Answer:
a. q2 = 16.4μC, positive charge
b. F = 0.900N
c. downward
Explanation:
a. In order to calculate the charge of the unknown charge you use the following formula, for the electric force between two charges:
[tex]F_e=k\frac{q_1q_2}{r^2}[/tex] (1)
k: Coulomb's constant = 8.98*10^9Nm^2/C^2
r: distance between the charges = 0.300m
q1: charge 1 = -0.550 μC = 0.550*10^-6C
q2: charge 2 = ?
Fe: electric force = 0.900N
The force exerted in the second charge points upward, then, the sign of the second charge is positive because this charge is getting closer to the first one.
You solve the equation (1) for the second charge ans replace the values of the other parameters:
[tex]q_2=\frac{r^2F_e}{kq_1}=\frac{(0.300m)^2(0.900N)}{(8.98*10^9Nm^2/C^2)(0.550*10^{-6}C)}\\\\q_2=1.64*10^{-5}C\\\\q_2=16.4*10^{-6}C=16.4*10\mu C[/tex]
The values of the second charge is 1.64 μC
b. By the third Newton Law, you have that the force exerted in the second charge is equal to the force exerted by the first charge on the second one.
The force exerted on the first charge is 0.900N
c. The charges are attracting between them, then, the force exerted on the first charge is pointing downward.
A dumbbell-shaped object is composed by two equal masses, m, connected by a rod of negligible mass and length r. If I1 is the moment of inertia of this object with respect to an axis passing through the center of the rod and perpendicular to it and I2 is the moment of inertia with respect to an axis passing through one of the masses, it follows that:
a. I1 > I2
b. I2 > I1.
c. I1 = I2.
Answer:
B: I2>I1
Explanation:
See attached file
An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about _____ years.
Answer:
An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about 2 years.
Explanation:
Given;
orbital period of 3 years, P = 3 years
To calculate the years of an orbital with a semi-major axis, we apply Kepler's third law.
Kepler's third law;
P² = a³
where;
P is the orbital period
a is the orbital semi-major axis
(3)² = a³
9 = a³
a = [tex]a = \sqrt[3]{9} \\\\a = 2.08 \ years[/tex]
Therefore, An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about 2 years.
The interference of two sound waves of similar amplitude but slightly different frequencies produces a loud-soft-loud oscillation we call __________.
a. the Doppler effect
b. vibrato
c. constructive and destructive interference
d. beats
Answer:
the correct answer is d Beats
Explanation:
when two sound waves interfere time has different frequencies, the result is the sum of the waves is
y = 2A cos 2π (f₁-f₂)/2 cos 2π (f₁ + f₂)/2
where in this expression the first part represents the envelope and the second part represents the pulse or beatings of the wave.
When examining the correct answer is d Beats
When looking at the chemical symbol, the charge of the ion is displayed as the
-superscript
-subscript
-coefficient
-product
Answer:
superscript
Explanation:
When looking at the chemical symbol, the charge of the ion is displayed as the Superscript. This is because the charge of ions is usually written up on the chemical symbol while the atom/molecule is usually written down the chemical symbol. The superscript refers to what is written up on the formula while the subscript is written down on the formula.
An example is H2O . The 2 present represents two molecule of oxygen and its written as the subscript while Fe2+ in which the 2+ is written up is known as the superscript.
Answer:
superscript
Explanation:
A wave with a frequency of 1200 Hz propagates along a wire that is under a tension of 800 N. Its wavelength is 39.1 cm. What will be the wavelength if the tension is decreased to 600 N and the frequency is kept constant
Answer:
The wavelength will be 33.9 cm
Explanation:
Given;
frequency of the wave, F = 1200 Hz
Tension on the wire, T = 800 N
wavelength, λ = 39.1 cm
[tex]F = \frac{ \sqrt{\frac{T}{\mu} }}{\lambda}[/tex]
Where;
F is the frequency of the wave
T is tension on the string
μ is mass per unit length of the string
λ is wavelength
[tex]\sqrt{\frac{T}{\mu} } = F \lambda\\\\\frac{T}{\mu} = F^2\lambda^2\\\\\mu = \frac{T}{F^2\lambda^2} \\\\\frac{T_1}{F^2\lambda _1^2} = \frac{T_2}{F^2\lambda _2^2} \\\\\frac{T_1}{\lambda _1^2} = \frac{T_2}{\lambda _2^2}\\\\T_1 \lambda _2^2 = T_2\lambda _1^2\\\\[/tex]
when the tension is decreased to 600 N, that is T₂ = 600 N
[tex]T_1 \lambda _2^2 = T_2\lambda _1^2\\\\\lambda _2^2 = \frac{T_2\lambda _1^2}{T_1} \\\\\lambda _2 = \sqrt{\frac{T_2\lambda _1^2}{T_1}} \\\\\lambda _2 = \sqrt{\frac{600* 0.391^2}{800}}\\\\\lambda _2 = \sqrt{0.11466} \\\\\lambda _2 =0.339 \ m\\\\\lambda _2 =33.9 \ cm[/tex]
Therefore, the wavelength will be 33.9 cm
A 30 L electrical radiator containing heating oil is placed in a 50 m3room. Both the roomand the oil in the radiator are initially at 10◦C. The radiator with a rating of 1.8 kW is nowturned on. At the same time, heat is lost from the room at an average rate of 0.35 kJ/s.After some time, the average temperature is measured to be 20◦C for the air in the room,and 50◦C for the oil in the radiator. Taking the density and the specific heat of the oil to be950 kg/m3and 2.2 kJ/kg◦C, respectively, determine how long the heater is kept on. Assumethe room is well sealed so that there are no air leaks.
Answer:
Explanation:
Heat absorbed by oil
= mass x specific heat x rise in temperature
= 30 x 10⁻³ x 950 x 2.2 x 10³ x ( 50-10 )
= 25.08 x 10⁵ J
Heat absorbed by air
= 50 x 1.2 x 1.0054 x 10³ x ( 20-10 )
= 6.03 x 10⁵ J
Total heat absorbed = 31.11 x 10⁵ J
If time required = t
heat lost from room
= .35 x 10³ t
Total heat generated in time t
= 1.8 x 10³ t
Heat generated = heat used
1.8 x 10³ t = .35 x 10³ t + 31.11 x 10⁵
1.45 x 10³ t = 31.11 x 10⁵
t = 31.11 x 10⁵ / 1.45 x 10³
t = 2145.5 s
Two identical small charged spheres are a certain distance apart, and each one initially experiences an electrostatic force of magnitude F due to the other. With time, charge gradually leaks off of both spheres. When each of the spheres has lost half its initial charge, the magnitude of the electrostatic force will be
Answer:
F' = F/4
Thus, the magnitude of electrostatic force will become one-fourth.
Explanation:
The magnitude of force applied by each charge on one another can be given by Coulomb's Law:
F = kq₁q₂/r² -------------- equation 1
where,
F = Force applied by charges
k = Coulomb's Constant
q₁ = magnitude of first charge
q₂ = magnitude of 2nd charge
r = distance between the charges
Now, in the final state the charges on both spheres are halved. Therefore,
q₁' = q₁/2
q₂' = q₂/2
Hence, the new force will be:
F' = kq₁'q₂'/r²
F' = k(q₁/2)(q₂/2)/r²
F' = (kq₁q₂/r²)(1/4)
using equation 1:
F' = F/4
Thus, the magnitude of electrostatic force will become one-fourth.
The magnitude of the electrostatic force will be F' = F/4
The magnitude of the electrostatic force:Here we used Coulomb's Law:
F = kq₁q₂/r² -------------- equation 1
Here
F = Force applied by charges
k = Coulomb's Constant
q₁ = magnitude of first charge
q₂ = magnitude of 2nd charge
r = distance between the charges
Now
q₁' = q₁/2
q₂' = q₂/2
So, the new force should be
F' = kq₁'q₂'/r²
F' = k(q₁/2)(q₂/2)/r²
F' = (kq₁q₂/r²)(1/4)
So,
F' = F/4
Learn more about force here: https://brainly.com/question/14282312
An asteroid that has an orbit with a semi-major axis of 4 AU will have an orbital period of about ______ years.
Answer:
16 years.
Explanation:
Using Kepler's third Law.
P2=D^3
P=√d^3
Where P is the orbital period and d is the distance from the sun.
From the question the semi major axis of the asteroid is 4 AU= distance. The distance is always express in astronomical units.
P=?
P= √4^3
P= √256
P= 16 years.
Orbital period is 16 years.
Five identical cylinders are each acted on by forces of equal magnitude. Which force exerts the biggest torque about the central axes of the cylinders
Answer:
From the image, the force as shown in option A will exert the biggest torque on the cylinder about its central axes.
Explanation:
The image is shown below.
Torque is the product of a force about the center of rotation of a body, and the radius through which the force acts. For a given case such as this, in which the cylinders are identical, and the forces are of equal magnitude, the torque at the maximum radius away from the center will exert the maximum torque. Also, the direction of the force also matters. To generate the maximum torque, the force must be directed tangentially away from the circle formed by the radius through which the force acts away from the center. Option A satisfies both condition and hence will exert the most torque on the cylinder.
Monochromatic coherent light shines through a pair of slits. If the wavelength of the light is decreased, which of the following statements are true of the resulting interference pattern? (There could be more than one correct choice.)
a. The distance between the maxima decreases.
b. The distance between the minima decreases.
c. The distance between the maxima stays the same.
d. The distance between the minima increases.
e. The distance between the minima stays the same.
Answer:
he correct answers are a, b
Explanation:
In the two-slit interference phenomenon, the expression for interference is
d sin θ= m λ constructive interference
d sin θ = (m + ½) λ destructive interference
in general this phenomenon occurs for small angles, for which we can write
tanθ = y / L
tan te = sin tea / cos tea = sin tea
sin θ = y / La
un
derestimate the first two equations.
Let's do the calculation for constructive interference
d y / L = m λ
the distance between maximum clos is and
y = (me / d) λ
this is the position of each maximum, the distance between two consecutive maximums
y₂-y₁ = (L 2/d) λ - (L 1 / d) λ₁ y₂ -y₁ = L / d λ
examining this equation if the wavelength decreases the value of y also decreases
the same calculation for destructive interference
d y / L = (m + ½) κ
y = [(m + ½) L / d] λ
again when it decreases the decrease the distance
the correct answers are a, b
An 88.0 kg spacewalking astronaut pushes off a 645 kg satellite, exerting a 110 N force for the 0.450 s it takes him to straighten his arms. How far apart are the astronaut and the satellite after 1.40 min?
Answer:
The astronaut and the satellite are 53.718 m apart.
Explanation:
Given;
mass of spacewalking astronaut, = 88 kg
mass of satellite, = 645 kg
force exerts by the satellite, F = 110N
time for this action, t = 0.45 s
Determine the acceleration of the satellite after the push
F = ma
a = F / m
a = 110 / 645
a = 0.171 m/s²
Determine the final velocity of the satellite;
v = u + at
where;
u is the initial velocity of the satellite = 0
v = 0 + 0.171 x 0.45
v = 0.077 m/s
Determine the displacement of the satellite after 1.4 m
d₁ = vt
d₁ = 0.077 x (1.4 x 60)
d₁ = 6.468 m
According to Newton's third law of motion, action and reaction are equal and opposite;
Determine the backward acceleration of the astronaut after the push;
F = ma
a = F / m
a = 110 / 88
a = 1.25 m/s²
Determine the final velocity of the astronaut
v = u + at
The initial velocity of the astronaut = 0
v = 1.25 x 0.45
v = 0.5625 m/s
Determine the displacement of the astronaut after 1.4 min
d₂ = vt
d₂ = 0.5625 x (1.4 x 60)
d₂ = 47.25 m
Finally, determine the total separation between the astronaut and the satellite;
total separation = d₁ + d₂
total separation = 6.468 m + 47.25 m
total separation = 53.718 m
Therefore, the astronaut and the satellite are 53.718 m apart.
A force of 44 N will stretch a rubber band 88 cm (0.080.08 m). Assuming that Hooke's law applies, how far will aa 11-N force stretch the rubber band? How much work does it take to stretch the rubber band this far?
Answer:
The rubber band will be stretched 0.02 m.
The work done in stretching is 0.11 J.
Explanation:
Force 1 = 44 N
extension of rubber band = 0.080 m
Force 2 = 11 N
extension = ?
According to Hooke's Law, force applied is proportional to the extension provided elastic limit is not extended.
F = ke
where k = constant of elasticity
e = extension of the material
F = force applied.
For the first case,
44 = 0.080K
K = 44/0.080 = 550 N/m
For the second situation involving the same rubber band
Force = 11 N
e = 550 N/m
11 = 550e
extension e = 11/550 = 0.02 m
The work done to stretch the rubber band this far is equal to the potential energy stored within the rubber due to the stretch. This is in line with energy conservation.
potential energy stored = [tex]\frac{1}{2}ke^{2}[/tex]
==> [tex]\frac{1}{2}* 550* 0.02^{2}[/tex] = 0.11 J
A 3-liter container has a pressure of 4 atmospheres. The container is sent underground, with resulting compression into 2 L. Applying Boyle's Law, what will the new pressure be? choices: 2.3 atm 8 atm 6 atm 1.5 atm
Answer:
6 atm
Explanation:
PV = PV
(4 atm) (3 L) = P (2 L)
P = 6 atm
mention two similarities of citizen and aliens
Answer:
The main points of difference between a citizen and alien are: (a) A citizen is a permanent resident of a state, while an alien is a temporary resident, who comes for a specific duration of time as a tourist or on diplomatic assignment. ... Aliens do not possess such rights in the state where they reside temporarily
Explanation:
When a particular wire is vibrating with a frequency of 6.3 Hz, a transverse wave of wavelength 53.3 cm is produced. Determine the speed of wave pulses along the wire.
Answer:
335.79cm/s
Explanation:
When a transverse wave of wavelength λ is produced during the vibration of a wire, the frequency(f), and the speed(v) of the wave pulses are related to the wavelength as follows;
v = fλ ------------------(ii)
From the question;
f = 6.3Hz
λ = 53.3cm
Substitute these values into equation (i) as follows;
v = 6.3 x 53.3
v = 335.79cm/s
Therefore, the speed of the wave pulses along the wire is 335.79cm/s
A 5.0-Ω resistor and a 9.0-Ω resistor are connected in parallel. A 4.0-Ω resistor is then connected in series with this parallel combination. An ideal 6.0-V battery is then connected across the series-parallel combination of the three resistors. What is the current through (a) the 4.0-Ω resistor? (b) the 5.0-Ω resistor? (c) the 9.0-Ω resistor?
Answer:
Explanation:
The current through the resistor is 0.83 A
.
Part b
The current through resistor is 0.53 A
.
Part c
The current through resistor is 0.30 A
Two objects attract each other with a gravitational force of magnitude 1.02 10-8 N when separated by 19.7 cm. If the total mass of the two objects is 5.14 kg, what is the mass of each
Answer:
The two masses are 3.39 Kg and 1.75 Kg
Explanation:
The gravitational force of attraction between two bodies is given by the formula;
F = Gm₁m₂/d²
where G is the gravitational force constant = 6.67 * 10⁻¹¹ Nm²Kg⁻²
m₁ = mass of first object; m₂ = mass of second object; d = distance of separation between the objects
Further calculations are provided in the attachment below
How does an atom of rubidium-85 become a rubidium ion with a +1 charge?
Answer:
C. The atom loses 1 electron to have a total of 36.
Explanation:
Cations have a positive charge. Cations lose electrons.
The number of electrons in a Rubidium atom is 37. If the atom loses 1 electron, then it has 36 left.
Please Help!!!! I WILL GIVE BRAINLIEST!!!!!!!!!!!!!
Upon using Thomas Young’s double-slit experiment to obtain measurements, the following data were obtained. Use these data to determine the wavelength of light being used to create the interference pattern. Do this using three different methods.
The angle to the eighth maximum is 1.12°.
The distance from the slits to the screen is 302.0 cm.
The distance from the central maximum to the fifth minimum is 3.33 cm.
The distance between the slits is 0.000250 m.
The 3 equations I used were 1). d sin θ_m =(m)λ 2). delta x =λL/d and 3.) d(x_n)/L=(n-1/2)λ
but all my answers are different.
DID I DO SOMETHING WRONG!!!!!!!
Given info
d = 0.000250 meters = distance between slits
L = 302 cm = 0.302 meters = distance from slits to screen
[tex]\theta_8 = 1.12^{\circ}[/tex] = angle to 8th max (note how m = 8 since we're comparing this to the form [tex]\theta_m[/tex])
[tex]x_n = x_5 = 3.33 \text{ cm} = 0.0333 \text{ meters}[/tex] (n = 5 as we're dealing with the 5th minimum )
---------------
Method 1
[tex]d\sin(\theta_m) = m\lambda\\\\0.000250\sin(\theta_8) = 8\lambda\\\\8\lambda = 0.000250\sin(1.12^{\circ})\\\\\lambda = \frac{0.000250\sin(1.12^{\circ})}{8}\\\\\lambda \approx 0.000 000 61082633\\\\\lambda \approx 6.1082633 \times 10^{-7} \text{meters}\\\\ \lambda \approx 6.11 \times 10^{-7} \text{ meters}\\\\ \lambda \approx 611 \text{ nm}[/tex]
Make sure your calculator is in degree mode.
-----------------
Method 2
[tex]\Delta x = \frac{\lambda*L*m}{d}\\\\L*\tan(\theta_m) = \frac{\lambda*L*m}{d}\\\\\tan(\theta_m) = \frac{\lambda*m}{d}\\\\\tan(\theta_8) = \frac{\lambda*8}{0.000250}\\\\\tan(1.12^{\circ}) = \frac{\lambda*8}{0.000250}\\\\\lambda = \frac{1}{8}*0.000250*\tan(1.12^{\circ})\\\\\lambda \approx 0.00000061094306 \text{ meters}\\\\\lambda \approx 6.1094306 \times 10^{-7} \text{ meters}\\\\\lambda \approx 611 \text{ nm}\\\\[/tex]
-----------------
Method 3
[tex]\frac{d*x_n}{L} = \left(n-\frac{1}{2}\right)\lambda\\\\\frac{0.000250*3.33}{302.0} = \left(5-\frac{1}{2}\right)\lambda\\\\0.00000275662251 \approx \frac{9}{2}\lambda\\\\\frac{9}{2}\lambda \approx 0.00000275662251\\\\\lambda \approx \frac{2}{9}*0.00000275662251\\\\\lambda \approx 0.00000061258279 \text{ meters}\\\\\lambda \approx 6.1258279 \times 10^{-7} \text{ meters}\\\\\lambda \approx 6.13 \times 10^{-7} \text{ meters}\\\\\lambda \approx 613 \text{ nm}\\\\[/tex]
There is a slight discrepancy (the first two results were 611 nm while this is roughly 613 nm) which could be a result of rounding error, but I'm not entirely sure.
how do a proton and neutron compare?
Answer:
c.they have opposite charges.
Explanation:
because the protons have a positive charge and the neutrons have no charge.
the density of gold is 19 300kg/m^3. what is the mass of gold cube with the length 0.2015m?
Answer:
The mass is [tex]157.87m^3[/tex]Explanation:
Given data
length of cube= 0.2015 m
density = 19300 kg/m^3.
But the volume of cube is given as [tex]l*l*l= l^3[/tex]
[tex]volume -of- cube= 0.2015*0.2015*0.2015= 0.00818 m^3[/tex]
The density is expressed as = mass/volume
[tex]mass=19300*0.00818= 157.87m^3[/tex]
A very long, solid cylinder with radius R has positive charge uniformly distributed throughout it, with charge per unit volume \rhorho.
(a) Derive the expression for the electric field inside the volume at a distance r from the axis of the cylinder in terms of the charge density \rhorho.
(b) What is the electric field at a point outside the volume in terms of the charge per unit length \lambdaλ in the cylinder?
(c) Compare the answers to parts (a) and (b) for r = R.
(d) Graph the electric-field magnitude as a function of r from r = 0 to r = 3R.
Answer:
the answers are provided in the attachments below
Explanation:
Gauss law state that the net electric field coming out of a closed surface is directly proportional to the charge enclosed inside the closed surface
Applying Gauss law to the long solid cylinder
A) E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]
B) E = 2K λ / r
C) Answers from parts a and b are the same
D) attached below
Applying Gauss's law which states that the net electric field in an enclosed surface is directly ∝ to the charge found in the enclosed surface.
A ) The expression for the electric field inside the volume at a distance r
Gauss law : E. A = [tex]\frac{q}{e_{0} }[/tex] ----- ( 1 )
where : A = surface area = 2πrL , q = p(πr²L)
back to equation ( 1 )
E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]
B) Electric field at point Outside the volume in terms of charge per unit length λ
Given that: linear charge density = area * volume charge density
λ = πR²P
from Gauss's law : E ( 2πrL) = [tex]\frac{q}{e_{0} }[/tex]
∴ E = [tex]\frac{\pi R^{2}P }{2e_{0}r\pi }[/tex] ----- ( 2 )
where : πR²P = λ
Back to equation ( 2 )
E = λ / 2e₀π*r where : k = 1 / 4πe₀
∴ The electric field ( E ) at point outside the volume in terms of charge per unit Length λ
E = 2K λ / r
C) Comparing answers A and B
Answers to part A and B are similar
Hence we can conclude that Applying Gauss law to the long solid cylinder
E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex], E = 2K λ / r also Answers from parts a and b are the same.
Learn more about Gauss's Law : https://brainly.com/question/15175106
The magnitude of the magnetic flux through the surface of a circular plate is 6.80 10-5 T · m2 when it is placed in a region of uniform magnetic field that is oriented at 43.0° to the vertical. The radius of the plate is 8.50 cm. Determine the strength of the magnetic field. mT A circular plate of radius r is lying flat. A field of arrows labeled vector B rising up and to the right pass through the plate.
Answer:
B = 4.1*10^-3 T = 4.1mT
Explanation:
In order to calculate the strength of the magnetic field, you use the following formula for the magnetic flux trough a surface:
[tex]\Phi_B=S\cdot B=SBcos\alpha[/tex] (1)
ФB: magnetic flux trough the circular surface = 6.80*10^-5 T.m^2
S: surface area of the circular plate = π.r^2
r: radius of the circular plate = 8.50cm = 0.085m
B: magnitude of the magnetic field = ?
α: angle between the direction of the magnetic field and the normal to the surface area of the circular plate = 43.0°
You solve the equation (1) for B, and replace the values of the other parameters:
[tex]B=\frac{\Phi_B}{Scos\alpha}=\frac{6.80*10^{-5}T.m^2}{(\pi (0.085m)^2)cos(43.0\°)}\\\\B=4.1*10^{-3}T=4.1mT[/tex]
The strength of the magntetic field is 4.1mT
What is the transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described in Question 3
Answer:
3) Transmitted intensity of light if unpolarized light passes through a single polarizing filter = 40 W/m²
- Transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described = 7.5 W/m²
Explanation:
Complete Question
3) What is the transmitted intensity of light if unpolarized light passes through a single polarizing filter and the initial intensity is 80 W/m²?
- What is the transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described in Question 3 (the setup)? Show all work in your answer.
The image of this setup attached to this question as obtained from online is attached to this solution.
Solution
3) When unpolarized light passes through a single polarizer, the intensity of the light is cut in half.
Hence, if the initial intensity of unpolarized light is I₀ = 80 W/m²
The intensity of the light rays thay pass through the first single polarizer = I₁ = (I₀/2) = (80/2) = 40 W/m²
- According to Malus' law, the intensity of transmitted light through a polarizer is related to the intensity of the incident light and the angle at which the polarizer is placed with respect to the major axis of the polarizer before the current polarizer of concern.
I₂ = I₁ cos² θ
where
I₂ = intensity of light that passes through the second polarizer = ?
I₁ = Intensity of light from the first polarizer that is incident upon the second polarizer = 40 W/m²
θ = angle between the major axis of the first and second polarizer = 30°
I₂ = 40 (cos² 30°) = 40 (0.8660)² = 30 W/m²
In the same vein, the intensity of light that passes through the third/additional polarizer is related to the intensity of light that passes through the second polarizer and is incident upon this third/additional polarizer through
I₃ = I₂ cos² θ
I₃ = intensity of light that passes through the third/additional polarizer = ?
I₂ = Intensity of light from the second polarizer that is incident upon the third/additional polarizer = 30 W/m²
θ = angle between the major axis of the second and third/additional polarizer = 60° (although, it is 90° with respect to the first polarizer, it is the angle it makes with the major axis of the second polarizer, 60°, that matters)
I₃ = 30 (cos² 60°) = 30 (0.5)² = 7.5 W/m²
Hope this Helps!!!
Two beams of coherent light start out at the same point in phase and travel different paths to arrive at point P. If the maximum destructive interference is to occur at point P, the two beams must travel paths that differ by
Answer:
the two beams must travel paths that differ by one-half of a wavelength.
A commercial diffraction grating has 500 lines per mm. Part A When a student shines a 480 nm laser through this grating, how many bright spots could be seen on a screen behind the grating
Answer:
The number of bright spot is m =4
Explanation:
From the question we are told that
The number of lines is [tex]s = 500 \ lines / mm = 500 \ lines / 10^{-3} m[/tex]
The wavelength of the laser is [tex]\lambda = 480 nm = 480 *10^{-9} \ m[/tex]
Now the the slit is mathematically evaluated as
[tex]d = \frac{1}{s} = \frac{1}{500} * 10^{-3} \ m[/tex]
Generally the diffraction grating is mathematically represented as
[tex]dsin\theta = m \lambda[/tex]
Here m is the order of fringes (bright fringes) and at maximum m [tex]\theta = 90^o[/tex]
So
[tex]\frac{1}{500} * sin (90) = m * (480 *10^{-3})[/tex]
=> [tex]m = 4[/tex]
This implies that the number of bright spot is m =4
An ice skater is in a fast spin with her arms held tightly to her body. When she extends her arms, which of the following statements in NOT true?
A. Het total angular momentum has decreased
B. She increases her moment of inertia
C. She decreases her angular speed
D. Her moment of inertia changes
Answer:
A. Her total angular momentum has decreased
Explanation:
Total angular momentum is the product of her moment of inertia and angular velocity. In this scenario it doesn’t decrease but rather remains constant as the movement of the arms doesn’t have any effect on the total angular momentum.
The movement of the arm under certain conditions however has varying effects and changes on parameters such as the moment of inertia and the angular speed.
An ice skater spinning with outstretched arms has an angular speed of 5.0 rad/s . She tucks in her arms, decreasing her moment of inertia by 11 % . By what factor does the skater's kinetic energy change? (Neglect any frictional effects.)
Answer:
K_{f} / K₀ =1.12
Explanation:
This problem must work using the conservation of angular momentum (L), so that the moment is conserved in the system all the forces must be internal and therefore the torque is internal and the moment is conserved.
Initial moment. With arms outstretched
L₀ = I₀ w₀
the wo value is 5.0 rad / s
final moment. After he shrugs his arms
[tex]L_{f}[/tex] = I_{f} w_{f}
indicate that the moment of inertia decreases by 11%
I_{f} = I₀ - 0.11 I₀ = 0.89 I₀
L_{f} = L₀
I_{f} w_{f} = I₀ w₀
w_{f} = I₀ /I_{f} w₀
let's calculate
w_{f} = I₀ / 0.89 I₀ 5.0
w_{f} = 5.62 rad / s
Having these values we can calculate the change in kinetic energy
[tex]K_{f}[/tex] / K₀ = ½ I_{f} w_{f}² (½ I₀ w₀²)
K_{f} / K₀ = 0.89 I₀ / I₀ (5.62 / 5)²
K_{f} / K₀ =1.12
1. In a Millikan type experiment, two horizontal plates are 2.5 cm apart. A latex sphere of
mass 1.5 x 10-15 kg remains stationary when the potential difference between the
plates is 460 V, with the upper plate positive. [2+2+2+2 = 8 marks]
a. Is the sphere charged negatively or positively?
b. What is the magnitude of the electric field intensity between the plates?
C. Calculate the magnitude of the charge on the latex sphere.
d. How many excess or deficit electrons does the sphere have?
Answer:
Explanation:
a. Is the sphere charged negatively or positively?
The sphere us negatively charged. In a Millikan type experiment, there will be two forces that will be acting on the sphere which are the electric force which acts upward and also the gravity which acts downward.
Because the upper plate is positively charged, there'll what an attractive curve with an upward direction which will be felt by the negatively charged sphere.
b. What is the magnitude of the electric field intensity between the plates?
The magnitude of the electric field intensity between the plates is 18400v/m.
C. Calculate the magnitude of the charge on the latex sphere.
The magnitude of the charge on the latex sphere hae been solved and attached
d. How many excess or deficit electrons does the sphere have?
There are 5 excess electrons that the sphere has.
Check the attachment for further explanation.
A boat that has a speed of 6km / h must cross a 200m wide river perpendicular to the current that carries a speed of 1m / s. Calculate a) the final speed of the boat b) displacement experienced by the boat in the direction of the current when making the journey
Answer:
a) 1.94 m/s
b) 120 m
Explanation:
Convert km/h to m/s:
6 km/h = 1.67 m/s
a) The final speed is found with Pythagorean theorem:
v = √((1.67 m/s)² + (1 m/s)²)
v = 1.94 m/s
b) The time it takes the boat to cross the river is:
t = (200 m) / (1.67 m/s)
t = 120 s
The displacement in the direction of the current is:
x = (1 m/s) (120 s)
x = 120 m