels.
To know more about pressure visit:
https://brainly.com/question/30673967
#SPJ11
An air-cooled condenser has an h value of 30 W/m² −K based on the air-side area. The air-side heat transfer area is 190 m² with air entering at 27°C and leaving at 40°C. If the condensing temperature is constant at 49°C, what is the air mass flow rate in kg/s ? Let Cₚ₍ₐᵢᵣ₎ = 1.006 kJ/kg−K.(20pts) Draw and label the temperature-flow diagram. Round off your answer to three (3) decimal places.
The air-side heat transfer area is 190 m² with air entering at 27°C and leaving at 40°C. The condensing temperature is constant at 49°C. We need to find the air mass flow rate in kg/s. Also,[tex]Cₚ₍ₐᵢᵣ₎ = 1.006 kJ/kg−K.[/tex]The heat flow from the condenser is given by[tex]Q = m . Cp .[/tex]
Heat flow from the condenser is given by [tex]Q = m . Cp . ∆T[/tex]
Now, heat is transferred from the refrigerant to air.The formula for heat transfer is given by,
[tex]Q = U . A . ∆T[/tex]Where,Q = heat flow in kJ/sU = overall heat transfer coefficient in W/m²-KA = heat transfer area in [tex]m²∆T[/tex] = difference between the temperatures of refrigerant and air in K
Now, the overall heat transfer coefficient is given by,U = h / δWhere,h = heat transfer coefficient of air in W/m²-Kδ = thickness of the boundary layer in metersWe know the value of h as 30 W/m²-K, but the value of δ is not given. Therefore, we need to assume a value of δ as 0.0005 m.Then, the overall heat transfer coefficient is given by
[tex]U = 30 / 0.0005 = 60000 W/m²-K[/tex]
Now, heat flow from the refrigerant is given by
[tex]Q = U . A . ∆TQ = 60000 x 190 x 9Q = 102600000 W = 102600 kWAlso,Q = m . Cp . ∆T102600 = m . 1.006 . 9m = 11402.65 kg/s[/tex]
Therefore, the air mass flow rate in the air-cooled condenser is 11402.65 kg/s.
To know more about refrigerant visit:-
https://brainly.com/question/33440251
#SPJ11
5. Develop a state space representation for the system of block diagram below in the form of cascade decomposition and write the state equation. Then find the steady- state error for a unit-ramp input. Ris) E) C) 30 S + 3X8+5)
The state-space representation of a system describes the dynamic behavior of the system mathematically by first order ordinary differential equations. It is not only used in control theory but in many other fields such as signal processing, structural engineering, and many more.
Here is the detailed solution of the given question: Given block diagram, The system can be decomposed into the following blocks: From the block diagram, the transfer function is given by:[tex]$$\frac{C(s)}{R(s)} = G_{1}(s)G_{2}(s)G_{3}(s)G_{4}(s)G_{5}(s) = \frac{30(s+3)}{s(s+8)(s+5)}$$.[/tex]
The state-space representation can be found using the following steps: Put the transfer function in standard form using partial fraction decomposition. [tex]$$\frac{C(s)}{R(s)} = \frac{2}{s} + \frac{5}{s+5} - \frac{7}{s+8} + \frac{10}{s+8} + \frac{20}{s+5} - \frac{100}{s}$$.[/tex]
To know more about representation visit:
https://brainly.com/question/27987112
#SPJ11
Steel rod made of SAE 4140 oil quenched is to be subjected to reversal axial load 180000N. Determine the required diameter of the rod using FOS= 2. Use Soderberg criteria. B=0.85, C=0.8 .
SAE 4140 oil quenched steel rod is to be subjected to reversal axial load of 180000N. We are supposed to find the required diameter of the rod using the Factor of Safety(FOS)= 2. We need to use the Soderberg criteria with B=0.85 and C=0.8.
The Soderberg equation for reversed bending stress in terms of diameter is given by:
[tex]$$\frac{[(Sa)^2+(Sm)^2]}{d^2} = \frac{1}{K^2}$$[/tex]
Where Sa = alternating stressSm = mean stressd = diameterK = Soderberg constantK = [tex](FOS)/(B(1+C)) = 2/(0.85(1+0.8))K = 1.33[/tex]
From the Soderberg equation, we get:
[tex]$$\frac{[(Sa)^2+(Sm)^2]}{d^2} = \frac{1}{1.33^2}$$$$\frac{[(Sa)^2+(Sm)^2]}{d^2} = 0.5648$$For the given loading, Sa = 180000/2 = 90000 N/mm²Sm = 0Hence,$$\frac{[(90000)^2+(0)^2]}{d^2} = 0.5648$$$$d^2 = \frac{(90000)^2}{0.5648}$$$$d = \sqrt{\frac{(90000)^2}{0.5648}}$$$$d = 188.1 mm$$[/tex]
The required diameter of the steel rod using FOS = 2 and Soderberg criteria with B=0.85 and C=0.8 is 188.1 mm.
To know more about Factor of Safety visit :
https://brainly.com/question/13385350
#SPJ11
Which of the following devices is used for atomizing and vaporizing the fuel before mixing it with air in varying proportions? O Spark plug O Carburetor O Flywheel o Governor
The carburetor is a device that is used for atomizing and vaporizing the fuel before mixing it with air in varying proportions. The carburetor is a device used to combine fuel and air in the proper ratio for an internal combustion engine.
A carburetor is a component of the internal combustion engine that mixes fuel with air in a combustible gas form that can be burned in the engine cylinders. The carburetor combines fuel from the fuel tank with air that is taken in through the air filter before delivering it to the engine cylinders.
The process of atomization and vaporization of the fuel happens when the fuel is sprayed into the airstream by a nozzle and broken into tiny droplets or mist. Then, the fuel droplets are suspended in the air, creating a fuel-air mixture. The carburetor regulates the fuel-air ratio in the mixture.
To know more about carburetor visit:
https://brainly.com/question/31562706
#SPJ11
Air with a uniform current at a speed of 100 ft per sec is flowing around a ROTATING cylinder with a radius of 15 in. The cylinder is rotating about 100 times per minute. The freestream is said to be at Standard Sea Level Condition. At an angle of 20 deg with the direction of the flow, what is the pressure at that point?
Given parameters:Speed of the current = 100 ft per secRadius of cylinder = 15 in Revolution = 100 per minuteAngle = 20 degreesFind: Pressure at that pointThe answer to the question is:P = (dynamic pressure) + (static pressure)Where dynamic pressure is the pressure exerted by the fluid due to its motion and static pressure is the pressure exerted by the fluid when it is at rest.
To find the dynamic pressure we can use the formula below.Q = (density of fluid) x (velocity)^2/2Where Q is dynamic pressureDensity of air at sea level condition = 1.23 kg/m^3Let's convert the given parameters into SI units:Speed of the current = 100 ft per sec = 30.48 m/sRadius of cylinder = 15 in = 0.381 mRevolution = 100 per minute = 100/60 rev per sec = 1.67 rev per secAngle = 20 degrees = 0.349 radians
Now, substitute the values into the formula of dynamic pressure.Q = 1.23 x (30.48)^2/2Q = 5587.79 N/m^2Let's find the static pressure of the fluid.P = (density of fluid) x (gravity) x (height)Where gravity = 9.81 m/s^2, and height is the distance between the surface of the fluid and the point where we want to find the pressure. Here the height is the radius of the cylinder, which is 0.381 m.P = 1.23 x 9.81 x 0.381P = 4.64 N/m^2
Now, find the pressure at the point using the formula:P = Q + PP = 5587.79 + 4.64P = 5592.43 N/m^2Therefore, the pressure at that point is 5592.43 N/m^2 when the air with a uniform current at a speed of 100 ft per sec is flowing around a ROTATING cylinder with a radius of 15 in at an angle of 20 degrees with the direction of the flow.
To know about dynamic visit:
https://brainly.com/question/29216876
#SPJ11
(DT) Consider a large parallel plate capacitor with a hemispherical bulge on the grounded plate. The bulge has radius a and bulges toward the second plate. The distance between the plates is b.b> a. The second plate is at potential V.. 1. Find the potential everywhere inside the capacitor. 2. Determine the surface charge density on the flat portion of the grounded plate. 3. Determine the surface charge density on the bulge.
In a large parallel plate capacitor with a hemispherical bulge on the grounded plate, the potential everywhere inside the capacitor can be obtained by solving the Laplace's equation.
The Laplace's equation is a second-order partial differential equation that describes the behavior of the electric potential.
It is given by the equation ∇2V = 0, where V is the electric potential and ∇2 is the Laplacian operator.
The Laplace's equation can be solved using the method of separation of variables.
We can assume that the electric potential is of the form
V(x,y,z) = X(x)Y(y)Z(z),
where x, y, and z are the coordinates of the capacitor.
Substituting this expression into the Laplace's equation, we get:
X''/X + Y''/Y + Z''/Z = 0.
Since the left-hand side of this equation depends only on x, y, and z separately, we can write it as
X''/X + Y''/Y = -Z''/Z = λ2,
where λ is a constant. Solving these equations for X(x), Y(y), and Z(z), we get:
X(x) = A cosh(μx) + B sinh(μx)
Y(y) = C cos(nπy/b) + D sin(nπy/b)
Z(z) = E cosh(λz) + F sinh(λz),
where μ = a/√(b2-a2), n = 1, 2, 3, ..., and E and F are constants that depend on the boundary conditions.
The potential everywhere inside the capacitor is therefore given by:
V(x,y,z) = ∑ Anm cosh(μmx) sin(nπy/b) sinh(λmz),
where Anm are constants that depend on the boundary conditions.
To find the surface charge density on the flat portion of the grounded plate, we can use the boundary condition that the electric field is normal to the surface of the plate.
Since the electric field is given by
E = -∇V,
where V is the electric potential, the normal component of the electric field is given by
E·n = -∂V/∂n,
where n is the unit normal vector to the surface of the plate.
The surface charge density is then given by
σ = -ε0 E·n,
where ε0 is the permittivity of free space.
To find the surface charge density on the bulge, we can use the same method and the boundary condition that the electric field is normal to the surface of the bulge.
to know more about Laplace's equation visit:
https://brainly.com/question/13042633
#SPJ11
Q10. Select and sketch an appropriate symbol listed in Figure Q10 for ench geometric chracteristic listed below. OV Example: Perpendicularity a) Straightness b) Flatness c) Roundness d) Parallelism e) Symmetry f) Concentricity 수 오우 ㅎㅎ V Figure Q10 10 (6 Marks)
Figure Q10 lists various symbols used in the geometric tolerance in engineering. The symbols used in engineering indicate the geometrical shape of the object. It is a symbolic representation of an object's shape that is uniform.
Geometric tolerances are essential for ensuring that manufactured components are precise and will work together smoothly. Perpendicularity is shown by a square in Figure Q10. Straightness is represented by a line in Figure Q10.Flatness is indicated by two parallel lines in Figure Q10. Roundness is shown by a circle in Figure Q10. Parallelism is represented by two parallel lines with arrows pointing out in opposite directions in Figure Q10.Symmetry is indicated by a horizontal line that runs through the centre of the shape in Figure Q10. Concentricity is shown by two circles in Figure Q10, with one inside the other. In conclusion, geometric tolerances are essential in engineering and manufacturing. They guarantee that the manufactured components are precise and will function correctly.
The symbols used in engineering represent the geometrical shape of the object and are used to describe it. These symbols make it easier for manufacturers and engineers to understand and communicate the requirements of an object's shape.
To know more about geometric tolerance visit:
brainly.com/question/31675971
#SPJ11
a) Creep,
(i) What is the creep and explain stages of creep through sketch? Which stage of creep is more important for design purpose and why? [4 Marks] (ii) Why does temperature affect creep? [3 Marks]
(iii) Explain, how do we prevent jet engine turbine blades from creep (in combustion zone? [3 Marks] b) Corrosion, (i) What causes stress corrosion cracking? and how can SCC be avoided? [3 Marks]
(ii) Why is it important to study about corrosion for the structure integrity? and What are the benefits of corrosion control? [3 Marks] (iii) List two environmental parameters are known to influence the rate of crack growth and explain one parameter in detail. [4 Marks]
c) Discuss, two non-destructive testing methods and mention the application of each technique. [5 Marks]
Creep curve is a graphical representation of creep behavior that plots the strain as a function of time. The three stages of creep are: Primary creep: This is the first stage of creep. It begins with a high strain rate, which slows down over time. This stage is characterized by a rapidly decreasing rate of strain that stabilizes after a short period of time.
Secondary creep: This is the second stage of creep. It is characterized by a constant rate of strain. The rate of strain in this stage is slow and steady. The slope of the strain vs. time curve is nearly constant. Tertiary creep: This is the third stage of creep. It is characterized by an accelerating rate of strain, which eventually leads to failure. The rate of strain in this stage is exponential. The tertiary stage of creep is the most important for design purposes because this stage is when the material is most likely to fail.(ii) Why does temperature affect creep? Temperature affects creep because it influences the strength and elasticity of a material. As the temperature of a material increases, its strength decreases, while its ductility and elasticity increase.
The cracking occurs when the material's stress exceeds its yield strength and is assisted by the corrosive environment. SCC can be avoided by reducing the applied stress, improving the quality of the material, and avoiding exposure to corrosive media.(ii) Why is it important to study corrosion for the structure integrity? What are the benefits of corrosion control? The study of corrosion is important for structural integrity because corrosion can compromise the strength and durability of materials. Corrosion control has many benefits, including increased safety, longer service life, reduced maintenance costs, and improved performance. Corrosion control also helps to prevent accidents, downtime, and production losses.(iii) List two environmental parameters known to influence the rate of crack growth and explain one parameter in detail.
Corrosion occurs when a metal is exposed to an environment that contains moisture. The moisture reacts with the metal, causing it to corrode. The corrosion can weaken the metal and make it more susceptible to cracking. c) Discuss two non-destructive testing methods and mention the application of each technique. Two non-destructive testing methods are ultrasonic testing and magnetic particle testing.
https://brainly.com/question/25677078
#SPJ11
Two pipes with 400 and 600 mm diameters, and 1000 and 1500 m lengths, respectively, are connected in series through one 600 * 400 mm reducer, consist of the following fittings and valves: Two 400-mm 90o elbows, One 400-mm gate valve, Four 600-mm 90o elbows, Two 600-mm gate valve. Use
the Hazen Williams Equation with a C factor of 130 to calculate the total pressure drop due to friction in the series water piping system at a flow rate of 250 L/s?
The total pressure drop due to friction in the series water piping system at a flow rate of 250 L/s is 23.12 meters.
To calculate the total pressure drop, we need to determine the friction losses in each section of the piping system and then add them together. The Hazen Williams Equation is commonly used for this purpose.
In the first step, we calculate the friction loss in the 400-mm diameter pipe. Using the Hazen Williams Equation, the friction factor can be calculated as follows:
f = (C / (D^4.87)) * (L / Q^1.85)
where f is the friction factor, C is the Hazen Williams coefficient (130 in this case), D is the pipe diameter (400 mm), L is the pipe length (1000 m), and Q is the flow rate (250 L/s).
Substituting the values, we get:
f = (130 / (400^4.87)) * (1000 / 250^1.85) = 0.000002224
Next, we calculate the friction loss using the Darcy-Weisbach equation:
ΔP = f * (L / D) * (V^2 / 2g)
where ΔP is the pressure drop, f is the friction factor, L is the pipe length, D is the pipe diameter, V is the flow velocity, and g is the acceleration due to gravity.
For the 400-mm pipe:
ΔP1 = (0.000002224) * (1000 / 400) * (250 / 0.4)^2 / (2 * 9.81) = 7.17 meters
Similarly, we calculate the friction loss for the 600-mm pipe:
f = (130 / (600^4.87)) * (1500 / 250^1.85) = 0.00000134
ΔP2 = (0.00000134) * (1500 / 600) * (250 / 0.6)^2 / (2 * 9.81) = 15.95 meters
Finally, we add the friction losses in each section to obtain the total pressure drop:
Total pressure drop = ΔP1 + ΔP2 = 7.17 + 15.95 = 23.12 meters
Learn more about Pressure
brainly.com/question/30673967
#SPJ11
To begin our first assignment, you will need a piece of graph paper. Start by drawing your initials in block letters in a space about six points by six points. Even thought we won't use the mills in our lab that will help restrict us to our size. 6"x 6" Next we will assume that all coordinates are in positive X and Y coordinates. plot the points that are the end of each line. Next we will begin plotting a tool path. We do want to make this toolpath as efficient as possible but the path is up to you. On your graph paper write the X and Y coordinates for each point that your program will use. Open Notepad and begin by creating a program number on the first line. The first line of our program will be N10. We skip at least numbers on between lines to allow for editing. if we need to add a line between N110 and N120 we can insert a line N115 and avoid having to edit the whole program. N10 will give the specifics of the program, G20 and 21 indicate standard or metric coordinates. G90 indicates an absolute coordinate system, G91 is incremental coordinates, meaning the coordinates are based off of an absolute zero or referenced off of the last point. GOO is a rapid positioning command, when we make contact with the work piece, feed rates must be set. XO,YO. N20 will indicate linear interpolation, meaning the tool piece will move from each point in a straight line. We will enter our first point and a feed rate. for this exercise, its F25, 25 inches per minute. Each line of code from this point will be points between movement. When it is input into our toolpath generator it should look like you have drawn your initials without picking you pencil up. We will add the Z axis a little later.
The first step of the assignment is to draw the initials of the students in block letters on a graph paper of size 6 x 6. Assume that all coordinates are in positive X and Y coordinates.
The end of each line is plotted with points. The tool path is plotted next. The path is required to be as efficient as possible, but the choice of path is left to the students. The X and Y coordinates for each point are written on the graph paper. Next, a Notepad is opened to create the program.
The first line of the program will be N10. In between the lines, a few numbers are skipped to allow for editing. The next line will give the specifics of the program. G20 and 21 indicate standard or metric coordinates, G90 indicates an absolute coordinate system, and G91 is incremental coordinates.
To know more about coordinates visit:
https://brainly.com/question/32836021
#SPJ11
Five miners must be lifted from a mineshaft (vertical hole) 100m deep using an elevator. The work required to do this is found to be 341.2kJ. If the gravitational acceleration is 9.75m/s^2, determine the average mass per person in kg.
a. 65kg
b. 70kg
c. 75kg
d. 80kg
(b).Given information: Depth of mine shaft = 100 m Work done = 341.2 kJ Gravitational acceleration = 9.75 m/s²Number of persons to be lifted = 5Formula used: Work done = force × distanceIn this question, we are supposed to determine the average mass per person in kg.
The formula to calculate the average mass per person is:Average mass per person = Total mass / Number of personsLet's begin with the solution:From the given information,The work done to lift 5 persons from the mine shaft is 341.2 kJThe gravitational acceleration is 9.75 m/s²The distance covered to lift the persons is 100 mTherefore,Work done = force × distance
Using this formula, we getForce = Work done / distance= 341.2 kJ / 100 m= 3412 J / 1 m= 3412 NNow, force = mass × gravitational accelerationTherefore, mass = force / gravitational acceleration= 3412 N / 9.75 m/s²= 350.56 kgAverage mass per person = Total mass / Number of persons= 350.56 kg / 5= 70.11 kg ≈ 70 kgTherefore, the average mass per person in kg is 70 kg. Hence, the correct option is (b).
To know more about Gravitational visit:-
https://brainly.com/question/3009841
#SPJ11
What is the ductile brittle transition temperature in steels. Explain in detail the factors affecting this property in steels. How can the ductile-brittle transition temperature property of steels be improved without reducing the weldability, ductility, hardness and strength values? Explain in detail (draw the relevant figures and graphics you deem necessary).
Ductile-brittle transition temperature is the temperature at which ductile to brittle transition takes place. Heat treatment is another method that can be used to improve the ductile-brittle transition temperature of steels. Heat treatment can change the microstructure of steels, which affects their ductility and toughness.
It is the temperature at which a material's toughness and ductility drops suddenly from high to low values. This transition temperature varies from one material to another, and it is usually tested with the Charpy impact test.Ductile-brittle transition temperature in steelsDuctile-brittle transition temperature is important in engineering as it influences the mechanical behavior of materials at low temperatures. Ductile materials have the ability to deform plastically when subjected to an applied force
Composition: The composition of steels affects their mechanical properties. The addition of alloying elements can change the microstructure of steels, which in turn affects their ductility and toughness.
Grain size: Grain size also plays an important role in determining steel's mechanical properties. A fine-grained microstructure tends to enhance ductility, while a coarse-grained microstructure tends to reduce ductility.
Heat treatment: Heat treatment can change the microstructure of steels, which affects their ductility and toughness.
Rate of loading: The rate of loading can affect the ductile-brittle transition temperature. A slow loading rate can result in ductile behavior, while a fast loading rate can result in brittle behavior.
Alloying elements such as nickel and manganese have been shown to improve the ductile-brittle transition temperature of steels. Another method is by refining the grain size. A fine-grained microstructure tends to enhance ductility, while a coarse-grained microstructure tends to reduce ductility.
To know more about Ductile-brittle visit :
https://brainly.com/question/13261412
#SPJ11
What advantages does worm drive have? What are the requirements for materials of worm gear in worm system? (6 scores) (8) Why should the calculation of heat balance be executed? What if the design does not achieve thermal balance? (5 scores)
The efficiency of a worm drive is higher than that of a spur gear. It also has less power loss due to friction. Because the contact between the worm and the gear teeth is always at right angles, the wear rate is low, resulting in a longer life.
In comparison to other gearboxes, the worm gearboxes are compact and can transmit higher torque with the same size, and it is possible to achieve a higher speed reduction ratio with a worm gear. The worm gear is self-locking, which means it can maintain the drive position and hold the weight on its own without the need for a brake. The material for the worm wheel is typically made of bronze or plastic, while the worm material is often constructed of steel. In worm gear systems, bronze is a common material for worm wheels because it is tough and abrasion-resistant.
Steel is also used for worm wheels in some cases because it is less expensive and more durable than bronze. In worm gear systems, steel is typically used to make the worm shaft, and it is preferred because it can be heat-treated to achieve hardness, and it is also wear-resistant.
When a device's operating temperature is too low, the heat balance calculation helps to determine the necessary amount of heat to be added to the system. If a design does not achieve thermal balance, the operating temperature of the device may not be within the safe range, and this may result in damage to the device or sub-optimal performance.
To know more about friction visit:-
https://brainly.com/question/28356847
#SPJ11